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Abstract

Genome-wide association studies have identified over one hundred common genetic risk

variants associated with type 2 diabetes (T2D). However, most of the heritability of T2D has

not been accounted for. In this study, we investigated the contribution of rare and common

variants to T2D susceptibility by analyzing exome array data in 1,908 Han Chinese geno-

typed with Affymetrix Axiom® Exome Genotyping Arrays. Based on the joint common and

rare variants analysis of 57,704 autosomal SNPs within 12,244 genes using Sequence Ker-

nel Association Tests (SKAT), we identified significant associations between T2D and 25

variants (9 rare and 16 common) in MUC5B, p-value 1.01×10−14. This finding was replicated

(p = 0.0463) in an independent sample that included 10,401 unrelated individuals. Sixty-six

of 1,553 possible haplotypes based on 25 SNPs within MUC5B showed significant associa-

tion with T2D (Bonferroni corrected p values < 3.2×10−5). The expression level of MUC5B is

significantly higher in pancreatic tissues of persons with T2D compared to those without

T2D (p-value = 5×10−5). Our findings suggest that dysregulated MUC5B expression may be

involved in the pathogenesis of T2D. As a strong candidate gene for T2D, MUC5B may play

an important role in the mechanisms underlying T2D etiology and its complications.

Introduction

Type 2 Diabetes (T2D) is a growing global health problem. Currently, about 415 million people

worldwide have diabetes. By 2040, the number of people living with diabetes is expected to

increase to 642 million, with two-thirds of all cases occurring in low to middle-income coun-

tries[1]. In China, the prevalence of T2D increased exponentially over the past three decades.

In 1980, the prevalence of T2D in China was less than 1%; this estimate increased to about

12% in 2010[2]. By 2013, there were about 114 million people with diabetes and about 500 mil-

lion people with prediabetes in China. This rapid increase, which is unlike the transition that
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occurred in Western countries, coincided with economic growth, urbanization, changes in

lifestyle and demographic characteristics in China.

In addition to the well-recognized influence of lifestyle factors on the risk of T2D, genetic

factors play a major role in susceptibility to T2D. The successful application of genome wide

association studies (GWAS) has provided some insight into the genetic basis of T2D. Until

recently, it was generally assumed that common diseases such as T2D were caused by common

variants[3]. Given that GWAS provided genotypic information on common variants, it ap-

peared to be the ideal technique to identify variants. To date, over 100 common genetic risk

variants with small effect sizes have been identified from GWAS and shown to be associated

with T2D. However, the joint effects of these variants accounts for less than 10% of the herita-

bility for T2D[4]. In this study, we examined the association of rare variants with T2D among

a population of unrelated Chinese adults. Given that susceptibility to T2D likely involves the

contribution of both common and rare variants, we conducted joint analysis of common and

rare variants of about 58,000 autosomal SNPs.

Materials and methods

Study population

The China America Diabetes Mellitus (CADM) study is a large-scale genetic epidemiology

study designed to investigate the genetic and environmental determinants of metabolic disor-

ders including T2D, dyslipidemia, kidney disease, and hypertension. In CADM, ~2000 unre-

lated participants with written informed consent were enrolled from Suizhou, China, of whom

1908 were genotyped and included in these analyses. Suizhou, a historic city, is located in the

Hubei province, central China and has a population of over 2 million, most of whom are Han

Chinese (99.2%). Ethical approval for the study was obtained from the Institutional Review

Boards of Howard University, the National Institutes of Health, and IRB of Suizhou Central

Hospital, Suizhou, China. All enrolled participants provided written informed consent during

the clinical visit before commencement of data collection by interview and collection of bios-

peciments. Details of the study protocol were clearly explained to each participants and poten-

tial participants had the opportunity to ask questions before signing the consent documents.

Phenotype definitions

During a clinic examination, interviewers collected demographic information from the partici-

pants. All enrolled individuals self-identified as Han Chinese. Weight was measured in light

clothes on an electronic scale to the nearest 0.1 kg, and height was measured with a stadi-

ometer to the nearest 0.1 cm. Body mass index (BMI) was computed as weight (kg) divided by

the square of height (m2). Blood samples were obtained from all participants after an overnight

fast. T2D diagnosis was based on any of the following criteria established by the American Dia-

betes Association Expert Committee: fasting plasma glucose concentration� 126 mg/dl (7.0

mmol/l), 2-hour post load value in the oral glucose tolerance test� 200 mg/dl (11.1 mmol/l)

on more than one occasion, history of T2D or on prescribed medication for diabetes. Cases

were defined as individuals diagnosed with T2D, while controls were individuals without T2D.

Hypertension was defined as systolic blood pressure (SBP)� 140 mmHg and/or diastolic

blood pressure (DBP)� 90 mmHg, or use of blood pressure medication.

DNA sample preparation, genotyping, and quality control

DNA was extracted from buffy coat samples using a chemagenic DNA Isolation Kit (PerkinEl-

mer Chemagen Technologie Gmb, Baesweiler, Germany) following the manufacturer’s
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instructions. Samples were genotyped using Affymetrix Axiom1 Exome Genotyping Arrays.

This array is primarily designed to detect coding variation and contains over 300,000 markers,

including non-synonymous and synonymous SNPs as well as variants in splice and stop

codons, and 30,000 single-base and complex indels. Genotypes were called using Axiom GT1

algorithm as implemented in Affymetrix genotyping console 4.1.3, which is a new genotyping

procedure developed specifically for use with Affymetrix Axiom1 Genome-wide human

arrays.

All arrays passed plate quality control following the manufacturer’s recommendations. The

genotyping concordance rate (evaluated using 16 SNPs that were blind-genotyped twice) was

99.64%. The concordance rate for 10 individuals that were typed twice on the entire array was

98.64%. Of the 290,890 markers on the array, 178,943 were monomorphic, 23,756 had geno-

typing call rate less than 0.95 and 1,458 markers failed HWE (p value < 10−6). Of the remain-

ing 86,733 markers, 85,009 were autosomal; 27,305 of the autosomal markers were removed

for having minor allele counts less than 5. In all, 57,704 autosomal markers were carried for-

ward for analysis in this study. Of these markers, 12,329 (21.37%) had a minor allele frequency

(MAF) < 0.01, and 45,375 (78.63%) had MAF� 0.01 (with 32,638 with MAF� 0.05). A vari-

ant was classified as “common” ifMAF > 1ffiffiffi
2n
p and “rare” ifMAF � 1ffiffiffi

2n
p (n is number of individ-

uals) = 0.0162[5]. Based on hg19 genome build 37 (GRCh37), the 57,704 markers were located

within 12,244 gene regions.

Statistical analysis

To minimize the potential effect of population structure, we adjusted all analyses by the first

two principal components (PC1 and PC2) obtained from R package, SNPRelate [6], which

generates genetic covariance matrix followed by the extraction of eigenvalues and eigenvectors

for the calculation of PCs. Single marker analysis for Common SNPs was implemented in

PLINK [7] under a genetic additive model, adjusting for sex, age, BMI, Hypertension, and first

two PCs. A permutation procedure was used to generate significance levels empirically to deal

with rare alleles and small sample size[7]. Simple label swapping of phenotype (T2D) was used

for 100,000,000 permutation tests. The empirical permutation p value (Emp) was pointwise

and was calculated by Emp = Eþ1

Nþ1
, where E is number of statistic values� observed statistic

value, and N is the total number of permutation.

Gene-base analyses of rare variants only and of joint common and rare variants were con-

ducted using Sequence Kernel Association Test (SKAT)[5], with models adjusted as in the

common single marker analysis. The overall joint effect of rare and common variants by

gene regions was tested by combining the test statistics directly using weighted-sum statistics,

Q;,p1,p2 = (1 − ;)Qrare + ; Qcommon with ; ¼
SD½Qrare �

SD½Qrare �þSD½Qcommon �
, given (;,p1,p2). As rare variants

are assumed to have larger effect sizes., different weight functions were used for rare and com-

mon variants as follows: βeta(MAF,α = 1,β = 25) for rare, and βeta(MAF,α = 0.5,β = 0.5) for

common variants. Under null, the distribution of Q;,p1,p2 is a mixture of x2
1

distributions.

These x2
1

distributions are independent and identically distributed chi-square random vari-

ables with 1-degree freedom. An asymptotic p value was then computed with Davies’ method

or moment matching[5]. The genome-wide and suggestive significant threshold were estab-

lished as α of 2.5 × 10−6 and α of 2.5 × 10−5 respectively[8].

Haplotype phasing and analysis

Haplotype phasing of SNPs was performed with the BEAGLE program[9], which uses the

hidden Markov model (HMM) to find the most likely haplotype pair for each individual,
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conditional on that individual’s genotypes. Haplotype phasing was conducted on the set of 25

SNPs T2D-associatedMUC5B SNPs. Haplotypes were tested in a logistic regression model that

included age, sex, BMI, hypertension status, and first two PCs as covariates. A total of 1,553

possible haplotypes acrossMUC5Bwere tested. Bonferroni correction was used to adjust for

multiple tests (0.05/number of possible haplotype = 3.2×10−5).

Replication analysis

Replication analysis was performed in 10,401 African ancestry samples obtained from the Ath-

erosclerosis Risk in Communities (ARIC, n = 3,137) [10], the Cleveland Family Study (CFS,

n = 653) [11], the Howard University Family Study (HUFS, n = 1,976) [12], Jackson Heart

Study (JHS, n = 2,187) [13], Multi-Ethnic Study of Atherosclerosis (MESA, n = 1,611) [14],

and Africa America Diabetes Mellitus Study (AADM, n = 1802) [15]. Analysis was conducted

using human genomic reference (hg19) coordinates. LiftOver (https://genome.ucsc.edu/cgi-

bin/hgLiftOver) was used to convert genome coordinates and genome annotation between

assemblies. Rare and common variants were defined as in the discovery study. The set of 25

rare and common SNPs associated with T2D in the discovery study were extracted from repli-

cation datasets. Sixteen (13 common and 3 rare variants) of 25 SNPs were available for joint

common and rare variants analysis in SKAT. As in the discovery analysis, sex, age, BMI, first

two principal components (PC1, and PC2) were included as covariates.

Replication of published GWAS findings was attempted using two strategies, 1) exact and

local (i.e., SNPs in Linkage disequilibrium [LD] with the reported SNP[16]) for those gene

regions that contained only common variants; and 2) a gene-level approach for gene regions

containing both common and rare variants using SKAT. HapMap CHB reference data for

Chinese ancestry populations was used for the identification of markers in LD with published

variants. To adequately account for multiple testing, we estimated the effective degrees of free-

dom (df) for the spectrally-decomposed covariance matrix for the block of markers using this

study’s (CADM) genotype data as previously described[17].

Microarray analysis of human islets

Data was extracted from publicly-available MIAME compliant gene expression data (GEO,

accession number GSE25724; GDS3882; http://www.ncbi.nlm.nih.gov), using the R package,

GEOquery. The original data was generated from the analysis of islets of Langerhans isolated

from T2D and non-T2D organ donors[18]. RNA was biotinylated, fragmented, and hybridized

onto Affymetrix Human Genome U133A Array chips. The expression data was scanned and

log2 normalized, and the differential gene expression between T2D and non-T2D samples was

assessed. Two-tailed tests were used, and p values lower than 0.01 were considered as differen-

tially-expressed[18].

Results

Characteristics of study participants are displayed in Table 1. In this case-controls study of

1,908 individuals, about 50% of the cases and controls were female. Cases were older, heavier

and, as expected, had significantly higher mean fasting blood glucose levels. Also, the cases had

higher mean systolic and diastolic blood pressure and higher prevalence of hypertension com-

pared to the controls (63.7% vs 39.56%, respectively).

In the joint common and rare variant analysis (12,244 genes), we observed a significant

association between T2D and variants in theMUC5B gene (mucin 5B, oligomeric mucus/gel-

forming, GeneID: 727897, 11p15.5) with p-value of 1.01 × 10−14 (Table 2; Fig 1 and QQ plot S1

Fig). This analysis included nine rare and sixteen common variants inMUC5B (Table 2).
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Adjustment for smoking strengthened the association (p-value = 6.29 × 10−15). Replication

analysis was conducted in 10,401 African ancestry individuals (S1 Table) using 16 available

SNPs (3 rare and 13 common) of the 25 SNPs in theMUC5B gene (S2 Table). TheMUC5B
finding replicated in this large sample of individuals (p = 0.0463). In CADM, the frequency of

the T allele in one of the rare variants (rs12282798, MAF = 0.0047) was 0.011 among cases

and< 0.001 among controls with an empirical p-value of 1.85 × 10−4 (Table 3). Four common

SNPs (rs201894106 allele T, rs199967813 allele A, rs192744525 allele A, and rs199285958 allele

C) with allele frequencies < 0.01 in cases, and> 0.04 in controls, statistically significant differ-

ence (empirical p-value of 10−8). The complete list of allele counts withinMUC5B by T2D sta-

tus and associated p-values obtained from permutation (n = 108) tests are presented in Table 3.

Based on the 25 markers available in theMUC5B gene (~35kb), we evaluated all possible

1,553 haplotypes for association with T2D. A total of 66 haplotypes showed significant associa-

tion with T2D status (Bonferroni corrected p value of< 3.2×10−5; S3 Table and Fig 2). Each of

the 66 haplotypes contained at least one SNP that showed single marker association with T2D

(Table 3). For example, we observed 85 copies (4.39%) of the haplotype “CTGCCC” (Fig 2,

amino acid positions from 1310 to 2836) among the controls compared to 3 copies (0.16%)

among the T2D cases with a highly significant protective odd ratio (OR) of 0.031 (p-value

6.93×10−8). Also, there were 87 (4.49%) copies of the haplotype “AGAGC” (amino acid posi-

tion from 5339 to 5732) among T2D cases compared to 3 (0.16%) copies among the controls

(OR = 0.035, p-value 9.02×10−8). The partial correlation between these two haplotypes

(CTGCCC and AGAGC) is 0.90. We observed that 2 (0.11%) copies of both CTGCCC and

AGAGC haplotypes were present among those with T2D; while 79 (3.99%) copies of both

CTGCCC and AGAGC were present among those without T2D, p value of 1.55×10−6 (OR and

95% C.I = 0.032 [0.008, 0.129]).

Table 1. Characteristics of the study participants by type 2 diabetes status.

T2D Non-T2D P-values **

N * 917 (48.06%) 991 (51.94%) 0.0902

Female * 454 (49.51%) 489 (49.34%) 0.9425

Age (yrs) 56.13 (9.80) 51.65 (9.24) < 0.0001

BMI (kg/m2) 24.58 (3.10) 23.95 (2.95) < 0.0001

Systolic Blood Pressure (mmHg) 137.4 (20.32) 128.2 (18.61) < 0.0001

Diastolic Blood Pressure (mmHg) 86.17 (11.23) 82.17 (12.29) < 0.0001

Hypertension * 584 (63.69%) 392 (39.56%) < 0.0001

Glucose (mg/dL) 169.2 (62.20) 89.32 (9.72) < 0.0001

Current Smokers * 194 (21.16%) 208(20.99%) 0.9288

Duration of T2D (yrs) 4.66 (4.85) NA

*numbers (percentage), other numbers are means and standard deviations

hypertension was defined as SBP� 140 mmHg or DBP� 90 mmHg or use of blood pressure medication.

** Significant level defined as� 0.05.

https://doi.org/10.1371/journal.pone.0173784.t001

Table 2. Top results for the joint association analyses of common and rare exome variants with T2D in Han Chinese individuals.

Genes Regions P-values * # of SNPs # of Rare # of Common

MUC5B 11p15.5 1.01E-14 25 9 16

ABCC12 16q12.1 1.56E-5 3 2 1

* Genome-wide statistical significance threshold (p value < 2.5×10−6) and suggestive genome wide significant threshold (p < 2.5 ×10−5).

https://doi.org/10.1371/journal.pone.0173784.t002
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Three variants (2 rare: rs200272726, rs34135219; and one common: rs7193955) in

ABCC12 (ATP-binding cassette, sub-family C, member 12, GeneID: 94160, 16q12.1) had

suggestive genome wide significant associations with T2D (Table 2). The MAF of rare

variant rs200272726 (T allele), was 0.0141 for cases and 0.0020 for controls. The T allele of

rs200272726 was significantly associated with T2D (empirical p-value = 8.01 × 10−4). The G

allele of common variant rs7193955 was associated with T2D (empirical p-value = 0.04143)

and had MAF was 0.1334 for cases and 0.1681 for controls (Table 3).

Genome-wide association studies (GWAS) for T2D [19–42] have identified 76 loci associ-

ated with T2D in East Asians. Based on the joint analysis of common and rare variants using

SKAT, we evaluated the 46 gene sets available in our dataset. Six of the 46 gene sets (CDKAL1,

KCNJ11, KCNQ1,MPHOSPH9, PSMD6, and ZFAND6) were replicated in the combined

rare and common variants analysis (Table 4). In our analysis, there are 31,901 SNPs with

MAF� 0.016 (defined as common variants in SKAT). We replicated 2 (rs7754840, and

rs4712524) of the 10 previously reported common CDKAL1 SNPs for T2D in 15 East Asian

GWAS or GWAS meta-analysis studies[19–21, 25, 29, 30, 32–39]. Also, we replicated 2

(rs2237897, and rs2237892) of the 7 previously reported SNPs in KCNQ1 from 12 East Asian

studies[19, 20, 24, 28–32, 36, 40–42]. Our local replication strategy (targeted SNP ± 250kb win-

dow) did not identify any significant association after adjustment for multiple comparisons.

Fig 1. Exome Array Association Results. The y axis represents the–log10 (p-value) and the x axis is variant positions by chromosome. Genome-wide and

suggestive statistical significance thresholds are illustrated by the two dotted lines.

https://doi.org/10.1371/journal.pone.0173784.g001
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Publicly available MIAME compliant gene expression data (GEO, accession number

GSE25724; GDS3882; http://www.ncbi.nlm.nih.gov) generated from 13 pancreatic organ

donors using the HG-U133A Affymetrix Chips was downloaded and evaluated for differential

gene expression. Seven of the 13 donors did not have diabetes (mean age: 58 ± 17 years, gen-

der: 4 males/3 females; mean BMI: 24.8 ± 2.5 kg/m2), and six had T2D (mean age: 71 ± 9 years;

gender: 3 males/3 females; mean BMI: 26.0 ± 2.2 kg/m2). In a model that adjusted for sex, age

and BMI, we observed significantly higherMUC5B expression in the group with T2D com-

pared to those without diabetes (p-value = 0.00005; Fig 3).

Discussion

We identified both rare and common variants within theMUC5B gene that were associated

with T2D in this study conducted among Han Chinese. These results were replicated in a large

sample of over 10,000 African ancestry individuals. We also identified several haplotypes

Table 3. Allele Counts by type 2 diabetes status for variants in the MUC5B and ABCC12 genes.

Allele count

T2D Non T2D

GENES SNPs PPS Allele 1 Allele 2 MAF HWE Allele 1 Allele 2 Allele 1 Allele 2 Emp **

MUC5B rs2075853 1247458 T C 0.3337 0.9418 630 1188 634 1336 0.9165

rs80298911 1256409 A G 0.0055 * 1.0000 12 1822 9 1959 1

rs200226020 1261561 T C 0.0042 * 1.0000 4 1828 12 1964 0.8113

rs201894106 1262540 T C 0.0284 0.1632 12 1812 96 1884 1e-08

rs1541314 1263523 A G 0.0625 0.6151 104 1724 134 1846 0.9905

rs2943510 1263776 T C 0.0661 1.0000 112 1718 140 1842 0.9833

rs61997210 1264292 T C 0.0045 * 1.0000 10 1814 7 1975 1

rs12282798 1266617 T C 0.0047 * 1.0000 18 1808 0 1982 0.000185

rs55813014 1267325 T C 0.3313 0.3922 585 1225 664 1296 0.9999

rs58125533 1267475 C T 0.1886 0.4358 368 1428 340 1618 0.1415

rs117757264 1267670 A G 0.0158 * 0.2768 24 1802 36 1944 0.9981

rs34528873 1269215 T C 0.0082 * 1.0000 14 1798 17 1961 1

rs4963055 1269398 C T 0.4015 0.4656 679 1069 797 1131 0.9671

rs2943517 1271321 C G 0.3322 0.1536 575 1197 662 1290 0.9987

rs2943512 1272226 A C 0.3296 0.0989 561 1175 654 1296 1

rs202131299 1272527 T C 0.0187 1.0000 35 1785 36 1946 1

rs3021155 1272709 A G 0.0590 0.0296 96 1732 128 1840 0.9429

rs3021156 1272754 G A 0.0633 0.6192 103 1729 137 1821 0.8796

rs55693520 1272800 T C 0.0026 * 1.0000 5 1829 5 1975 1

rs3829224 1276327 A G 0.2732 0.1588 481 1351 561 1421 0.982

rs199967813 1276738 A G 0.0260 0.1632 3 1827 96 1882 1e-08

rs55741856 1277953 A G 0.0029 * 1.0000 8 1826 3 1977 0.9425

rs192744525 1280193 A G 0.0256 0.4094 14 1788 82 1864 1e-08

rs55856616 1280238 A G 0.0029 * 1.0000 6 1824 5 1975 1

rs199785958 1282744 C T 0.0250 0.2651 3 1827 92 1884 1e-08

ABCC12 rs200272726 48121966 T C 0.0076* 1.0000 24 1708 4 1944 0.0008088

rs7193955 48122582 G A 0.1316 0.7967 216 1612 285 1695 0.3939

rs34135219 48145742 A T 0.0047* 1.0000 8 1818 10 1970 1

* Rare variants with MAF� 0.0162.

** Empirical p-values from 100,000,000 permutation analyses.

https://doi.org/10.1371/journal.pone.0173784.t003
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withinMUC5B that showed significant associations with T2D. Notably, individuals with T2D

had significantly higher expression levels ofMUC5B compared to those without T2D.

MUC5B encodes a member of the mucin family of proteins. These proteins are highly gly-

cosylated macromolecular components[43]. As indicated above, the expression ofMUC5B is

increased among individuals with T2D compared to controls; however, the underlying

Fig 2. Haplotypes association results across MUC5B. the y axis represents–log10 (p values) and the x axis shows position within MUC5B. Red

dotted lines indicate the Bonferroni correction level (-log10 (0.05/1,553)), Points above the line are odds ratio values > 1, and below are odds ratio

values < 1. Green dotted lines indicate the positions of significantly associated SNPs in single SNPs analyses. The “*” symbol by the SNP label

indicates rare variants (MAF� 0.0162). The LD heat map presents pairwise r2 values within MUC5B based on the CADM study.

https://doi.org/10.1371/journal.pone.0173784.g002
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Table 4. Replication of previous GWAS Findings in East Asian ancestry studies.

Original

Studies

CADM study

SKAT Exact

SNP *

PUBMED

ID

Region PPS Genes SNPs/Risk

Allele

Context Freq. (Risk

Allele)

Reported

P

OR/

Beta

95%C.I. p

values

P value

24509480 6p23.3 20679478 CDKAL1 rs7756992/G intron 0.260 2.00E-26 1.2 [1.16–

1.25]

0.0347

17460697 6p23.3 20679478 CDKAL1 rs7756992/G intron 0.260 8.00E-09 1.2 [1.13–

1.27]

0.0347

23945395 6p23.3 20661019 CDKAL1 rs7754840/C intron 0.420 2.00E-13 1.18 [1.13–

1.23]

0.0347 0.0393

22961080 6p23.3 20661019 CDKAL1 rs7754840/C intron 0.411 7.00E-10 1.35 [1.23–

1.48]

0.0347 0.0393

17463246 6p23.3 20661019 CDKAL1 rs7754840/C intron 0.310 4.00E-11 1.12 [1.08–

1.16]

0.0347 0.0393

17463248 6p23.3 20661019 CDKAL1 rs7754840/C intron 0.360 4.00E-11 1.12 [1.08–

1.16]

0.0347 0.0393

22693455 6p23.3 20686342 CDKAL1 rs7766070/A intron 0.270 7.00E-10 1.26 [1.17–

1.35]

0.0347

22693455 6p23.3 20686342 CDKAL1 rs7766070/A intron 0.270 6.00E-11 1.21 [1.14–

1.28]

0.0347

21490949 6p23.3 20652486 CDKAL1 rs9295474/G intron 0.360 9.00E-06 1.16 [1.09–

1.24]

0.0347

20581827 6p23.3 20687890 CDKAL1 rs10440833/A intron 2.00E-22 1.25 [1.20–

1.31]

0.0347

19401414 6p23.3 20657333 CDKAL1 rs4712523/G intron 0.410 7.00E-20 1.27 [1.21–

1.33]

0.0347

18711366 6p23.3 20657634 CDKAL1 rs4712524/G intron 0.420 3.00E-10 1.22 [1.15–

1.31]

0.0347 0.0459

18372903 6p23.3 20703721 CDKAL1 rs6931514/G intron 1.00E-11 1.25 [1.17–

1.33]

0.0347

17463249 6p23.3 20660803 CDKAL1 rs10946398/C intron 0.320 1.00E-08 1.16 [1.10–

1.22]

0.0347

17554300 6p23.3 20717024 CDKAL1 rs9465871/C intron 0.180 3.00E-07 1.18 [1.04–

1.34]

0.0347

24509480 11p15.1 17387083 KCNJ11 rs5215/C missense 0.380 3.00E-11 1.08 [1.04–

1.12]

0.0474

18372903 11p15.1 17387083 KCNJ11 rs5215/C missense 4.00E-07 1.16 [1.09–

1.23]

0.0474

17463249 11p15.1 17387083 KCNJ11 rs5215/C missense 5.00E-11 1.14 [1.10–

1.19]

0.0474

19056611 11p15.1 17388025 KCNJ11 rs5219/? missense 5.00E-07 1.19 [1.11–

1.27]

0.0474

17463246 11p15.1 17388025 KCNJ11 rs5219/T missense 0.470 1.00E-07 1.15 [1.09–

1.21]

0.0474

17463248 11p15.1 17388025 KCNJ11 rs5219/T missense 0.460 7.00E-11 1.14 [1.10–

1.19]

0.0474

24509480 11p15.1 2825839 KCNQ1 rs163184/G intron 0.500 2.00E-14 1.09 [1.04–

1.13]

0.0459

24390345 11p15.1 2837316 KCNQ1 rs2237897/C intron 9.00E-15 1.31 [1.22–

1.41]

0.0459 0.0047

18711366 11p15.1 2837316 KCNQ1 rs2237897/C intron 0.340 1.00E-16 1.33 [1.24–

1.41]

0.0459 0.0047

24101674 11p15.1 2810311 KCNQ1 rs8181588/A intron 0.480 5.00E-09 1.3 0.0459

(Continued )
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mechanistic explanation driving the increased expression among diabetics has not been eluci-

dated. Published studies suggest that the expression of MUC5B may be mediated through

insulin-like growth factor-1 (IGF-1) and p38 mitogen-activated protein kinases (MAPK).

MUC5BmRNA expression is induced by the action of IGF-1[44]. It has been reported that

individuals with T2D, obesity, or both have increased levels of IGF-1[45–47] and that IGF-1

induced MUC5B expression is regulated by activation of p38 MAPK[44]. High levels of glu-

cose have been shown to activate p38 MAPK signaling pathway in pancreatic β cells[48–50]. In

animal studies, p38 has been shown to play an important role in diabetes-induced inflamma-

tion[51].

The lung is a target organ for T2D. Abnormal pulmonary function has been observed in

individuals with T2D, the most consistent abnormalities include poor lung elasticity, reduced

diffusion capacity due to impaired capillary blood volume, reduced absolute thoracic gas vol-

umes, reduced lung volume and airflow resistance[52–54]. T2D may lead to abnormal pulmo-

nary function through non-enzymatic glycosylation-induced alteration of the chest wall and

bronchial tree collagen protein, which induces fibrous tissue formation, thickening of the basal

lamina, increased protein catabolism, neuropathy of the phrenic nerve and diaphragmatic

paralysis[54–57]. In healthy lungs, MUC5B is expressed in the goblet cells of bronchi and

bronchioles. It has been found to be up-regulated in some human pulmonary diseases[58]. In

a study of individuals with lung disease, a genome-wide linkage scan showed that a common

promoter ofMUC5Bwas associated with familial interstitial pneumonia and idiopathic pul-

monary fibrosis; MUC5B was highly expressed among diseased individuals, compared to

Table 4. (Continued)

Original

Studies

CADM study

SKAT Exact

SNP *

PUBMED

ID

Region PPS Genes SNPs/Risk

Allele

Context Freq. (Risk

Allele)

Reported

P

OR/

Beta

95%C.I. p

values

P value

23945395 11p15.1 2818521 KCNQ1 rs2237892/C intron 0.610 4.00E-29 1.3 [1.24–

1.36]

0.0459 0.0133

19401414 11p15.1 2818521 KCNQ1 rs2237892/C intron 0.590 1.00E-26 1.33 [1.27–

1.41]

0.0459 0.0133

22961080 11p15.1 2818521 KCNQ1 rs2237892/C intron 0.657 1.00E-07 1.32 [1.19–

1.46]

0.0459 0.0133

21573907 11p15.1 2818521 KCNQ1 rs2237892/C intron 4.00E-06 1.2 [1.11–

1.29]

0.0459 0.0133

18711367 11p15.1 2818521 KCNQ1 rs2237892/C intron 0.610 2.00E-42 1.4 [1.34–

1.47]

0.0459 0.0133

21799836 11p15.1 2822986 KCNQ1 rs163182/C intron 0.340 2.00E-17 1.28 0.0459

20581827 11p15.1 2670241 KCNQ1 rs231362/G intron;

ncRNA

3.00E-13 1.08 [1.06–

1.10]

0.0459

20174558 11p15.1 2835964 KCNQ1 rs2237895/C intron 0.330 1.00E-09 1.29 [1.19–

1.40]

0.0459

24509480 12q24.31 123156306 MPHOSPH9 rs1727313/C ncRNA 1.00E-08 1.06 [1.04–

1.08]

0.0367

22158537 3p14.1 64062621 PSMD6 rs831571/c 0.610 8.00E-11 1.09 [1.06–

1.12]

0.0162

20581827 15q25.1 80139880 ZFAND6 rs11634397/G 2.00E-09 1.06 [1.04–

1.08]

0.0363

*Empty cells: information not available

https://doi.org/10.1371/journal.pone.0173784.t004
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controls[59]. A recent meta-analysis that included Asian populations showed a strong associa-

tion betweenMUC5B (rs35705950 polymorphism) and risk of idiopathic pulmonary fibrosis

[60]. The diabetes status of the individuals in the study was not stated.

TheMUC5B gene is composed of tandem repeats which are flanked by cysteine-rich sub-

domains (845 residues upstream and 700 residues downstream). The cysteine-rich subdo-

mains were similar to the D-domains of human pro-Von Willebrand factor[61, 62]. Increased

levels of von Willebrand factor, an indication of damage to endothelial cells, have been showed

association with diabetes[63]. It also reported as a predictive markers for diabetic nephropathy

and neuropathy, thus providing a clue that endothelial dysfunction precedes the onset of

diabetic microangiopathy[63]. In previous studies of Sjögren’s syndrome, a chronic autoim-

mune disease in which the body’s white blood cells destroy the exocrine glands, a relationship

betweenMUC5B, von Willebrand factor and diabetes was suggested[64, 65], indicating a

potential role ofMUC5B in cardiovascular complications of T2D. An NF-kappa-B binding site

in theMUC5B promoter showed that activation of the NF-kappa-B signaling pathway upregu-

latedMUC5BmRNA expression 2 fold[66]. NF-kappa-B signaling pathway plays an important

role in immune and inflammatory response[67], supporting a potential role ofMUC5B in

T2D.

Fig 3. MUC5B differential expression in pancreatic islets from T2D and non-T2D organ donors.

Displayed on the y axis are the mean and standard deviation values of log2 transformation of expression data.

https://doi.org/10.1371/journal.pone.0173784.g003
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Conclusions

We identified rare and common variants in theMUC5B gene that are associated with T2D in

Han Chinese. Our findings suggest that dysregulatedMUC5B expression may be involved in

the pathogenesis of T2D. As a strong candidate gene for T2D,MUC5Bmay play an important

role in the mechanisms underlying T2D etiology and its complications.
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