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Abstract

Background: Cutaneous adverse drug reactions (CADR) associated with oncology therapy involve 45-100% of
patients receiving kinase inhibitors. Such adverse reactions may include skin inflammation, infection, pruritus and
dryness, symptoms that can significantly affect the patient’s quality of life. To prevent severe skin damages dose
adjustment or drug discontinuation is often required, interfering with the prescribed oncology treatment protocol.
This is particularly the case of Epidermal Growth Factor Receptor inhibitors (EGFRI) targeting carcinomas. Since the
EGFR pathway is pivotal for epidermal keratinocytes, it is reasonable to hypothesize that EGFRI also affect these cells
and therefore interfere with the epidermal structure formation and skin barrier function.

Methods: To test this hypothesis, the effects of EGFRi and Vascular Endothelial Growth Factor Receptor inhibitors
(VEGFRI) at therapeutically relevant concentrations (3, 10, 30, 100 nM) were assessed on proliferation and
differentiation markers of human keratinocytes in a novel 3D micro-epidermis tissue culture model.

Results: EGFRi directly affect basal keratinocyte growth, leading to tissue size reduction and switching keratinocytes
from a proliferative to a differentiative phenotype, as evidenced by decreased Ki67 staining and increased filaggrin,
desmoglein-1 and involucrin expression compared to control. These effects lead to skin barrier impairment, which
can be observed in a reconstructed human epidermis model showing a decrease in trans-epidermal water loss
rates. On the other hand, pan-kinase inhibitors mainly targeting VEGFR barely affect keratinocyte differentiation and
rather promote a proliferative phenotype.

Conclusions: This study contributes to the mechanistic understanding of the clinically observed CADR during
therapy with EGFRI. These in vitro results suggest a specific mode of action of EGFRi by directly affecting
keratinocyte growth and barrier function.
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Background

The epidermis consists of a stratified epithelium, mainly
composed of keratinocytes. It provides the first defense
of the host against external aggressors including patho-
gens and prevents dehydration by controlling the rate of
transcutaneous water loss. This barrier is highly
depended on the keratinocyte differentiation processes,
from basal layer cells to terminal corneocytes in the
stratum corneum. Oncology treatments target prolifera-
tive cells primarily using kinase inhibitors. Since the epi-
dermal epithelium normally includes proliferative cells,
it is reasonable to hypothesize that it also becomes a tar-
get of such therapies [1], a process that can lead to Cuta-
neous Adverse Drug Reactions (CADR) as consequence
of defective epidermal differentiation, alteration of skin
equilibrium and barrier dysfunction [2].

Tyrosine kinase inhibitors (TKi) target members of
various growth factor receptors, such as the receptors of
the Epidermal Growth Factor (EGF), the Vascular Endo-
thelial Growth Factor (VEGF) and the Platelet-Derived
Growth Factor (PDGF) as well as the Human EGF Re-
ceptor 2 (HER2). Over-activation of these pathways in
tumors leads to increased cell proliferation, angiogenesis
and genetic abnormalities and suppression of apoptosis
[3, 4]. Patients who initially respond to the TKi will gen-
erate resistance due to mutations within the 9 to 13
months following the initiation of their therapy, requir-
ing a switch of the therapeutic regiment to address the
appearance of such mutations [5, 6]. The first generation
of TKi developed in the early 2000s, was followed by the
development of the second and third generation of drugs
to thwart the appearance of mutations in tumor cells.
The third generation of EGFRI irreversibly inhibits EGFR
despite the appearance of T790M mutation improving
progression-free survival and reduction of CADR com-
pared to standard chemotherapies [7, 8].

Chronic TKi treatments may also directly affect prolif-
erative keratinocytes at the basal level of the epidermis,
reducing cell growth rates, cell migration and promoting
cell apoptosis, cell attachment, keratinocyte differenti-
ation and pro-inflammatory cytokine expression [9, 10].
In this case, the resulting epidermal structure disturb-
ance and skin barrier dysfunction could contribute to
the clinically observed skin rash, pruritus, xerosis, hand-
foot skin reaction, nail and hair alterations. Such CADR,
also associated with pain and secondary infections, ap-
pear in 45-100% of patients receiving TKi and can sig-
nificantly affect the patients’ quality of life [5]. Medical
examination by both dermatologists and oncologists to
understand the nature and severity of the symptoms and
the body surface area that is affected is necessary to pre-
vent progression to more severe symptoms. Dose adjust-
ment or even drug administration discontinuation could
be required, leading to a disturbance of the oncology
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treatment protocol [11]. Paradoxically however, in some
cases the appearance of skin rashes during treatment is
correlated with better survival of the patient [12].

To assess the effects of kinase inhibitors on the epidermis,
cultures of keratinocytes were exposed to such therapy mole-
cules during 3 days in high calcium conditions to induce
keratinocyte differentiation and generate a 3D-stratified dif-
ferentiated epidermis. Drug impact on the epidermal devel-
opment was assessed via various markers such as:

— Ki-67, an universally expressed protein among
proliferating cells and absent in the quiescent cells [13].

— Filaggrin, a filament-associated protein that binds to
keratin fibers and is a marker of terminal differenti-
ation [14].

— Desmoglein-1, a component of desmosomes and
differentiation marker expressed in all epidermal
layer above the basal layer [15].

— Involucrin, an early differentiation marker expressed in
the spinous and granular layers and a protein precursor
of the epidermal cornified envelope layer [16].

In order to better understand the emergence of CADRSs,
we specifically examined in this work the effects of TKi on
the epidermal physiology and the eventual consequences
on the quality of the skin barrier against external irritant
and pathogen penetration and water loss.

Methods

Determination of unbound plasma drug concentration
The drug concentrations for the in vitro experiments in
this work were selected in a range relevant to therapeutic
concentrations (3—100 nm), compared to higher concen-
trations in the micromolar to millimolar range previously
used in literature [17, 18]. These concentrations appeared
to be more relevant to study the long-term effect of treat-
ments on the epidermis. Using published research, we
identified the maximal drug concentration in plasma fol-
lowing a single daily-recommended dose (Table 1) of drug
in a healthy patient. We also identified the percentage of
unbound fraction to plasma protein or calculated it using
Ciax plasma concentration and the percentage of un-
bound fraction in the plasma. Plasma protein binding of
the TKi from the study ranged from 0.3 to 5%. The high-
est unbound plasma concentration was for erlotinib (80
nM) [26] and the lowest for dacomitinib (0.42 nM) [29].
EGFRIi equilibrium dissociation constants (Kp) have been
reported by Klaeger et al. [24]. It was possible to compare
the EGFRI used in this study. EGFRi drug potencies, ran-
ging from afatinib with a K of 2 nM and erlotinib, a first-
generation drug, with a Kp, of 2164 nM, (Table 1). Surpris-
ingly, the potency of osimertinib, a third generation of
EGFRi, was not decreased compared to another second-
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Table 1 Biological and activity data of VEGFRi and EGFRI. Biological effect data were compiled from the information provided by the
web site drugcentral.org (accessed in November 2019). The “major skin effect” presented here is the most frequent cutaneous
adverse reaction reported by the FDA Adverse Event Reporting System. NSCLC: non-small cell lung cancer. Drug Kp and the
determination of plasma concentration after a single dose administration in human are reported here from literature. Data from
Klaeger et al. 2017 were used to compare drug Kp for EGFRI. Unbound plasma drug fraction was determined as a concentration at

nanomolar scale in the literature

Biological Effect

i
Familly n Mode of action  Major skin effect Indication

Gastrointestinal stromal tumor
Renal cell carcinoma
Pancreatic Neuroendocrine Tumor

Palmoplantar

Sunitinib VEGFRi 1/2
erythroderma

Reversible

Unbound
concentration
(nM)

Unbound
fraction (%)

75 35

398.474 50 ] VEGFR2: 1,5 [20] 5% [19] 1)

sorafenib VEGFRi 2/2 Reversible  [Rash

464825 200 8175 (21 VEG[;’Z 59 0.29% 2[316]

Reversible  [72PuIc-pustular NscLC

Gefitinib EGFRi 1/3
rash

355823] EGFR: 413 34% a

446.902 250 i 251

NSCLC

Erlotinib EGFRi 173
pancreatic cancer

Reversible  |Papulo-pustular

393.436 150 1599 [26] | EGFR: 2164 [24] 5% 79,95 [26]

Afatinib EGFRi 23 irreversible  |Rash NSCLC with EGFR-activating mutations

485.937 50 32 [27] EGFR: 2 [24] 5% [27) 16

Lapatinib EGFRi 23 Reversible  |Rash HER2 Positive Carcinoma o f Breast

581.058 250 5163 (28] | EGFr:51 (24 1%(28) 5,16 28]

[Dacomitinib EGFRi 23 irreversible  |Rash NSCLC with EGFR -activating mutations

269.95 as 177,529 EGFR: 5 [24] 0.24% 0,425 [29]

EGFRi 3/3 NSCLC with T790M/L858R Mutation-positive

Irreversible  |Papulo-pustular rash

499,619 80 627 [30] EGFR: 155 [24] 1,32 [30] 82764

generation drug such as the afatinib, lapatinib and daco-
mitinib. VEGFRi Kp were compared using literature.

Drug preparation

The selected drugs corresponding to plasma relevant concen-
trations (3, 10, 30, 100 nM) following administration of a sin-
gle dose and 1 puM drug concentration were prepared from a
10 mM stock solution dissolved in DMSO. Consequently, the
final DMSO concentration was 0.01% for the highest concen-
tration 1 pM. Vehicles were composed of the same DMSO
volume as the drug treatment. Acetaminophen was used as a
negative control in the same proportion of DMSO.

Cell culture

Keratinocytes were isolated from donated human tissue
after obtaining permission for their use in research appli-
cations by informed consent or legal authorization. All cell
lines were recently tested for mycoplasma contamination.

Assessment of skin barrier function

The effect of drugs on the skin barrier function was
assessed by measuring trans-epidermal water loss
(TEWL) rates on SkinEthic™ Reconstructed Human Epi-
dermis (RHE) model (Episkin, Lyon France) using Tewi-
tro® TW 24 (Courage+Khazaka electronic GmbH, Koln,
Germany). This instrument allows 24 simultaneous mea-
surements on RHE. TEWL was analyzed at 33 °C in an
incubator. Measurement was performed after 1 h TEWL
stabilization and 5 min average of TEWL measurement
was performed. Experiments were performed in tripli-
cate and results were normalized to 100% to the TEWL

of the control. SDS 0.5% in PBS was added at the surface
of the RHE to damage the epidermis structure and con-
sequently increase the TEWL (positive control). Petrol-
atum, a highly hydrophobic hydrocarbon, water-
repelling and insoluble in water was used to block water
evaporation at the RHE surface (negative control). Afati-
nib was added at 100 nM in the media and renewed
every 2 or 3days to simulate chronic drug exposure.
DMSO was used in the same proportion in the vehicle.

EpiScreen™ protocol

The following model was developed by CYTOO (Gre-
noble, France). Human epidermal keratinocytes cells
(HPEKs) from a juvenile Caucasian donor (CellnTec,
Switzerland) were grown in a defined proprietary
medium from CEllnTech (CnT-PR-D Bern, Switzerland).
Keratinocytes were seeded at passage 6 into EpiScreen
plates containing collagen 1 coated disc micropatterns
(CYTOQO, France). Four hours later, unattached cells were
washed off and a high calcium medium was added to induce
keratinocyte differentiation. The day after, keratinocytes were
treated with screening compounds, and Trichostatin A was
added at 0.3 uM as an internal positive control. After 3days
of treatment, micro-epidermises were fixed with a 10% for-
malin solution for 30 min, then permeabilized with 0.1% Tri-
ton. Several immunostainings were performed: actin (Acti-
Stain 555, PHDH1, Cytoskeleton), nuclei (Hoechst, H3570,
Invitrogen), and one biomarker of interest per well either
anti-involucrin ~ (HPA055211,  Sigma),  anti-filaggrin
(HPA030189, Sigma) or anti-desmoglein-1 (HPA022128,
Sigma). Antibodies were added overnight at 4°C before
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staining with secondary antibody, anti-rabbit 488 (711-545-
152, Jackson) for 2 h at room temperature.

Images acquisition and analysis

Images of each well were acquired with the Operetta HCS
platform (Perkin Elmer) using a x 10 objective in confocal
mode in eight z-planes from 2 um to 44 pm in steps of
6 um in each of the 3 channels: actin, nuclei, and one bio-
marker of interest. The first step of the image analysis
consisted of detecting micro-epidermis structures on the
first z-plane by segmenting the actin staining. Micro-
epidermis structures were validated based on several area
and roundness min and max criteria. Then, the area of
each biomarker staining was measured inside the valid
micro-epidermis masks through each z-plane. For all
homogeneous biomarker staining, their intensity through
the different planes was measured.

Reconstruction of 3D micro-epidermis images
Based on 50 to 80 micro-epidermis structures per well, an
“average” 3D image was created to represent the micro-
epidermis phenotype in this well. Micro-epidermis struc-
tures were detected using the actin staining in the first z-
plane and selected based on area and roundness criteria.
The actin network of each micro-epidermis was ana-
lyzed in each z-plane in order to determine the average
3D structure edges. The biomarker intensity was mea-
sured in each z-plane for each structure, and then aver-
aged with the other results generated in the same well.
Based on the data generated in the two previous steps,
an average 3D reconstruction image was generated. It
consisted of a meshwork that delimits the structure
edges, and a color scaled volume that corresponded to
the biomarkers distribution and expression.

Viability and proliferation assay

The Water-Soluble Tetrazolium Salts (WST-8) Colori-
metric Cell Proliferation Kit (Promokine, Heidelberg,
Germany) provides a rapid and sensitive way to quantify
proliferation and cell viability. Cell proliferation causes
an increase in the amount of formazan dye formed that
can be quantified by measuring the absorbance of the
dye solution at 440 nm using a microtiter plate reader
(Perkin Elmer EnVision 2103 Multilabel Reader, Wal-
tham, MA, USA). Keratinocytes from healthy donors
were grown in Epilife (ThermoFisher, Waltham, MA,
USA) to induce an increase in the activity of mitochon-
drial dehydrogenases, which cleave the tetrazolium salt
WST-1 into formazan. 15,000 Keratinocytes per well
were seeded on 96-well plate once confluence was
attained the concentration that was+/— % log of the plas-
matic concentration was added. Ten microliter of Col-
orimetric Cell Viability Kit was added and completed
with 360 ul of culture media, results were read after 4h
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at 450 nm to determine cell viability. Results were ob-
tained from 6 donors of keratinocytes in 2 experiments.

Caspase-3 Fluorometric assay kit

The kit (biotium, Fremont, CA, USA) provides a
homogenous assay system for fast and highly sensitive de-
tection of caspase-3 activity by fluorescence in enzymatic
reaction or mammalian cells. The fluorogenic substrate
(Ac-DEVD)2-R110 contains two DEVD (Asp-Glu-Val-
Asp) tetrapeptides and is completely hydrolyzed by the
enzyme in two successive steps. Cleavage of the first
DEVD peptide results in the monopeptide Ac-DEVD-
R110 intermediate, which has absorption and emission
wavelengths similar to those of R110 (Ex/Em =496/520
nm) but has only about 10% of the fluorescence of the lat-
ter. Hydrolysis of the second DEVD peptide releases the
dye R110, leading to a substantial fluorescence increase.
Keratinocytes from healthy donors were grown in Epilife
(ThermoFisher, Waltham, Ma, USA) were plated at 15,
000 cells per well in 100 ul of medium in a 96-well black
microplate. They were allowed to attach and grow over-
night in a 37°C, 5% CO2 incubator. They were then
treated for 20 h with a 1:2 dilution series of staurosporine,
a caspase 3 inducer [31]. Imaging was performed on Per-
kin Elmer EnVision 2103 Multilabel Reader using an exci-
tation wavelength of 490 nm and emission wavelength of
535 nm. Cells were incubated at room temperature for 15
min, protected from light. Results were obtained with 6
donors of keratinocytes in 2 experiments.

Statistics

Results are expressed as means +/— SD. All experiments
were performed at least in triplicate. Statistical analysis
was performed using one-way analysis of variance
(ANOVA) and Student’s t-test. Statistical significance
for the difference between the two groups was accepted
at the level of p < 0.05.

Results
The effect of 8 oncology molecules, selected from
first generation EGFRi and pan-kinase inhibitors,
which mostly target VEGFR, and second and third
generation therapies targeting main mutations relating
to first generation treatment resistance, were assessed
in vitro using a 3D micro-epidermis model. The drug
incubation concentrations (3, 10, 30, 100 nM) were
selected to reflect the clinically relevant (unbound)
drug exposures (Table 1). The drug impact was
assessed by analysis of tissue size and keratinocyte
proliferation using Ki-67 staining and keratinocyte dif-
ferentiation using filaggrin, desmoglein-1 and involu-
crin staining.

By covering a large spectrum of concentrations (3 nM
to 1 uM), we showed significant changes in the studied
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parameters, often in a dose-dependent manner. Using
such a concentration range allows us to overcome non-
specific interactions of the drugs (e.g. with the plastic
support, the extracellular matrix, the proteins in media,
etc.) that might interfere in the experiment.

Increased micro-epidermis size and Ki-67 staining
with a concomitant decreased of filaggrin, desmoglein-1
and involucrin expression were considered as a pro-
proliferation effect of the tested molecule. On the other
hand, a pro-differentiation effect was defined as a de-
crease of both the micro-epidermis size and Ki-67 stain-
ing and an increase of filaggrin, desmoglein-1 and
involucrin expression.

Pan-kinase inhibitors barely impact the micro-epidermis
structure and differentiation markers

Sunitinib had no impact on the epidermis size and sorafe-
nib strongly decreased the size of the epidermis (Table 2).
Both pan-kinase inhibitors did not impact the desmoglein-
1 and involucrin protein expression and significantly de-
creased filaggrin protein expression. Of note, this effect of
pan-kinase inhibitors was achieved at 100 nM, lower con-
centrations did not impact the markers followed in the
study. Sunitinib was the only TKi assessed that did not
shown any toxicity at the highest concentration tested
(1 uM). These results indicate that VEGFRi have a pro-
proliferation effect on the keratinocytes.

EGFRi affect epidermal structure and differentiation
markers

Most of the EGFRI tested, including afatinib, lapatinib,
and dacomitinib, showed an effect on desmoglein-1, invo-
lucrin and filaggrin expression in a dose-dependent man-
ner (Table 2). Gefitinib increased in a dose-dependent
manner only the expression of desmoglein-1. Erlotinib
and osimertinib did not affect the expression of the junc-
tion proteins. For all EGFRI tested, the epidermal toxicity
evaluated at 1puM was significant, interfering with the
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epidermal development, to the point that no tissue was
available for further data analysis. At unbound plasma
drug concentrations 3, 10, and 30 nM, all first and second
generation EGFRi showed a decrease in keratinocyte pro-
liferation, micro-epidermis size and an increase of the
desmoglein-1, involucrin and filaggrin protein expression,
evidence of a pro-differentiation effect.

Interestingly, the osimertinib, a third generation of
EGFRi developed to target drug resistance cells but also
to provide better drug tolerance, was the only EGFRi
which did not show any impact on all parameters except
cell toxicity at the higher concentration (1 uM).

Afatinib affects keratinocyte protein expression, viability
and proliferation

Afatinib treatment resulted in significantly decreased
epidermal volume in the 3D reconstructed micro-
epidermis model compared to vehicle (Fig. 1a). Involu-
crin and desmoglein-1 expression were significantly in-
creased at 3, 10, 30 nM in a dose-dependent manner and
filaggrin expression was significantly increased at 10 nM
and 30 nM in a dose-dependent manner. A higher drug
concentration above 1M was toxic leading to epider-
mal necrosis.

The effect of Afatinib on the epidermal barrier func-
tion was assessed on RHE models by measuring the rate
of TEWL (Fig. 2). Addition of petrolatum (negative con-
trol) led to a significant decrease of the TEWL rate by
48, 77 and 75% respectively on day 1, 2 and 5 following
application, compared to untreated control. The surfac-
tant Sodium Dodecyl Sulfoxide (SDS, at 0.5% used as
positive control) significantly increased the TEWL rate
by 98 77 and 58% respectively on days 1, 2, and 5 follow-
ing application. Afatinib significantly increased the rate
of TEWL by 22% on day 2, while on days 5 and 7 no sig-
nificant change was observed.

Further results show that afatinib had a significant ef-
fect on cell viability in a dose-dependent manner (Fig. 3).

Table 2 Micro-epidermis physiology is impaired following exposure to EGFRi and VEGFRI. Size of the epidermis and the expression
of the protein junction desmoglein-1 (DSG1), involucrin (IVL) and filaggrin (FLG) was assessed by immunostaining and compared to
untreated control. Drugs were classified by family and drug generation. Dose responses were determined by comparison of the
variation of protein expression at 3, 10 and 30 nM for EGFRi and 3, 10, 30 and 100 nM for the VEGFRI. * p < 0.05 at 30 nM (EFGRIi) or
100 nM (VEFGRI); ** p < 0.01 at 30 nM (EFGRI) or 100 nM (VEFGRI) and *** p <0.001 at 30 nM (EFGRI) or 100 nM (VEFGRI)

Compound Family Drugs Epid.ermis DSGl.
Gen size expression
Sunitinib VEGFRIi Unchanged
Sorafenib VEGFRi Decreased
Gefitinib EGFRi Unchanged
Erlotinib EGFRi Decreased
Afatinib EGFRi Decreased
Lapatinib EGFRi Unchanged
Dacomitinib EGFRi Unchanged
Osimertinib EGFRi Unchanged
Acetaminophen Neg control Unchanged

Deacreased ***p<0,001

Deacreased **p<0,01

IVL FLG Dose Toxicity .
. R Classification
expression expression response at 1uM
No No Pro-proliferation
No Yes Pro-proliferation
Yes (DSG) Yes Pro-Differentiation
No Yes Pro-Differentiation
Yes (DSG, IVL, FLG) Yes Pro-Differentiation
Yes (DSG, IVL, FLG) Yes Pro-Differentiation
Yes (DSG, IVL, FLG) Yes Pro-Differentiation
No Yes Unchanged
No No Unchanged

Deacreased *p<0,05

N ignificant
on signitican Increased ***p<0,001

p>0,05
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On the other hand, afatinib did not show any effect at
2.59 nM and 25.89 nM on cell apoptosis. Taken together
these results show that afatinib impairs keratinocyte via-
bility and proliferation in the micro-epidermis model,
but it does not induce keratinocyte apoptosis.

Acetaminophen used as control showed no effect on
any of the measured parameters including cell toxicity at
1 uM.

Discussion

The emergence of the TKi in the treatment of cancer
has successfully increased the five-year patient survival
rate. EGFRi and VEGFRI have led to considerable pro-
gress in the treatment of various solid tumors since their
introduction and the new generation has considerably
increased their efficiency [23]. By targeting proliferative
cells, oncology treatments can provoke CADR that po-
tentially disrupt the treatment protocol and impact the

patient quality of life [7]. The mechanisms leading to
CADR are still poorly understood. Thus far, the effects
of TKi on keratinocytes are still unknown and published
research has dealt only with relatively high drug concen-
trations without considering the relevant plasma concen-
tration affecting keratinocytes in a chronic manner. The
results presented in this work provide for the first time a
better understanding of the mode of action of oncology
treatment on the pathophysiology of CADR.

Despite the growing rate of immunotherapy, TKi
are extensively used in oncology [33]. Compared to
immunotherapies, TKi may impact the epidermal
homeostasis differently. In this article, we focused
on different generations of TKI to bring a better
understanding of their adverse reaction during
therapy.

For a better comprehension of the drug impact on the
epidermal function, we assessed the direct effects of TKi
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on epidermal physiology and the consequences on the
skin barrier structure based on keratinocytes separate
from effects of the immune system. Although, the im-
mune system plays an important role in the appearance
and maintenance of CADR, we did not consider the ag-
gravating factor of its dysregulation on epidermal
homeostasis.

Sunitinib and sorafenib, two Pan kinase inhibitors
mainly targeting VEGFRi have unbound plasmatic
fractions of 2nM and 23.6nM respectively with
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equilibrium dissociation constants (Kp) of 1.5nM and
59nM. The study on micro-epidermis performed in
the same concentration range had no effect on the
epidermal structure, only filaggrin expression was sig-
nificantly increased for both Sunitinib and Sorafenib.
Of note, sunitinib was the only drug in our panel that
did not lead to keratinocyte toxicity at 1puM. It is
conceivable that the negative effects of VEGFRi on
skin may potentially arise from an impairment of the
skin vascularization disturbing keratinocyte growth
[34]. The absence of effect using sorafenib at the
higher concentration could confirm our hypothesis.

In contrast, EGFRi clearly affect keratinocyte growth
at the basal layer leading to a decrease of the epidermal
volume in the micro-epidermis model. Afatinib leads to
a decreased epidermal volume at 3nM. On the other
hand, afatinib increased the expression of desmoglein-1,
involucrin and filaggrin, indicating that EGFRi promote
late terminal differentiation while decreasing keratino-
cyte proliferation at the basal layer.

Osimertinib had surprisingly no impact on epidermal
physiology in our model. These data taken together with
an high Kp value (155 nM) (Table 1) compared to previ-
ous drug generations can be explained by the fact that
osimertinib targets main mutations identified in EGFR
(T790 and p.C797S). These mutations arose after selec-
tion pressure of prolonged treatment with first and sec-
ond generation drugs [35]. However, osimertinib was
designed with a higher affinity against the mutated form
compared to another drug generation. The wild type

A Afatinib
200-
3
c 150 —|'
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Fig. 3 a Keratinocyte viability decreases following exposure to afatinib. b Afatinib does not induce apoptosis in keratinocytes. Keratinocytes were
exposed for 24 h to each condition shown. Percentages represent the relative effect compared to vehicle. Staurosporine at 1 uM was used as
positive control and correspond to 100% of cell apoptosis. Post-hoc Dunett's test * p < 0.05, **** p < 0.0001
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(WT) form is targeted but with a lower affinity [36] and
consequently barely affects the WT EGFR form of
keratinocytes.

Afatinib is an irreversible inhibitor of EGFRi associated
with the lowest unbound plasma concentration, C,,.x
and Kp of the panel. Afatinib impacts all parameters of
the study (i.e. epidermis size, skin barrier markers). Con-
sequently, we focused more specifically on the dose re-
sponse of afatinib (Fig. 1) at 3, 10 and 30nM
corresponding to the range of the unbound plasma con-
centration to determine keratinocyte growth in the epi-
dermal development. The micro-epidermis size was
significantly reduced at 3 and 30 nM. Moreover, involu-
crin, desmoglein-1 and filaggrin were increased in a
dose-dependent manner. Taken together, afatinib affects
all markers studied by decreasing keratinocyte prolifera-
tion at the basal layer and inducing keratinocyte differ-
entiation, an effect that has a measurable impact on skin
barrier function.

In summary, as an early response to drug exposure
the skin barrier function is disturbed, as evidenced by
the increased TEWL rates on day 2 (Fig. 2). For lon-
ger times of drug exposure, keratinocytes undergo a
switch from a proliferative to a differentiative pheno-
type by increasing the expression of structural epider-
mal proteins including filaggrin, desmoglein-1 and
involucrin, as observed on day 3 of the micro-
epidermis model. These results would also explain the
restoration of TEWL rates by day 5. The transitional
period before arriving into a new steady state could
directly impact the basal proliferative keratinocytes,
able to renew the epidermis, and could explain the
appearance of rashes and dry skin that become clinic-
ally evident a few weeks following drug exposure [2].
We can hypothesize that drug exposure quickly im-
pacts keratinocyte homeostasis leading to an increase
of epidermal permeability that reaches a maximum on
day 2. Upon first drug exposure, keratinocytes en-
hance their differentiation process leading to an in-
creased junction protein expression that could explain
the improved epidermal permeability that is observed
after day 3.

Clinically CADR symptoms have been reported to
appear within the first days of the treatment and
then disappear, only to reappear one to 2 months
after continuous exposure to oncology drugs [37].
Our results indicate that afatinib induces an early in-
crease in TEWL, which is in agreement with clinical
observations. Late manifestation of CADRs may re-
late to the decreased proliferation and cellular
fatigue.

Further analysis was performed to elucidate the effect of
afatinib on keratinocytes. The apoptotic activity of keratino-
cytes was not affected at either dose tested indicating that
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size reduction of the epidermis is not related to apoptosis,
but it is rather linked to a decreased cell number (Fig. 2)

All these data suggest that CADRs are provoked by a
decreased keratinocyte proliferation impairing skin regen-
eration and leading to epidermal size reduction, rather
than by inducing keratinocyte apoptosis in the epidermis.

Finally, the new generation of oncology treatment
using immunotherapies has also reported important
CADRs similar to treatments with TKi, including with a
high rate of skin rashes appearance of [2]. Consequently,
a better understanding of the effects of such drugs on
skin physiology is still necessary to manage such disor-
ders for a better quality of life for the patient.

Conclusion

We evaluated the effect of oncology therapy molecules at
concentrations below the toxic level on epidermal devel-
opment in vitro. These relevant concentrations allow us to
demonstrate that oncology treatment impairs keratinocyte
growth and consequently affects skin barrier. These re-
sults underlie the need of prophylaxis to support the skin
barrier function during oncology therapy and conse-
quently decrease the appearance of such CADRSs.
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