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In Brief
AlphaTims efficiently indexes
five-dimensional LC-TIMS-Q-
TOF data containing billions of
datapoints in a matter of
seconds. Owing to this indexing,
retrieving the retention time, ion
mobility, quadrupole m/z, TOF
m/z, and intensity values of
millions of ions along arbitrary
dimensions takes only
milliseconds. Subsequent
visualization of these
coordinates is then achieved
with similar timings. AlphaTims is
a freely available open-source
package with a graphical user
interface, command-line
interface, or Python module for
all major operating systems.
Highlights
• Efficient indexing of billions of five-dimensional data points in seconds.• Fast accession of arbitrary LC-TIMS-QTOF data slices in milliseconds.• Easy and fast visualization of LC-TIMS-QTOF data along multiple axes.• Freely available GUI, CLI, and Python module on Windows, Linux, and macOS.
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TECHNOLOGICAL INNOVATION AND RESOURCES
AlphaTims: Indexing Trapped Ion Mobility
Spectrometry–TOF Data for Fast and Easy
Accession and Visualization
Sander Willems1 , Eugenia Voytik1, Patricia Skowronek1 , Maximilian T. Strauss1,2, and
Matthias Mann1,3,*
High-resolution MS-based proteomics generates large
amounts of data, even in the standard LC–tandem MS
configuration. Adding an ion mobility dimension vastly in-
creases the acquired data volume, challenging both
analytical processing pipelines and especially data
exploration by scientists. This has necessitated data ag-
gregation, effectively discarding much of the information
present in these rich datasets. Taking trapped ion mobility
spectrometry (TIMS) on a quadrupole TOF (Q-TOF) plat-
form as an example, we developed an efficient indexing
scheme that represents all data points as detector arrival
times on scales of minutes (LC), milliseconds (TIMS), and
microseconds (TOF). In our open-source AlphaTims
package, data are indexed, accessed, and visualized by a
combination of tools of the scientific Python ecosystem.
We interpret unprocessed data as a sparse four-
dimensional matrix and use just-in-time compilation to
machine code with Numba, accelerating our computa-
tional procedures by several orders of magnitude while
keeping to familiar indexing and slicing notations. For
samples with more than six billion detector events, a
modern laptop can load and index raw data in about a
minute. Loading is even faster when AlphaTims has
already saved indexed data in an HDF5 file, a portable
scientific standard used in extremely large-scale data
acquisition. Subsequently, data accession along any
dimension and interactive visualization happens in milli-
seconds. We have found AlphaTims to be a key enabling
tool to explore high-dimensional LC-TIMS-Q-TOF data
and have made it freely available as an open-source Py-
thon package with a stand-alone graphical user interface
at https://github.com/MannLabs/alphatims or as part of
the AlphaPept ‘ecosystem’.

The increasing amounts and complexity of data present a
fundamental challenge of data accession in different scientific
fields. MS, a leading analytical method in clinical and (bio)
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chemical research, is no exception. This issue is compounded
when coupling MS with other techniques such as LC and ion
mobility spectrometry (1), which allow separating analytes
efficiently in scientific domains such as proteomics, lip-
idomics, and metabolomics (2–4). In our laboratory, this is
exemplified by TOF mass analyzers and trapped ion mobility
spectrometry (TIMS) (5–7). Typically, analytes are first sepa-
rated throughout LC gradient times of several minutes or
hours. After ionization, they enter a TIMS tunnel where they
are trapped and separated in approximately 100 ms. This step
discretizes continuous LC separation into ion packets with
undistinguishable chromatographic retention time values, and
this smallest unit of LC separation is defined as a frame. After
TIMS separation, a quadrupole (Q) usually provides selection
for tandem MS (MS/MS) before ions reach the TOF acceler-
ator. Ion packets are then sent orthogonally into the TOF
analyzer at regular intervals of about 100 μs by an electrody-
namic pusher. As mentioned previously, such a pusher event
discretizes continuous TIMS separation into ion packets with
undistinguishable ion mobility (1/K0), and this smallest unit of
TIMS separation is defined as a scan. Finally, a detector at the
end of the TOF accelerator discretizes continuous ion arrival
times into TOF peaks of a few hundred picoseconds wide.
This combination of analytical techniques, in brief LC-TIMS-Q-
TOF, has received much attention since the introduction of the
timsTOF Pro instrument (Bruker Daltonics).
The parallel accumulation–serial fragmentation (PASEF)

method synchronizes ion mobility separation with Q selection,
combining high-throughput with high sensitivity in both data-
dependent acquisition and data-independent acquisition (DIA)
(5, 8). Despite its very high data-acquisition rate, the full mass
resolution is maintained in the MS or MS/MS mode by
coupling the high-resolution TOF mass analyzer to a GHz
detector. This rapid detection rate in combination with high
sensitivity often leads to billions of detector events per
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AlphaTims: Indexing, accessing and visualizing TIMS-TOF data
sample. While the actual measurements are intensity values of
ion species, the exact time of a detector event can be directly
converted to the TOF m/z, Q m/z, ion mobility, and chro-
matographic retention time values.
As a consequence of the resulting large data size, the

accession and further visualization of LC-TIMS-Q-TOF data
have proven to be challenging and slow in practice. During the
last years, the single solution in the field was provided by the
manufacturer’s closed-source library, integrated into Bruker’s
proprietary software Compass DataAnalysis. To achieve
reasonable data size and access times, this involved pre-
processing steps, including data binning. However, this re-
quires choosing parameters such as bin sizes somewhat
arbitrarily and, in general, conceals the actual measurements.
Consequently, the results depend on this preprocessing, and
validation at the level of raw data is impractical.
Very recently, this led to parallel developments tackling

some of these issues. The notable examples are OpenTIMS
(9), an open-source C++ library with bindings for the Python
and R languages to read Bruker data, and MSFragger in
combination with IonQuant, which allows to identify and
quantify proteins rapidly without the need to preprocess raw
data (10). However, these tools were developed using specific
applications in mind. We reasoned that fast and generic
accession in arbitrary dimensions of the data would need to
be optimized for speed, usability, and extensibility. This
combination would enable community-driven developments
to tackle current bottlenecks such as novel implementations
of feature-finding algorithms, retrieval of extracted ion chro-
matograms (XICs) for DIA analysis, or fast interactive data
visualization of raw MS data.
Here, we present AlphaTims, a user-friendly software tool,

that drastically accelerates accession and visualization of raw
LC-TIMS-Q-TOF data compared with the vendor’s software. It
provides an indexing procedure in such a way that the un-
processed data are interpreted as a sparse four-dimensional
matrix. This matrix is specifically designed for LC-TIMS-Q-
TOF data, allowing fast retrieval of arbitrary data slices along
all of the available dimensions in milliseconds. It is imple-
mented in pure Python with only a few dependencies to make
it readable, flexible, and lightweight. This makes it easily
adoptable and adaptable by the community. At the same time,
it matches the performance of programs written in the
C programming language, by using the popular packages
NumPy for array manipulation and Numba for just-in-time (JIT)
compilation to machine code (11, 12). AlphaTims can save an
indexed dataset as a single portable high-performance hier-
archical data format (HDF5) file (13), which has proven its ef-
ficiency and extensibility in various scientific fields and has
also been used in MS-based proteomics before (14–16). This
further accelerates data access and allows us to store arbi-
trary metadata and downstream processing results. We then
use Datashader, an optimized rendering Python package to
plot millions of data points on standard hardware (17), in
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combination with Panel and Bokeh (Python packages to build
user-friendly dashboards to access and visualize data) to
extend the usability of AlphaTims to a broader audience
regardless of computational expertise. AlphaTims is a modular
tool that is also a part of the AlphaPept (18) (https://github.
com/MannLabs/alphapept) ‘ecosystem’ developed in our
department, which provides tools for the different facets of
MS-based computational proteomics. It can be used as a fully
stand-alone graphical user interface (GUI), command-line
interface (CLI), or Python module for Windows, macOS, and
Linux and is freely available under an Apache license at
https://github.com/MannLabs/alphatims.
EXPERIMENTAL PROCEDURES

Sample Preparation

Human cervical cancer cells (HeLa, S3, and ATCC) were cultured in
Dulbecco's modified Eagle's medium with 10% fetal bovine serum,
20 mM glutamine, and 1% penicillin-streptomycin (all Life Technolo-
gies Ltd). The cells were collected using centrifugation, washed with
PBS, flash-frozen in liquid nitrogen, and stored at −80 ◦C.

Following the in-StageTip protocol (19), cell lysis, reduction, and
alkylation with chloroacetamide were carried out simultaneously in a
lysis buffer (PreOmics). The resultant dried peptides were recon-
stituted in double-distilled water comprising 2 vol% acetonitrile and
0.1 vol% TFA to a concentration of 200 ng/μl and further diluted with
double-distilled water containing 0.1 vol% formic acid. The manu-
facturer's instructions were followed to load approximately 50 ng or
200 ng peptides onto Evotips (Evosep).

LC

Purified tryptic digests were separated with either a predefined ‘200
samples per day’ (SPD) method (6-min gradient time, 50 ng peptides)
or a predefined 60 SPD method (21-min gradient time, 200 ng pep-
tides) on an Evosep One LC system (Evosep) (20). A fused silica 10-μm
ID emitter (Bruker Daltonics) was placed inside a nanoelectrospray
source (CaptiveSpray source, Bruker Daltonics). For the 200 SPD
method, the emitter was connected to a 4-cm × 150-μm reverse-
phase column, packed with 3-μm C18 beads, and for the 60 SPD
method, to an 8-cm × 150-μm reverse-phase column, packed with
1.5-μm C18 beads (PepSep). Mobile phases were water and acetoni-
trile, buffered with 0.1% formic acid.

In addition, 400-ng peptides were separated over a 120-min
gradient time on a 50-cm in-house reverse-phase column with an
inner diameter of 75 μm, packed with 1.9-μm C18 beads (Dr Maisch
ReproSil-Pur AQ) and a laser-pulled electrospray emitter. The column
was heated to 60 ◦C in an oven compartment. The binary LC system
consisted water as buffer A and acetonitrile/water (80%/20%, v/v) as
buffer B, both buffers containing 0.1% formic acid (Easy-nLC 1200,
Thermo Scientific). The gradients started with a buffer B concentration
of 3%. In 95 min, the buffer B concentration was increased to 30%, in
5 min to 60%, and in 5 min to 95%. A buffer B concentration of 95%
was held for 5 min before decreasing to 5% in 5 min and re-
equilibrating for further 5 min. All steps of the gradients were per-
formed at a flow rate of 300 nl min−1.

MS

LC was coupled online to a TIMS Q-TOF instrument (timsTOF Pro,
Bruker Daltonics) with ddaPASEF and diaPASEF (7, 8) via a Captive-
Spray nano-electrospray ion source. For both acquisition modes, the
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ion mobility dimension was calibrated with three Agilent ESI-L Tuning
Mix ions (m/z, 1/K0: 622.0289 Th, 0.9848 Vs cm−2; 922.0097 Th,
1.1895 Vs cm−2; 1221.9906 Th, 1.3820 Vs cm−2). Furthermore, the
collision energy was decreased linearly from 59 eV at 1/K0 =
1.6 Vs cm−2 to 20 eV at 1/K0 = 0.6 Vs cm−2.

For the ddaPASEF method, each topN acquisition cycle consisted
four PASEF MS/MS frames for the 200 SPD and 60 SPD methods and
ten PASEF MS/MS frames for the 120-min gradient time. The accu-
mulation and ramp times were set to 100 ms. Singly charged pre-
cursors were excluded from fragmentation using a polygon filter in the
(m/z, 1/K0) plane. Furthermore, all precursors that reached the target
value of 20,000 were excluded for 0.4 min. Precursors were isolated
using a Q window of 2 Th for m/z <700 and 3 Th for m/z >700. For
diaPASEF, we used the ‘high-speed’ method (m/z range: 400–1000
Th, 1/K0 range: 0.6–1.6 Vs cm−2, diaPASEF windows: 8 × 25 Th), as
described (8).

A seventh sample was acquired with identical settings as the
60 SPD ddaPASEF method. To intentionally introduce anomalies, the
TOF was calibrated with an offset of 1 Da, and the air supply through
the CaptiveSpray nano-electrospray source filter was blocked be-
tween minute 12 and 13.

AlphaTims Development

The AlphaTims source code is freely available on GitHub (https://
github.com/MannLabs/alphatims) under an Apache license. The Py-
thon code (alphatims folder) is divided into two core modules: bru-
ker.py provides the TimsTOF class and all functions to create, index,
and access objects from this class, whereas the utils.py module
provides generic utilities for logging, compilation, parallelization, and
I/O. Three additional modules implement all functionality for plotting,
GUI, and the CLI.

In addition to the core Python code, the GitHub repository includes
much introductory and background information. This includes (1) an
extensive README for navigation, installation, and usage instructions,
(2) a Jupyter Notebook folder (nbs) with a Python tutorial and a per-
formance notebook to reproduce all timings as presented in this
article, (3) a documentation folder (docs) to create all documentation
for the Bruker, utils, and plotting modules hosted on https://alphatims.
readthedocs.io, (4) a miscellaneous folder (misc) facilitating manual
creation of new GUI releases and Python Package Index (PyPi) re-
leases on https://pypi.org/project/alphatims, (5) a .github folder to
perform continuous integration including testing and automatic
releasing of new versions, and (6) a requirement folder to handle all
dependencies.

AlphaTims is developed in pure Python and only has seven core
dependencies: (1) h5py to handle HDF5 files, (2) Numba for JIT
compilation, (3) Pandas for tabular results, (4) pyzstd for generic
decompression of Bruker binary data, and (5–7) tqdm, psutil, and click
for CLI support. All plotting capabilities and the GUI are enabled by
four additional packages: (1) Bokeh for visualizations and the dash-
board, (2) hvPlot to connect Pandas DataFrames with Bokeh, (3)
Datashader for fast rendering of visualizations, and (4) selenium for
browser support. As an alternative tom/z and 1/K0 estimation, we also
provide the option to retrieve calibrated values with Bruker libraries on
Windows and Linux machines. Additional requirement files exist purely
for legacy code and to facilitate development with dependencies such
as, for example, PyInstaller to create the stand-alone GUI or twine to
release new versions on PyPi.

Computational System

All development and testing of AlphaTims was done on a MacBook
Pro (13-inch, 2020) with a 2.3 GHz Quad-Core Intel Core i7 processor,
32 GB 3733 MHz LPDDR4X memory, and 2 TB Flash storage running
macOS Catalina version 10.15.7. Functionality on Linux and Windows
was tested through continuous integration on default GitHub virtual
machines running Ubuntu 20.04 and Windows Server 2019 (https://
docs.github.com/en/actions/using-github-hosted-runners/about-
github-hosted-runners).
RESULTS AND DISCUSSION

To better explain the indexing procedure at the heart of
AlphaTims, we shortly summarize the data structures used in
the vendor’s software in their TIMS data format (tdf). A ‘.d
folder’ contains two primary files to store raw LC-TIMS-Q-TOF
data acquired with the timsTOF Pro (Bruker Daltonics)
(Fig. 1A). The first of these is the analysis.tdf file, an ordinary
SQLite database, that contains all metadata from the acqui-
sition. It furthermore stores summarized information for each
individual frame (ion packet with the same retention time
values) and, if applicable, at which scans (ion packet with the
same ion mobility values) the Q isolation window was
changed. The second file, analysis.tdf_bin, contains all raw
detector events and their intensity values as compressed bi-
nary data.

Indexing Procedure and Performance

AlphaTims represents relevant data from a ‘.d folder’ in
multiple NumPy arrays. First, it decompresses the binary
analysis.tdf_bin file to read all detector events and corre-
sponding intensity values. While Bruker stores detector events
and intensity values in a single homogeneous array, Alpha-
Tims separates them into three distinct arrays. In the first, the
(nonzero) intensity values of all detector events are stored in
order of their acquisition time. A second array of equal length
then stores their TOF indices as offsets for each individual
pusher event. To indicate when pusher events happened,
AlphaTims defines a third dense array that stores the number
of detector events that are registered per pusher event. By
taking the cumulative sum of this latter array, pointers are
created to indicate the start and end indices of individual
pusher events in the two former arrays. Together, these three
arrays unambiguously define a compressed sparse row matrix
(21) with indices of pusher events as rows, TOF indices as
columns, and intensity values as values (Fig. 1B).
Next, AlphaTims retrieves the unique number of frames,

scans, and TOF indices from the analysis.tdf SQL database,
and from an array containing all retention time values. On
Windows and Linux, arrays with ion mobility and TOF m/z
values are retrieved from Bruker libraries that are integrated
into AlphaTims. These Bruker libraries are unavailable on
macOS; however, as a work-around, we provide an estimation
of these values based on the start values and end values as
provided in the analysis.tdf SQL database. As there are typi-
cally 600 frames per minute, 1000 scans per frame, and
400,000 detector events per pusher event, the size of these
three arrays is neglectable compared with the total number of
detector events that frequently surpasses a billion.
Mol Cell Proteomics (2021) 20 100149 3
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FIG. 1. Schematic of AlphaTims’ indexing and data accession. A, data dimensions: the timsTOF instrument acquires detector events after
separation and selection in four different dimensions. After passing through the LC, TIMS, and quadrupole, an ion beam enters the TOF
accelerator where a pusher event (synchronized with the LC, TIMS, and quadrupole) sends ions in an orthogonal direction toward the detector.
LC, trapped ion mobility spectrometry (TIMS), and TOF coordinates can be represented as discrete indices (frame, scan, and TOF indices) or as
continuous values (retention time [RT]), ion mobility, and TOF m/z values). B, indexing procedure: AlphaTims uses several arrays to store LC-
TIMS-Q-TOF data. First, the intensity values are stored in a compressed sparse row matrix (intensity matrix) with TOF indices as columns
and indices of pusher events as rows (push index pointers/indptr). Each unique pusher event corresponds to a unique combination of a frame
and scan index, according to the formula pushi = scann + framem ⋅ #scans. Note that the scan-frame matrix presented here is purely a visual aid
and is not stored explicitly, as the unique relationship between frame, scan, and push indices makes this redundant. An additional sparse array
stores the push indices where the quadrupole settings are changed (quad change indices). For instance, in the first frame (blue), the quadrupole
is not changed, whereas it is changed once the second frame (green) starts and another time within this frame (e.g., diaPASEF with two windows
per frame). An array of equal length denotes which m/z values (lower and upper bounds) are selected with the quadrupole at each of these
indices. C, array storage: owing to the indexing, AlphaTims only needs to store a few arrays of variable size (each square represents an order of
magnitude). The reference arrays containing mobility, retention time, and TOF m/z values take between a thousand and one million elements.
While the quadrupole arrays are mostly dependent on the LC gradient length (in minutes), these arrays are generally also less than one million
elements. The largest arrays are those that represent the sparse intensity matrix: push indptr, intensity values, and TOF indices, with the latter
two arrays frequently containing billions of elements. Finally, a few bytes are used to store relevant metadata. D, accession procedure: data
accession with AlphaTims can be performed in any dimension. This can be done by providing ranges of interest either as indices or as values. In
case of the latter, LC, TIMS, and TOF values are always converted to the closest index by fast binary searches in their corresponding arrays. All
of the selected LC and TIMS indices are then converted to push indices by the formula pushi = scann + framem ⋅ #scans. Because the
quadrupole m/z array is not ordered, a linear pass over all quadrupole m/z values is required to determine which quadrupole index pointers are
valid, and only those that overlap with the previously selected push indices are retained. For each individually selected push index, a binary
search retrieves all TOF indices that satisfy the requested TOF range. Finally, all selected detector events are filtered with a single pass over their
corresponding intensity values to obtain the final set of detector events that satisfies the multidimensional range of interest.
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Finally, another sparse array is created to indicate at which
push indices the Q settings change. In ddaPASEF, this hap-
pens on average ten times per frame to select different pre-
cursors. In diaPASEF, this depends on the acquisition scheme
and desired cycle time. Typically, each frame of a recurring
diaPASEF acquisition cycle is split up into eight window
groups that all have different Q settings. This array of Q
change indices is accompanied by two other arrays of equal
length. The first of these is two-dimensional and defines the
lower and upper Q m/z values selected by the Q. The second
defines the precursor index. For DIA, the precursor indices are
equal to the diaPASEF window group.
AlphaTims collects all these arrays, together with global and

frame-specific metadata from the analysis.tdf file, and stores
this as an alphatims.bruker.TimsTOF object into working
memory (Fig. 1C). Because a single detector event takes up
6 bytes (an UInt32 for the TOF index and an UInt16 for the
intensity) and their respective arrays generally dwarf all others,
the required working memory (in gigabytes) is roughly equal to
six times the number of detector events (in billions). The
alphatims.bruker.TimsTOF object acts as a fully indexed
sparse four-dimensional matrix with associated metadata.
To facilitate fast reuse of this object and avoid recreation of

the indices, it can be stored on disk as a portable HDF5 file
with Python’s h5py package. This is possible on all operating
systems, but TOF m/z and ion mobility values of HDF5 files
created on macOS can differ from Windows and Linux owing
to the availability of the Bruker libraries, as mentioned above.
By default, the HDF5 file size is equal to the required working
memory, but compression can be used to decrease this
roughly two-fold. While compression slows down loading and
saving of HDF5 files approximately from 2 to 10 times, an
AlphaTims object in working memory is always decompressed
and interactive accession is thus unaffected. These (de)com-
pressed HDF5 files can always be (de)compressed and
resaved, making them ideal for file transfer or archiving. A
major benefit of such file transfer is that HDF5 files created on
Windows or Linux can be transferred to macOS, thereby uti-
lizing the m/z and ion mobility values from the Bruker libraries
on all operating systems instead of requiring the aforemen-
tioned estimation. Note that not all HDF5 formats are inter-
changeable with the HDF5 format of AlphaTims. This is
primarily because these formats were developed in the past as
more general community standards for arbitrary MS data and
therefore explicitly store (meta)data per individual spectrum. In
contrast, AlphaTims HDF5 files are very efficient as we can
assume they contain homogenous LC–ion mobility spec-
trometry–Q-TOF data that are stored in only a few arrays with
a single set of indices and metadata.
To assess the performance of AlphaTims’ indexing pro-

cedure, we acquired HeLa samples with gradients of 6, 21,
and 120 min in both ddaPASEF and diaPASEF modes
(Experimental Procedures). At the shortest time dimension, a
single pusher event could record almost 400,000 TOF
detection events in an m/z range of 100 to 1700 Th. Separa-
tion in the TIMS tunnel lasted 100 ms and is composed of
1000 of these pusher events, covering a 1/K0 range of 0.6 to
1.6 Vs cm−2. Up to 240 billion events could thus have been
recorded per minute; however, in practice, no run acquired
more than 0.03% of these potential detector events, and the
data can be considered sparse (Fig. 2).
On a laptop (Experimental Procedures), reading all detector

events into working memory and indexing them took Alpha-
Tims less than a second for the smallest run and less than
90 s even for the largest run with 6.4 billion detector events.
In contrast, opening any of these runs with Bruker’s Com-
pass DataAnalysis software (v5.3) required at least double
the time on a Windows desktop with overall better specifi-
cations. To speed up data import even further and allow
modification or addition of downstream results, AlphaTims
also allows exporting the indexed data as a portable HDF5
file, which only takes seconds. When these HDF5 files are
imported, no decompression and indexing is required, mak-
ing them roughly three times faster to load than raw Bruker
‘.d folders’. While reading .d folders with AlphaTims benefits
from multiple CPUs to speed up decompression, loading
from HDF5 files is only limited by disk reading speed.
Regardless, the required time to load or save either a .d folder
or HDF5 file is approximately linear in function of the number
of detector events and independent of LC gradient or
acquisition scheme.
Currently, reading and indexing data is done after acquisi-

tion. Given that these steps take only a fraction of the time it
takes to acquire the data, we hypothesize that it would also be
possible to index data that are being acquired in real time. This
would only require to know the TOF and TIMS dimensions
upfront, which are parameters that indeed are determined
before acquisition. All other arrays are sorted in function of
time and can thus easily be created in real time with dynamic
buffer arrays. Such live indexing would not require storage of
unindexed data and avoids wasting acquisition time on sam-
ples with poor quality.

Accession Procedure and Performance

Once data are imported and indexed, an alphatims.-
bruker.TimsTOF object can be accessed in all dimensions with
traditional Python slices or ‘fancy index slicing’ from NumPy
(12) (Fig. 1D). The order of the dimensions in such an object is
equal to the order of their respective components in the tim-
sTOF Pro: LC, TIMS, Q, TOF, and detector. Typically, the user
defines a range of interest that is translated into a slice with a
single index or by a (start and stop) tuple. When decimal
values are provided for the LC, TIMS, or TOF dimension
instead of indices, AlphaTims always assumes them to
represent retention time, ion mobility, or TOF m/z values. By
default, these are converted to the closest integers repre-
senting frame, scan, or TOF indices by looking them up in their
appropriate arrays with a fast binary search. In the case of Q
Mol Cell Proteomics (2021) 20 100149 5



FIG. 2. Time performance of AlphaTims. Different HeLa samples were acquired in both ddaPASEF (full outline) and diaPASEF (dotted
outline) with gradient lengths of 6, 21, and 120 min (Experimental Procedures). When a raw Bruker ‘.d folder’ is read, AlphaTims needs to
decompress, import, and index all detector events (blue). Once this is performed, the indexed dataset can be saved as an HDF5 file (green).
When an HDF5 file is read instead of a raw Bruker ‘.d folder’, no decompression or indexing is required (orange). Multiple detector events of each
run were retrieved by slicing each dimension individually. The retrieved detector events correspond to an LC slice with 100 ≤ retention time (s)
< 100.5 (red), a TIMS slice with scan index = 450 (purple), a quadrupole slice with 700.0 ≤ quad m/z value <710.0 (brown), and a TOF slice with
621.9 ≤ TOF m/z value < 622.1 (pink). All timings were obtained with Python timeit function for robust and reproducible results that were
averaged over at least seven repeats. See https://github.com/MannLabs/alphatims/blob/master/nbs/performance.ipynb for exact numbers.
TIMS, trapped ion mobility spectrometry.
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m/z values, precursor indices, or intensities, no translation is
necessary.
Once a multidimensional slice of interest is defined,

AlphaTims first selects all the possible push indices that
satisfy the LC and TIMS dimensions and converts these to
push indices with the formula pushi =
scann + framem ⋅ #scans. As these push indices are ordered,
they are located in the Q change index array in a single iter-
ation. Only those push indices with a valid Q m/z value are
selected, and for each of them, appropriate TOF indices are
retrieved from the sparse intensity matrix. As the TOF indices
are ordered per individual pusher event, a binary search
quickly retrieves all TOF indices that satisfy the requested TOF
slice. Finally, it is checked which of all the selected detector
events have an intensity value that satisfies the detector slice.
The results are then returned as a Pandas (http://pandas.sf.
net) DataFrame whose columns describe all indices and
values, or—if desired—as a NumPy array with indices of de-
tector events.
For each of the six HeLa samples (Experimental

Procedures), we tested four different slices: an LC slice with
retention time values between 100 and 100.5 s, a TIMS slice
with a scan index of 450 providing all mass spectra at the
corresponding ion mobility, a Q slice with only fragments from
a precursor range between 700 and 710 Th, and finally, a TOF
slice with m/z values between 621.9 and 622.1 (Fig. 2). As
expected, samples with longer gradients, and thus more de-
tector events, also yield more detector events when sliced in
the TIMS and TOF dimensions. While this is also true for the Q
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dimension, the effect of being a ddaPASEF or diaPASEF
method is stronger than the gradient length in these examples.
This is not surprising because the Q selected just 2 or 3 Th in
ddaPASEF, whereas the selected windows in diaPASEF were
always 25 Th.
Next, we evaluated the time that was needed to access all

of the previous data slices with AlphaTims. Owing to the
indexing structure, the index of any pusher event can be
converted to a frame and scan index with a simple linear
formula and vice versa (Fig. 1D). As such, it can be expected
that accession in these dimensions should be very fast as no
actual searching is involved. Indeed, even retrieving five
million detector events with slicing in the LC or TIMS dimen-
sion is carried out in just 0.2 s (Fig. 2). Moreover, the time
required to slice in these dimensions only depends on the
number of detector events that are retrieved and only indi-
rectly on the gradient length or acquisition scheme. Slicing in
the Q dimension is very similar. While slightly slower than the
LC or TIMS dimensions, there is a comparable linear de-
pendency for the required slicing time that is purely a function
of the number of detector events that are retrieved. This
slowdown is due to additional filtering of Q change indices
from the sparse array. As this Q index pointer array itself is
very sparse (on average, 1% nonzero elements when
compared with the number of pusher events), the impact of
this additional filtering is small. However, slicing in the TOF
dimension is roughly an order of magnitude slower than slicing
in any other dimension, primarily caused by the fact that every
pusher event needs to be filtered individually, as the TOF

http://pandas.sf.net
http://pandas.sf.net
https://github.com/MannLabs/alphatims/blob/master/nbs/performance.ipynb
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dimension is indexed per pusher event. When TOF slicing is
combined with other dimensions, fewer selected pusher
events are selected, which makes even this slowest step
instantaneous to the user. As the time required for TOF slicing
is still linearly dependent only on the number of retrieved de-
tector events, AlphaTims is very scalable even to long gradi-
ents, very complex samples, and data acquisition schemes.

Using AlphaTims

AlphaTims is freely available as an open-source Python
package with an Apache license on Windows, macOS, and
Linux. To enable the usage for a wide audience regardless of
computational background, it can be operated in any of the
three following modes: a stand-alone GUI, a stand-alone CLI,
or directly as a Python module.

GUI Mode

A simple installer for the AlphaTims GUI can be downloaded
from our GitHub page, requiring just a few mouse clicks. Both
the installation and usage of AlphaTims have been made as
intuitive as possible, but a comprehensive GUI manual is also
available with in-depth step-by-step explanations and
screenshots.
The GUI allows interactive exploration of unprocessed LC-

TIMS-Q-TOF data conveniently in browsers such as Google
FIG. 3. Quality control (QC) with the AlphaTims graphical user inter
(TIC) is immediately available without requiring any additional user inpu
visible. B, relation between ion mobility and m/z values: by selecting the
values of different charge states becomes clear. C, TOF calibration: by
widgets, the expectedm/z value of a calibrant spray is visualized through
but, instead, a value of 1223.5 Th is displayed. D, ion mobility spectromet
the y-axis is changed to 1/K0 values, a discontinuity in ion mobility is de
Chrome or Mozilla Firefox. It was programmed in pure Python
and uses only a few libraries of Python’s Holoviz visualization
ecosystem. These include Holoviews itself and Bokeh to
visualize different plots such as the total ion current (TIC),
Datashader for fast rendering of these plots, and Panel to
combine the plots with control widgets into an interactive
dashboard (Experimental Procedures). With the control wid-
gets, the user can slice the data simultaneously in multiple
dimensions as described previosuly (Accession Procedure
and Performance). The selected coordinates can then be
projected on either a single axis to show mass spectra, ion
mobilograms, or XICs or on multiple axes to create heatmaps
in the LC, TIMS, and TOF dimensions.
Having reduced the visualization of LC-TIMS-Q-TOF to a

fast and straightforward task, it can be incorporated in a wide
variety of practical applications. In the following text, we
demonstrate this on the example of visual quality control. For
this purpose, we intentionally acquired a sample with a few
anomalies (including a large offset of the mass scale and
temporary pressure change in the CaptiveSpray source) to see
if we could indeed quickly detect any issues. There were 0.7
billion detector events in this 21-min ddaPASEF run. The data
could be imported with a single mouse click, and the TIC was
visible within 10 s of opening the AlphaTims GUI. This
immediately revealed an anomaly, namely the drop in ion
face. A, total ion current: after importing a sample, the total ion current
t. In this case, a clear drop in intensity between minute 12 and 13 is
first 100 frames, the expected relation between m/z and ion mobility
resetting the frames and adjusting the TOF selection and plot axis

out the whole gradient. The expected value of 1222.0 Th is not present,
ry stability: when the TOF selection is narrowed to 1223.5 ± 0.1 Th and
tected between minute 12 and 13.

Mol Cell Proteomics (2021) 20 100149 7



AlphaTims: Indexing, accessing and visualizing TIMS-TOF data
current between minute 12 and 13 that we had engineered
beforehand (Fig. 3A). Without having done any processing at
all, the user is forewarned about unreliable intensity values in
that region. We then used the frame widget to select the first
100 frames and projected intensity values on the TOF and
TIMS dimensions, showing the expected relation for m/z and
ion mobility values of differently charged precursors (Fig. 3B).
As an important quality metric, the user can assess the sta-
bility of added calibrant ions (1222.0 Th, 1.38 Vs cm−2), which
is expected to be continuously present throughout the whole
run. By resetting the selected frames to the whole range and
modifying just two values of the TOF widget, we selected all
ions in the m/z region between 1221.0 and 1225.0 Th. By
adjusting the heatmap axes to show chromatographic reten-
tion time values on the x-axis andm/z values on the y-axis, we
expect to see a continuous signal throughout the whole
gradient for the calibrant spray with an m/z value of 1222.0 Th.
However, there is a continuous and steady signal for an m/z
value of 1223.5 Th instead, accompanied by a less-intense
isotope at 1224.5 Th (Fig. 3C). Based on these observations,
we deduce that the TOF m/z values are greatly misscalibrated
(as intended for this sample) and that the reported m/z values
are too unreliable for further analysis. Next, we changed the
y-axis of the heatmap to show the ion mobility values and
inspect the detected ion at 1223.5 ± 0.1 Th during the com-
plete LC gradient. This clearly revealed another issue between
minute 12 and 13. Normally, the ion mobility value of the
calibrant spray should remain constant at a value of
1.38 Vs cm−2, but in this case, the apparent value drops to
1.1 Vs cm−2 for a full minute (as a result of the purposely
altered gas flow) (Fig. 3D). This coincides with the previously
detected drop in the TIC, meaning that not only the intensity
but also the other coordinates are unreliable in this timeframe.
Thus, a brief assessment of the data in less than 30 s with just
a few user inputs already detected and pinpointed the main
issues with data quality. Other quality assessments to analyze,
for example, fragmentation efficiency of ddaPASEF samples
or positioning of Q selections in diaPASEF samples do not
require much more effort and quickly become routine even for
inexperienced users.

CLI Mode

Although it is very easy to use, AlphaTims’ GUI requires
manual input for visualization. For users who wish to automate
repetitive tasks, the AlphaTims CLI provides the same func-
tionality as the GUI. Instead of manually updating control
widgets, all settings and values can be provided to the
command-line either directly or with a simple script. As there
is no need to display an interactive dashboard, this mode is
even faster and more versatile than the GUI. More complex
data slices can be selected than with the GUI, while all results
can still be exported. This includes visualizations in png, or
html format, csv tables with selected ion coordinates, and
8 Mol Cell Proteomics (2021) 20 100149
alternative formats of the whole sample such as portable
HDF5 files and mascot generic format files. All of these
commands and their options are fully documented in the CLI,
and a brief tutorial is available on GitHub.

Python Mode

Although the CLI is more flexible than the GUI, it is impos-
sible for us to implement all the imaginable use cases of
AlphaTims. Instead, we also make it available as a Python
module and leave it to the end user to implement any addi-
tional functionality or incorporate it into other Python projects.
AlphaTims can be installed from PyPi as a Python module with
the standard pip module of Python 3.8. There is both a light-
weight version available with just a few dependencies that
purely focuses on data indexing and accession and an
extended version with more dependencies that includes the
complete visualization library as used for the GUI and CLI.
Enabling AlphaTims in other Python scripts or Jupyter

notebooks requires a single line of code that imports the
module. Some convenience functions enable logging or set
the number of available threads for multithreading and ensure
transparent, reproducible, and efficient usage of AlphaTims.
All functions of AlphaTims are implemented in pure Python
and fully documented to facilitate flexibility, readability, and
usability. However, functions that are computationally inten-
sive have been decorated with Numba to use JIT compilation
to machine code. This enables a performance similar to the
fastest low-level languages such as C.
Importing and indexing data is carried out with a single

command that returns an alphatims.bruker.TimsTOF object,
which can be treated as a four-dimensional matrix. Inspired by
the slicing approach in NumPy, one of the fundamental Py-
thon libraries for scientific computing, AlphaTims provides
slicing in multiple dimensions simultaneously as described
previously (Accession Procedure and Performance). As a
result, AlphaTims data slices can take advantage of the vast
amount of Python packages that act on Pandas DataFrames
as well.
To demonstrate the basic usage of AlphaTims in Python, we

have provided a brief Jupyter Notebook tutorial on GitHub
(https://github.com/MannLabs/alphatims/blob/master/nbs/
tutorial.ipynb). This notebook explains how to set up Alpha-
Tims and enable logging for transparent and reproducible data
analysis, import samples and export indexed HDF5 files for
faster reanalysis, select individual data points and data slices,
and visualize data to create similar plots as with the GUI or
CLI. The final part of the tutorial includes an example to show
how AlphaTims can be used to investigate a specific peptide
in diaPASEF data based on a spectral library created with, for
instance, AlphaPept, Skyline, or Spectronaut (18, 22, 23).
The above example illustrates a use case of AlphaTims in

Jupyter Notebooks that have become a standard in modern
data science (Fig. 4). AlphaTims and Bruker diaPASEF data

https://github.com/MannLabs/alphatims/blob/master/nbs/tutorial.ipynb
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FIG. 4. A section of a Jupyter Notebook using AlphaTims as a Python module. Jupyter Notebooks allow to structure and execute Python
code in individual cells. In the last part of the AlphaTims tutorial, data from a diaPASEF sample is imported (cell "in [20]"). The same sample was
also acquired in ddaPASEF, and a spectral library was generated with AlphaPept. Relevant coordinates of the peptide YNDTFWK were retrieved
from this spectral library and defined in the tutorial (cell "in [21]"). A function ‘inspect_peptide’ was defined (cell "in [22]", see AlphaTims’ Python
tutorial at https://github.com/MannLabs/alphatims/blob/master/nbs/tutorial.ipynb), allowing to visualize extracted ion chromatograms (XICs) for
the doubly charged precursor and all fragments of this peptide (cells "in [23]" and "out [23]"). Based on the these XICs, some interference seems
to be present for the precursor signal of this peptide. However, when the precursor and fragments of this peptide are visualized as a heatmap in
both the LC and TIMS dimensions, it becomes clear that this interference is fully resolved in the TIMS dimension (cell "in [24]" and "out [24]").
TIMS, trapped ion mobility spectrometry.
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are first imported, and then, all coordinates of both the pre-
cursor and all fragments of a specific peptide are defined. With
a simple custom Python function, all detector events that
match these coordinates within a certain tolerance can be
retrieved and visualized in an interactive plot. Traditionally,
such an interactive plot represents only the XICs of the
selected precursor and its fragments, but this ignores the
TIMS dimension. In contrast, with AlphaTims in this Jupyter
Notebook, we can easily provide heatmaps in both the LC and
TIMS dimensions for the precursor and all fragments, thereby
illustrating the benefit of using TIMS data for peak capacity
and interference removal. Using this extra information allows
us to manually verify that the peptide of the spectral library is
both quantitatively and qualitatively present in the diaPASEF
data as well.
CONCLUSION

The composition of a wide variety of (bio)chemical samples
can be determined with LC-TIMS-Q-TOF, which acquires the
intensity values of ions with billions of detector events that are
convertible to chromatographic retention time, ion mobility, Q
m/z, and TOF m/z values. Although there are several tools that
use these data for specialized applications, a generic software
tool that is optimized for speed, usability, and extensibility—
thereby enabling community-driven developments—was
lacking.
AlphaTims indexes unprocessed data in mere seconds,

thereby making it equivalent to a sparse four-dimensional
matrix. This allows to subsequently access the unprocessed
data in milliseconds, regardless of the original complexity of
the dataset. Owing to this fast accession, AlphaTims also
requires only milliseconds to provide interactive data visuali-
zations along any dimension, including XICs, ion mobilo-
grams, mass spectra, TICs, or two-dimensional heatmaps.
AlphaTims is easy to install and use on all major operating
systems, without requiring any computational expertise. It can
be used as a stand-alone GUI, CLI, or Python module and
includes extensive help in the form of a README file, test
data, a Python tutorial, CLI manual, and a GUI manual. It is a
fully open-source package with a minimal number of de-
pendencies and is freely available under an Apache license at
https://github.com/MannLabs/alphatims.
Owing to the documented and freely available code base,

AlphaTims can easily be integrated in other community pro-
jects. As an example, we are already actively integrating it in
accelerated DIA workflows and AlphaViz, a new software tool
in the AlphaPept ‘ecosystem’ that visualizes identified pep-
tides within raw data. Furthermore, we also envision to expand
the AlphaTims source code and include for instance other
vendors, a low-memory mode with optimized usage of HDF5
files, a multisample mode to directly compare different runs, or
even on-the-fly indexing of data that are being generated in
real time.
10 Mol Cell Proteomics (2021) 20 100149
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