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Abstract

The phylogeny of classical swine fever virus (CSFV), the causative agent of classical swine
fever (CSF), has been investigated extensively. However, no evolutionary research has
been performed using the whole CSFV genome. In this study, we used 37 published ge-
nome sequences to investigate the time-calibrated phylogenomics of CSFV. In phyloge-
nomic trees based on Bayesian inference (Bl) and Maximum likelihood (ML), the 37 isolates
were categorized into five genetic types (1.1, 1.2, 2.1, 2.3, and 3.4). Subgenotype 1.1 is di-
vided into 3 groups and 1 unclassified isolate, 2.1 into 4 groups, 2.3 into 2 groups and 1 un-
classified isolate, and subgenotype 1.2 and 3.4 consisted of one isolate each. We did not
observe an apparent temporal or geographical relationship between isolates. Of the 14 ge-
nomic regions, NS4B showed the most powerful phylogenetic signal. Results of this evolu-
tionary study using Bayesian coalescent approach indicate that CSFV has evolved at a rate
of 13x.010™ substitutions per site per year. The most recent common ancestor of CSFV ap-
peared 2770.2 years ago, which was about 8000 years after pig domestication. The effec-
tive population size of CSFV underwent a slow increase until the 1950s, after which it has
remained constant.

Introduction

Classical swine fever (CSF), also known as hog cholera is a highly contagious viral disease of
domestic pig and wild boar that causes watery diarrhea and weakness. The high mortality rate
of CSF leads to significant economic losses in the global swine industry [1]. From the 1990s to
the early 2000s, sporadic outbreaks of CSF in European swine industries were reported [2-4];
for instance, 117, 48, and 429 farms were contaminated in Germany, Belgium, and the Nether-
lands respectively. In the case of the Netherlands, economic losses were calculated to be almost
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2.3 billion US dollars [5, 6]. Many countries are currently considered to be CSF free or low risk
by the United States Department of Agriculture (USDA), including Australia, Canada, and sev-
eral European countries. Given the potential for devastating economic impact of a CSF out-
break on the swine industry, circumspect governmental regulations are in place to prevent CSF
exposure in large, dense populations of pigs. Nevertheless, CSF outbreaks in small populations
of wild boar are still observed in several regions like India [7].

As populations in the swine industry become denser and larger, more government attention
to CSF is needed. Additionally, countries that are not CSF free, such as India or China, account
for a large portion of the global swine industry [8], which means that global attention to the
CSF is necessary as well.

Classical swine fever virus (CSFV), the causative agent of CSF, is a member of the genus Pes-
tivirus within the family Flaviviridae [1, 9]. In viral epidemiology, mortality rate is defined as
the number of deaths over the number of individuals infected during a specific period. [10].
While the mortality rate of CSF is high, the severity differs by case, especially depending on the
age of the animal and virulence of the virus. While symptoms in older animal tend to be milder,
the mortality rate of young pigs is almost 90 percent [1, 9]. CSF can often be confused with
American swine fever (ASF), which produces clinical symptoms similar in pigs to that of CSF,
including haemorrhagic fever. However, despite these similarities, CSF virus is a small single-
stranded RNA virus, while ASF virus is a large double-stranded DNA virus of genus Asfivirus
in the family Asfarviridae [11]. While it is difficult to diagnose these viruses from clinical signs
and lesions alone, confirmatory experiments like RT-PCR is necessary [12]. CSFV is also struc-
turally close to the bovine viral diarrhea (BVD) virus and the border disease (BD) virus, which
also belong to the genus Pestivirus [9]. Although these viruses are capable of infecting pigs,
they do not have the ability to spread out without their original hosts and can easily be geneti-
cally differentiated from CSFV [13].

CSFV has a single positive-stranded RNA genome of approximately 12.3 kb including 11.7
kb open reading frame (ORF), which is flanked by the 5’ and 3’untranslated regions (UTRs).
The ORF encodes 12 polypeptides, which contain four structural proteins (C, E™, E1, E2) and
seven non-structural proteins (p7, NS2, NS3, NS4A, NS4B, NS5A, NS5B) with autoprotease
(NP™) at N-terminus [14, 15]. The UTRs contain signals for viral replication, transcription,
and translation [15]. Ji et al. [16] found that virulence of CSFV is associated with mutations in
seven protein genes (Npro, C, Erns, E1, E2, p7, NS4B) related to viral entry, release, replication
and host cell interaction [17].

CSFVs have been classified under three major genotypes (1, 2, and 3), each comprised of
three to four subgenotypes (1.1-1.4; 2.1-2.3; 3.1-3.4) [18, 19]. Since the first report of CSFV in
the United States at 1833 [15] and in South Korea at 1908 [20], many global phylogenetic stud-
ies have been published based on the genome [21-23] and particular genes such as 5’ UTR, E2,
and NS5B (e.g., [24-31]). However, as described in Floegel et al. and Ji et al. [32, 33], accumula-
tion of mutations in viruses have caused variability in virulence between genotypes. The tem-
poral dynamics of global CSFVs also remain unclear. The only previous study analyzed a small
number genes (5UTR, NP™°, and E2) [34], and found that the most recent common ancestor of
the virus existed in the year 1892.

To fully comprehend the phylogeny and evolutionary dynamics of CSFV, as mentioned in
previous phylogenomic studies [35], it is necessary to conduct a genomic scale analysis. Here,
we performed genome wide study on the time-calibrated phylogenomics of the virus. We ana-
lyzed 37 available public genome sequences that sampled during a time period of 68 years
(1945-2012). The objectives of this study are (1) to analyze the characteristics of CSFV genome
sequences; (2) to reconstruct the genome wide phylogeny of the global CSFVs using two differ-
ent analyses methods, Bayesian inference (BI) and maximum likelihood (ML); and (3) to
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elucidate the evolutionary mechanisms such as selection pressure, substitution rate, divergence
times, and effective population size changes using Bayesian coalescent approach.

Materials and Methods
Sequence and selection pressure analyses

We used the published nucleotide and amino acid sequences of 37 CSFV isolates from NCBI,
discovered around the world from 1945 to 2012. These isolates consisted of 20 Asian isolates
(China, 14; South Korea, 2; Taiwan, 3; Japan, 1), 16 European isolates (Germany, 7; France, 3;
Italy, 1; Lithuania, 1; Spain, 1; Denmark, 1; Bulgaria, 1; Croatia, 1), and 1 American isolate
(USA, 1). Each isolate belongs to one of the following subgenotypes: 1.1, 1.2, 2.1, 2.3, and 3.4.
The information of 37 samples is shown in Table 1.

Both nucleotide and amino acid sequences of the CSFV whole genome and 14 regions
(5" UTR-Npro-C-Erns-E1-E2-p7-NS2-NS3-NS4A-NS4B-NS5A-NS5B-3’ UTR)
were aligned with MAFFT 7 [36]. The following values were calculated from aligned sequences
using Tree puzzle 5.2 [37] and BIOEDIT 7.2.3.0 [37, 38]: total sites (including gaps), conserved
sites, and average identities. During the process, we depicted variable site plots for nucleotide
and amino acid sequence. Results of model tests using Modeltest 3.7 [39] for the genome and
genomic regions are summarized in Table 2.

To evaluate selective pressure acting on CSFVs, the relative rates of nonsynonymous and
synonymous substitution (w = dN/dS) across coding region of the viral genome were also esti-
mated using ClustalX 1.81 [40] PAL2NAL [41], and CodeML of PAML 4.7 package [42]. A
dN/dS ratio of < 1 indicated purifying selection, dN/dS = 1 suggested an absence of selection
(i.e., neutral evolution), and dN/dS > 1 indicated positive selection.

Phylogenomic tree reconstruction

Phylogenomic trees were reconstructed using two different analytical methods—BI and ML.
The best-fit model for the CSFV whole genome was determined using Akaike’s information
criterion (AIC) within Modeltest 3.7 [39]. BI analysis using MrBayes 3.1.2 [43] was performed
with following options: nst = 6, rates = invgamma, number of generation = 20,000,000, and
burn-in = 20,000. Bayesian posterior probability (BPP) values were shown on the BI tree [44].
ML analysis using Phyml 3.0 [45] was also conducted with the following parameters: model of
nucleotide substitution = GTR, replicates = 500, pinvar = estimated, and number of substitu-
tion rate categories = 6. All trees were visualized in Figtree 1.4 [46].

In order to screen for congruent tree topologies with genome tree topologies, all 14 genomic
regions were analyzed in the same methods as genome data. The best-fit models for each region
used in analysis are summarized in Table 2.

Estimation of substitution rate, divergence times, and population size
changes

Using BEAST 1.7.4 [47], the mean rate of nucleotide substitution, time of the most recent com-
mon ancestor (tMRCA), and change in effective population size of the CSFV were estimated
with the result of the model test. We combined three molecular clock models (strict, relaxed
uncorrelated exponential, and relaxed uncorrelated log-normal) with five demographic models
(constant size, exponential growth, expansion growth, logistic growth, and Bayesian skyline) to
make 15 datasets for simulation. Next, each dataset was simulated with the following options:
generation = 400,000,000, burn-in of 10%, and ESSs > 100. By comparing the highest Bayesian
factors (log;o Bayesian factor > 2) which were based on the relative marginal likelihood of 15
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Table 1. Information of the isolates used in this study.

Isolate Subgenotype Country Year Accession no.
CSFV-GZ-2009 1.1 China 2009 HQ380231
CF114 1.1 China 2001 AF333000
Shimen 1.1 China 1945 AF092448
SWH 1.1 China 2004 DQ127910
C-2J-2008 1.1 China 2008 HM175885
JL1(06) 1.1 China 2006 EU497410
LOM 1.1 Japan 1980 EU789580
Eystrup 1.1 Germany 1964 NC_002657
Alfort/187 1.1 France 1968 X87939
CAP 1.1 France 1978 X96550
Brescia 1.1 Italy 1945 AF091661
Glentorf 1.1 Denmark 1968 U45478
BRESCIAX 1.2 USA 2001 AY578687
YC11WB 2.1 South Korea 2011 KC149990
PC11WB 2.1 South Korea 2011 KC149991
HNLY-2011 2.1 China 2011 JX262391
Heb52010 2.1 China 2010 JQ268754
HNSD-2012 2.1 China 2012 JX218094
SXCDK 2.1 China 2009 GQ923951
SXYL2006 2.1 China 2006 GQ122383
GXWz02 2.1 China 2002 AY367767
HEBZ 2.1 China 2009 GU592790
Zjos01 2.1 China 2008 FJ529205
96TD 2.1 Taiwan 1996 AY554397
0406/CH/01/TWN 2.1 Taiwan 2001 AY568569
Paderborn 2.1 Germany 1997 GQ902941
CSFV/2.1/dp/CSF1048/2009/LT/Penevezys 2.1 Lithuania 2009 HQ148063
CSFV/2.3/wb/XXX0609/2004/Uelzen 23 Germany 2004 GU324242
CSFV/2.3/wb/CSF1045/2009/Roesrath 2.3 Germany 2009 GU233734
CSFV/2.3/wb/XXX0608/2005/Euskirchen 23 Germany 2005 GU233732
CSFV/2.3/wb/CSF1046/2009/Hennef 23 Germany 2009 GU233733
CSFV/2.3/dp/CSF857/2006/Borken 23 Germany 2006 GU233731
Alfort/T 2.3 France 1980 J04358
Spo01 2.3 Spain 2001 FJ265020
CSFV/2.3/dp/CSF864/2007/BG/Jambul 2.3 Bulgaria 2007 HQ148062
CSFV/2.3/dp/CSF0821/2002/HR/Novska 2.3 Croatia 2002 HQ148061
94.4/IL/94/TWN 3.4 Taiwan 1994 AY646427

doi:10.1371/journal.pone.0121578.1001

models, the relaxed uncorrelated exponential clock and expansion growth population model
was selected as the best-fit evolutionary model. The resulting convergence was analyzed using
Tracer 1.5 [48]. Trees were summarized as maximum clade credibility (MCC) tree using the
TreeAnnotator 1.7.4 [49] and visualized using Figtree 1.4 [46]. For each tree node, estimated
divergence times and 95% highest posterior density (HPD) intervals, which summarize the sta-
tistical uncertainties, were indicated. The change of effective population size was plotted using
Bayesian skyline plot (BSP) analyses [50].
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Table 2. The best fit evolutionary models estimated for CSFV genomic regions with Modeltest 3.7.

Genomic region Model
Whole genome GTR+I+G
5'UTR SYM+I+G
NPre GTR+G
C GTR+l
E™ GTR+I+G
E1 GTR+l
E2 GTR+I+G
p7 TrN+G
NS2 GTR+I+G
NS3 GTR+I+G
NS4A TIM+
NS4B GTR+I+G
NS5A GTR+I+G
NS5B GTR+I+G
3'UTR TVM+G

doi:10.1371/journal.pone.0121578.1002

-InL Base frequencies (A,C,G)
66705.17 0.31, 0.22, 0.26
1451.45 Equal
2755.61 0.30, 0.23, 0.27
1595.19 0.38, 0.18, 0.27
3562.38 0.32, 0.22, 0.27
3163.49 0.29, 0.23, 0.25
6623.00 0.28, 0.22, 0.27
1072.38 0.30, 0.19, 0.23
7931.16 0.30, 0.21, 0.25
9710.91 0.31, 0.22, 0.27
947.92 0.34, 0.21, 0.23
5770.45 0.30, 0.22, 0.27
8511.48 0.32, 0.22, 0.26
11343.28 0.33, 0.21, 0.26
1190.08 0.31,0.21,0.16
Results

Substitution matrix (A-C, A-G, A-T, C-G, C-T)
0.99, 11.00, 1.90, 0.38, 25.04
0.96, 3.90, 1.20, 0.00, 9.47
3.67, 26.01, 3.40, 0.72, 62.76
1.42,9.28, 1.63, 0.16, 26.64
1.90, 13.50, 2.24, 0.46, 38.94
1.12,17.99, 2.95, 0.56, 27.72
1.01,9.54, 1.59, 0.33, 19.16
1.00, 12.65, 1.00, 1.00, 22.66
0.85, 9.80, 1.42, 0.29, 18.59
0.91, 12.27, 2.36, 0.34, 29.50
1.00, 57.99, 5.13, 5.13, 111.19
1.23, 13.30, 2.18, 0.29, 28.53
0.90, 9.71, 1.71, 0.41, 21.26
0.96, 11.95, 2.35, 0.57, 35.59
0.24, 5.22, 1.04, 0.60, 5.22

Sequence and selection pressure analyses

Pinvar Nst

0.49
0.53
0.00
0.55
0.45
0.56
0.50
0.00
0.42
0.59
0.55
0.54
0.42
0.49
0.00

D OO O OO OO O OO OO O OO OO OO OO OO

Features of the entire genome and 14 individual regions of the 37 CSFVs are summarized in
Table 3. The whole genome alignment (including insertions) was 12,301 bps in length, and re-
vealed relatively low similarities; 7,645 (62.1%) of the nucleotide sites were conserved. The dif-
ferences in nucleotide and amino acid sequence at each site of the CSFV genome alignment are

shown in Fig. 1. Both nucleotide and amino acid variations were evenly distributed throughout

the genomes, though higher amino acid similarities were observed in three regions (NS3,
NS4A, and NS4B). Pairwise comparisons also revealed that the average identities among the

Table 3. Summary of alignment of CSFV genomic regions.

Genomic region

Whole genome
ORF
5'UTR
NPre

C

gms
E1

E2

p7
NS2
NS3
NS4A
NS4B
NS5A
NS5B
3'UTR

Total sites including gaps, nt/aa

12301/NA
11694/3898
374/NA
504/168
297/99
681/227
585/195
1119/373
210/70
1371/457
2049/683
192/64
1041/347
1491/497
2154/718
230/NA

doi:10.1371/journal.pone.0121578.1003

Conserved sites(%), nt/aa

7645(62.1%)/NA
7224(61.8%)/2949(75.7%)
287(76.7%)/NA
301(59.7%)/117(69.6%)
183(61.6%)/69(69.7%)
423(62.1%)/167(73.6%)
360(61.5%)/153(78.5%)
654(58.4%)/261(70.0%)
126(60.0%)/51(72.9%)
803(58.6%)/318(69.6%)
1400(68.3%)/609(89.2%)
120(62.5%)/55(85.9%)
653(62.7%)/280(80.7%)
858(57.5%)/332(66.8%)
1343(62.3%)/537(74.8%)
133(57.8%)/NA

Average identities(%), nt/aa

89.3/NA

89.1/94.7
94.2/NA

89.6/93.2
88.7/93.7
89.4/93.7
88.7/95.3
87.8/92.3
88.1/94.2
88.0/92.7
90.7/98.6
89.6/98.3
89.3/96.6
88.6/92.1
89.4/95.0
89.2/NA

w value (dN/dS)

NA

0.067
NA

0.137
0.093
0.081
0.069
0.104
0.071
0.089
0.020
0.032
0.049
0.094
0.065
NA
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Fig 1. Variable site plots for nucleotide (a) and amino acid (b) sequence of 37 CSFVs. The number of differences at each site represents the number of
variable isolates estimated with multiple sequence alignment. Each color indicates a different genomic region.

doi:10.1371/journal.pone.0121578.g001

complete genome sequences were 89.3% for nucleotide sequences. Of the 14 individual regions,
E2 was the most variable (average sequence identities of 87.8 and 92.3% for nucleotides and
amino acids, respectively), while 5> UTR was the most conserved (average sequence identities
of 94.2% for nucleotides).

The mean ratio of nonsynonymous/synonymous substitution (dN/dS) derived from entire
data sets was calculated and indicated that purifying selection acted on the CSFV genome se-
quences (Table 3, Fig. 2). The dN/dS value of entire coding sequences was 0.067 and all values
for each component gene were lower than 1. Particularly, the highest dN/dS ratio was observed
in NP™ (0.137), while the lowest one was shown in NS3 (0.020).

Phylogenomic tree reconstruction

37 CSFV isolates were classified into one of five subgenotypes (1.1, 1.2, 2.1, 2.3, and 3.4). Bl
and ML methods presented similar configurations regarding the phylogenomics of CSFV, and
also supported the topology of the maximum clade credibility (MCC) tree (Fig. 3). The phylo-
genomic tree revealed two sister-group relationships, subgenotype 1.1 + 1.2 + 3.4 and subgeno-
type 2.1 + 2.3, with a branching pattern of [{3.4, (1.1, 1.2)}, (2.1, 2.3)]. Subgenotype 1.1

PLOS ONE | DOI:10.1371/journal.pone.0121578 March 27,2015 6/16
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Genomic regions

Fig 2. Pairwise dN/dS (w) values of the protein coding gene sequences of 37 CSFVs.
doi:10.1371/journal.pone.0121578.9002

dN/dS

consisted of 11 CSFVs collected from Asia (China and Japan) and Europe (Denmark, France,
Germany, and Italy) during 1945-2009; those 11 viruses were divided into 3 groups and 1 un-
classified isolate. Subgenotype 2.1 was grouped with 9 isolates from Asia (South Korea, China,
and Taiwan) and Europe (Germany and Lithuania) during 1996-2012; individuals were clus-
tered to 4 groups. On the other hand, all viruses in subgenotype 2.3 originated from European
countries (France, Germany, Spain, Croatia, and Bulgaria) between 1980 and 2009; individuals
were categorized to 2 groups and 1 unclassified isolate. Subgenotype 1.2 and 3.4 had only one
member derived from USA in 2001 and Taiwan in 1994.

To identify the most significant phylogenetic marker of CSFV among the 14 regions, phylo-
genetic trees for the 14 regions were reconstructed based on both BI and ML methods, and
these individual trees were compared to the whole genome trees. NS4B gene trees were the
most similar to the genomic tree, thus, NS4B gene was chosen as the most significant phyloge-
netic marker for CSFV (Fig. 4). The overall tree topologies of E2 gene, which was used as the

PLOS ONE | DOI:10.1371/journal.pone.0121578 March 27,2015 7/16
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Fig 3. Bayesian maximum clade credibility phylogenetic tree based on the whole genome sequences of 37 CSFVs. With the Bl and ML methods,
identical topology was produced. Divergence times (in years) are positioned below the nodes; the 95% HPD intervals are indicated in brackets. The
confidence of the phylogenetic analysis is presented above the nodes: left numbers represent Bayesian posterior probabilities (> 0.80) and right ones
represent ML bootstrap values (> 60%). Subgenotypes and groups are indicated above the corresponding nodes using squares and circles.

doi:10.1371/journal.pone.0121578.9003
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Fig 4. The Bl tree based on NS4B sequences of 37 CSFVs. The robustness of the phylogenetic analysis is
showed above the nodes: left numbers are Bayesian posterior probabilities (>0.80) and right ones are ML
bootstrap values (>60%). Subgenotypes and groups are marked above the corresponding nodes using
squares and circles.

doi:10.1371/journal.pone.0121578.g004
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estimated through time. The upper and lower lines indicate the 95% HPD range of BSP.
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marker of CSFV phylogeny, were very different from those of genome tree (S1 and S2 Figs.);
most groupings were disrupted in the E2 trees.

Substitution rate, divergence times, and population size changes

Results of analyses performed by BEAST 1.7.4 revealed that the relaxed uncorrelated exponen-
tial clock and expansion growth population model was the best-fit for simulating evolution of
CSFV genome. Under this model, evolutionary rate was estimated as 1.03x10™* substitution/
site/year, and the tMRCA of 37 CSFV's was estimated as 2770.2 years ago (95% HPD 223.5-
8611.6). According to the MCC tree, subgenotype 3.4 appeared first 2203.0 (95% HPD = 612.8-
4342.1) years ago, followed by sequential divergence of subgenotype 1.2 (1255.1 years ago; 95%
HPD =106.6-2157.1), 2.3 (663.6 years ago; 95% HPD = 37.1-1456.1), 2.1 (617.8 years ago; 95%
HPD = 63.9-2428.4), and 1.1 (545.8 years ago; 95% HPD = 92.1-1269.7) (Fig. 3). In BSP, the ef-
tective population size of CSFV slowly increased until the 1950s, after which it plateaued

(Fig. 5).

Discussion

Our research aimed to characterize the CSFV genome and elucidate its evolutionary features
using genomic data. Our results revealed a high degree of genetic diversity between the 37
CSFV genome sequences. This feature confirmed the views of Domingo et al. [51] who pro-
posed that RNA viruses have the high level of mutation rates of 10 to 10” nucleotide substitu-
tions per site per replication cycle due to their inaccurate RNA replication. Of the 14 genomic
regions, our analyses showed that E2 was significantly (p-value < 2.2 x 10"'°) variable, while
5’'UTR was the most conserved. The E2 protein, a glycoprotein formed on the virus membrane,
has been suggested as a virulence determinant [52, 53]. In CSFV, it acts as an immunogenic
protein which induces the neutralizing antibodies and protection reactions of the host [54].
5’'UTR of CSFV contains an internal ribosome entry site (IRES) where translation initiation
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occurs, which is indispensable for the virus [55, 56]. Domains in IRES tend to be highly con-
served between several viruses in genus Pestivirus, including CSFV [55, 57]. These two regions
(E2 and 5’UTR) have been considered as the most important targets for CSFV studies such as
PCR detection and immunology as well as evolutionary phylogenetics. Because the sequence
dissimilarity may affect PCR diagnosis and vaccination efficiency as well as investigations on
immunology, epidemiology, and phylogenetic evolution, it is necessary to continuously moni-
tor the genome sequence variability.

In agreement with the interpretations of Ji et al. [33], our results on the basis of complete
coding genome sequences were also indicative of purifying selection acting on the CSF viruses;
the mean ratio of nonsynonymous/synonymous substitution (w = dN/dS) values for each geno-
mic region were low in all cases (all, w < 1). Of those, the NP presented the highest dN/dS val-
ues, while the NS3 indicated the lowest ones.

Next, the phylogeny of CSFV was studied to provide further information regarding epide-
miology and evolution. Despite of the importance of CSFV to the pig industry and recent rapid
increase of CSFV data, most phylogenetic studies describing the virus have focused only on
limited genome region sequences such as E2 [29, 30, 58, 59], 5’UTR [25, 26, 29, 30], and NS5B
[31, 60]. However, expanding information of genome-wide phylogeny has potential to improve
our knowledge on its emergence and transmission. Our phylogenomic analysis of 37 CSFV ge-
nome sequences revealed that no apparent correlation between time and/or country and the
evolution of the virus. Within the subgenotype 1.1, the isolates appeared in samples taken in
four European countries (Denmark, France, Germany, and Italy) and two Asian countries
(China and Japan) during 1945-2009. Subgenotype 2.1 viruses originated from six countries
(South Korea, China, Taiwan, Germany, and Lithuania) during 1996-2012. Moreover, isolates
of subgenotype 2.3 were found in five countries (France, Germany, Spain, Croatia, and Bul-
garia) during 1980-2009. These configurations were also in concordance with the views of
other authors [23, 35] and may be largely due to their rapid spread via the frequent internation-
al trade in livestock. The mixed population structure can make vaccine development and local
regulation more difficult. Thus, it is essential to continuously monitor the structural changes of
the mixed population.

In order to trace the most appropriate phylogenetic marker, we compared 14 individual
gene trees with complete genome trees. Although E2, NS5B, and 5’UTR are generally consid-
ered suitable for elucidating the CSFV phylogeny, our findings postulated that topologies of
NS4B trees were the most similar to those of the complete genome trees, rather than E2, NS5B,
and 5’UTR. Thus, we suggest that NS4B has the strongest signal to infer the genetic relation-
ships of these viruses. Among three frequently used markers, topologies of E2 tree was more
apparent than those of the other two regions. Given that research has shown that the complete
E2 sequence is suitable for phylogenetic analysis of CSFV [61], comparison of topologies be-
tween NS4B and E2 full-length sequences can support the discriminatory power of NS4B as a
phylogenetic marker (SI and S2 Figs.). Both of those regions are regarded as significant deter-
minant in viral activity. That is, E2 is related to viral entry to the target cell [62], E2 has been
known as a virulence determinant of CSFV, and as the most immunogenic factor among the
viral protein [63, 64]. The nonstructural protein translated from NS4B was reported to contain
Toll/Interleukin-1 receptor (TIR) domain in Brescia strain which is considerably virulent, and
the viral replication of Brescia strain was shown to be decreased by mutation in that domain
[65]. Additionally, after artificial re-injection of the GPE- vaccine, amino acid sequence
changes in NS4B contributed to the recovery of virulence of the virus [66]. Thus, NS4B was
considered to be essential in viral replication and to have interaction with immune system, and
mutations in NS4B significantly affected the virulence of CSFV [65].
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Finally, we attempted to elucidate the evolutionary mechanisms and features of CSFV in-
cluding estimation of evolutionary rate, divergence times, and population size changes. Regard-
ing the evolutionary dynamics of CSFV, there was only one previous study [34]. They utilized
only three genes (5’UTR, NP, and E2) sequences of 35 pestiviruses including six CSFVs, and
reported that the most recent common ancestor of CSFV existed 1825 years ago; no analysis of
substitution rate and population size changes was performed. In contrast to this small number
of genes analyzed from a limited selection of representative viruses, we analyzed the complete
genome sequences with an available year of isolation in order to co-estimate an overall substi-
tution rate, population size changes as well as divergence times for CSFVs.

The mean evolutionary rate estimated in the present study was 1.03x10™* (95% HPD 2.03x~
2.61x10™*) substitutions/site/year; that calculation was within the range of 10~ to 10> nucleo-
tide substitutions/site/year for nearly all RNA viruses [67]. However, this value was lower than
the results from previous studies based on E2 sequences; the mean evolutionary rates were cal-
culated as 3.3x107 and 2.41x107 substitutions/site/year in two previous studies [18, 62]. Be-
cause E2 was relatively variable and less conserved compared to the whole genome, the mean
rate of substitution of the whole genome could be lower than that of E2. The fast evolutionary
rates of RNA viruses including CSFV are affected by a combination of forces such as lack of
proof-reading, small genome size, short generation times, and the extent of natural selection
[68]. As a result, it is possible that RNA virus raises viral population adaptation, survival, and
fitness, allowing them to rapidly spread to new hosts and novel environments [69]. The
tMRCA of CSFV was 2770.2 (95% HPD 223.5-8611.6) years ago which was about 8000 years
later than the domestication of wild boar [70, 71].

In terms of the effective population size changes of CSFVs, our bayesian skyline plot (BSP)
analysis depicted that a population increase until the middle of 1990s, after which population
size appears to have evolved at a near constant rate population size until the present. The trend
of effective population size can be attributed to the introduction of vaccine to prevent further
global CSF outbreaks [72]. This plateau after 1950s also can be explained by huge slaughter of
pigs during global outbreak of porcine reproductive and respiratory syndrome (PRRS) and
swine influenza (SI) [73-75].

The present study is the first of its kind to use the complete CSFV genome to investigate the
temporal dynamics of the virus. CSFV is still one of the most acute pathogens in the global
swine industry. Accordingly, global strategies are essential for prevention and control of this
virus. Results of the present study expand the limited information available on CSFV evolu-
tionary dynamics, which may be crucial for the control of this virus, as well as improve our
knowledge of its epidemiology and evolution.

Supporting Information

S1 Fig. The BI tree on the basis of E2 sequences of 37 CSFVs. Bayesian posterior probabilities
above 0.80 are shown on the nodes.
(TIFF)

S2 Fig. The ML tree derived from E2 sequences of 37 CSFVs. ML bootstrap values above
60% are presented on the nodes.
(TIFF)
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