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Sheng-Fei-Yu-Chuan-Tang (SFYCT), a traditional Chinese medicine formula consisting of 13 medicinal plants, has been used
in the treatment of asthma. This study demonstrated the immunoregulatory effect of SFYCT on chronic allergic asthma
using the Dermatophagoides-pteronyssinus- (Der p-) challenged chronic asthmatic murine model. SFYCT decreased the airway
hyperresponseness (AHR), pulmonary inflammatory cell infiltration, and airway remodeling in Der p mice. SFYCT treatment
decreased Der p-induced total IgE andDer-p-specific IgG1 but not IgG2a/2b Ab titer in serum of Der pmice. SFYCT also decreased
Th2 cytokines, IL-4, IL-5, and IL-13, but increased IFN-𝛾 and IL-12 in the BALF of Der p mice. TGF-𝛽1 and collagen production in
the lung of mice were decreased by SFYCT. The mRNA expression of chemokine including Eotaxin, RANTES, and MCP-1 in the
lung of Der p mice was decreased by SFYCT. In conclusion, the suppressed Der-p-induced airway inflammation, remodeling, and
hyperresponseness in chronic asthma murine model are related to SFYCT inhibitsTh2 responses, decreases chemokine expression
and promotes IFN-𝛾 and IL-12 production. SFYCT could showDer-p-inducedTh2 responses toTh1 responses by increasing IFN-𝛾
which is merit for clinical application on asthma patients.

1. Introduction
Allergic asthma, an acute-on-chronic inflammatory disease,
is a worldwide public health problem because of the rapidly
increasing prevalence [1]. The characteristics of allergic
asthma induced by inhaled allergens or nonspecific stimuli
include airway eosinophilia, goblet cell hyperplasia with
mucus hypersecretion, collagen deposition, and smoothmus-
cle cell hypertrophy in lung, subepithelial thickening, and
hyperresponsiveness in airway [2]. T-cell subsets, T helper 1
(Th1) and T helper 2 (Th2), response to allergens and regulate

immune reactions during asthma. Asthma is considered a
Th2-cell-driven inflammatory disease [3]; thus, drugs that
can suppress Th2 cytokine production would prove useful as
allergen immunotherapy agents [4]. However, antiasthmatic
medicines, such as corticosteroids or𝛽-agonists, help chronic
asthmatic patients to inhibit asthmatic symptoms but not
to cure the disease [5]. These agents cause serious side
effect, overall immune suppression which results in increased
susceptibility to infections, particularly in children [6, 7].
Thus, more and more asthmatic patients starting to use
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Table 1: The ratio of the components in SFYCT.

Components Amount (g)
Ginseng Radix (root of Panax ginseng C. A. Meyer) 4
Atractylodis Ovatae Rhizoma (root and rhizome of Atractylodes macrocephala Koide) 4
Citri Reticulatae Pericarpium (skin of fruit of Citrus reticulate Blanco) 4
Ephedrae Herba (stem of Ephedrae sinica STAPF) 1.2
Mori Ramulus (branch ofMorus alba L.) 4
Radix Bupleuri (root of Bupleurum chinense DC) 4
Cinnamomi Ramulus (root of Cinnamomum cassia BL) 4
Scutellariae Radix (root of Scutellaria bicalensis George) 4
Schizonepetae Herba (stem of Schizonepeta tenuifolia Briq) 6
Sileris Radix (root of Siler divaricatum Benth et Hook f.) 6
Glycyrrhizae Radix (root of Glycyrrhiza uralensis Fisch) 4
Zingiberis Recens Rhizoma (root and rhizome of Zingiber officinale Rosc.) 2
Zizyphi Sativae Fructus (fruit of Zizyphus jujubeMill. Var. inermis Rehd.) 6
Total amounts 53.2

complementary and alternative medicine [8]. Traditional
Chinese medicines (TCMs) have been used in treating
asthma for centuries in Asia [9]. Some herbal formulas,
herbal derivatives, and TCMs have provided scientific evi-
dence supporting the use of treating allergic asthma by
immune-regulatory effects [10–13]. These findings suggest a
great potential in the development of herbal interventions to
treat allergic asthma.

Sheng-Fei-Yu-Chuan-Tang (SFYCT), a formula on the
basis of an empirical traditional Chinese medicine prescrip-
tion composite of 13 medicinal plants (Table 1), has been
used to treat bronchial asthma for decades in the Veterans
General Hospital, Taichung, Taiwan. In the present study,
the therapeutic effect on asthmatic syndrome of SFYCT
was investigated in a Dermatogoides-pteronyssinus- (Der-p-)
induced allergic asthma murine model [14]. Repeatedly
exposing BALB/c mice to Der p via intratracheal (i.t.) expo-
sure induces lymphocyte proliferation, Th2 cytokine release,
airway inflammation, and remodeling [12].Th2 cytokines, IL-
4, IL-13, and IL-5 produced by activated CD4+ T cells, play a
central role in the pathogenesis of allergic asthma [15]. IFN𝛾
is a key cytokine in bridging the innate and the adaptive
arms of the immune system and helps the development of
a Th1-type response [16]. Because asthma is associated with
dysregulated Th2 responses, enhanced Th1 responses may
suppress the development of allergic airway inflammation.
Therefore, strategies that enhance Th1 responses or increase
IFN𝛾 production have been proposed as therapies for ame-
liorating allergic airway inflammation [17, 18]. In the present
study, we investigated the immunoregulatory effect of SFYCT
on Der-p-induced chronic asthmatic murine model. Most
treatments including corticosteroids and TCMs reduce AHR
and airway inflammation by inhibiting Th1 responses (IFN-
𝛾/IgG2a) as well as Th2 (IL-4, IL-5, and IL-13/IgE) responses
[4, 8, 9, 11–13, 19]. However, SFYCT suppressedTh2 cytokines
but elevated IFN-𝛾 and IL-12 production. To our knowledge,
this is the first TCM formula, SFYCT, documented supresses
pulmonary allergic reactions through skewingDer p-induced
Th2 responses to Th1 responses by increasing IFN-𝛾 and

IL-12. The present study demonstrates that SFYCT may offer
some clinical advantages over corticosteroids because it is less
likely to increase the patient’s susceptibility to infection.

2. Materials and Methods

2.1.Mice andReagents. Specific pathogen-free,male, 6wkold
BALB/c mice from the National Laboratory Animal Center,
ROC, were housed in a microisolator cage and fed sterile
food and water ad libitum. All experimental animal care and
treatment followed the guidelines setup by the Institutional
Animal Care and Use Committee of the China Medical
University. Lyophilized house dust mites (Dermatophagoides
pteronyssinus (Der p)) were purchased fromAllergon (Engel-
holm, Sweden). Crude mite preparation was extracted with
ether. After dialysis with deionizedwater, themite extract was
lyophilized and stored at −70∘C until use. LPS concentration
of the Der p preparations was 1.96 EU/mg of Der p (Limulus
amebocyte lysate test; E-Toxate; Sigma-Aldrich).

2.2. SFYCT Preparation. SFYCT (batch number 98041021)
was supplied by Koda Pharmaceuticas Ltd. (Taoyuan, Tai-
wan). The preparation was a mixture of 13 Chinese herbal
medicines shown in Table 1. In brief, these were extracted
with 1 L of boiled water twice for 1 hr. Poaching liquid was
mixed two times. The dregs of the decoction were removed
after filtering.The filtered liquid was lyophilized and crushed
into a thin powder. The yield of the dried extract was about
38%. SFYCT was dissolved in distilled water and stored at
−20∘C before administration to mice.

2.3. Der p Challenge and Assessment of Airway Inflammation.
In Der-p-challenged BALA/c mice (𝑛 = 6), allergic airway
inflammation and remodeling were provoked by subject-
ing mice to i.t. administered Der p (1mg/mL, 50 𝜇L) in
phosphate-buffered saline (PBS) once a week for 4 weeks
(total 5 doses). In the SFYCT treated mice, mice were
gavaged with SFYCT (1 g/kg) 30min before Der p challenge.
In parallel experiments, normal mice were gavaged with
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distilled water and i.t. administered PBS as control group.
Mice were killed by i.p. injection of xylazine (200𝜇g/mice)
and ketamine (2mg/mice) 3 days after the last challenge.
Bronchoalveolar lavage fluid (BALF) was performed (two
washes of 1mL of ice-cold endotoxin-free PBS) according
to a previously described procedure [11]. Serum and BALF
were collected and stored at −80∘C for further analysis.
Differential counts were performed on cytospin preparations
(1×105 cells/100 𝜇L of BALF) stainedwith Liu’s stain reagents
(Biotech, Taiwan) in a blind manner after total leukocyte
counting.

2.4. Measurement of Airway Hyperresponsiveness. The met-
hacholine-induced pause value was used in live mice as a
marker of airway responsiveness (AHR) to bronchoconstric-
tors. AHR was measured in mice using a single-chamber,
whole-body plethysmograph (Buxco Electronics, Inc., Troy,
NY, USA) according to the manufacture’s protocol. The
enhanced pause (Penh) variable was used to estimate airway
resistance. Mice were serially exposed to increasing doses
of nebulized methacholine (0, 3.125, 6.25, 12.5, 25, and
50mg/mL) (Sigma-Aldrich, St. Louis, MO, USA) in PBS for
3 minutes, respectively, and Penh values were measured for 3
minutes following the end nebulization of methacholine.

2.5. Histology Examination. Paraffin-embedded lung was cut
into 5 𝜇m sections and stained with H&E or periodic-acid-
Schiff (PAS) stain. Light microscopy was used for histologic
assessment. The degree of inflammatory changes was evalu-
atedwith a semiquantitative scale of 0–5 for inflammatory cell
infiltration, perivascular spaces, and peribronchial spaces.
The scale was graded as follows: 0 (none), 1 (minimal, <1%),
2 (slight, 1–25%), 3 (moderate, 26–50%), 4 (moderate/severe,
51–75%), and 5 (severe/high, 76–100%) [20].

2.6. Collagen Analysis. The lung tissue (100mg) of each mice
was homogenized mechanically in 2mL HBSS. The collagen
contents of the lung homogenates were analyzed using Sircol
collagen assay kit (Biocolor, Belfast, UK).

2.7. Flow Cytometric Analysis. Monoclonal antibodies
including PE and/or FITC-conjugated anti-mouse CD4,
FITC-conjugated anti-mouse CD8, PerCP-conjugated anti-
mouse CD3, and FITC-conjugated anti-mouse CD25 (BD
Pharmingen) were used for cell fluorescence staining. BALF
cells (1 × 105) were stained with mAb for 30min on ice.
After washing, stained cells were quantified by FACScan
(Becton-Dickinson Immunocytometry system, San Jose, CA,
USA).

2.8. Measurement of Der-p-Specific IgG1, IgG2a/2b, and IgE.
An IgE-specific ELISA was used to measure the total IgE Ab
levels in serum using matching mAb pairs (BD PharMingen)
according to the manufacturer’s instructions. A450 readings
of the samples were converted to ng/mL using a standard
curve generated with double dilutions of mouse IgE isotype
standard (BD PharMingen). For Der-p-specific Abs, serum
samples were added in duplicate onto ELISA plates coated
with Der p (2 g/mL in 0.1M NaHCO

3
, pH 8.3). After

incubation overnight at 4∘C, the plates were washed and
incubated with biotinylated rat anti-mouse IgG1 or IgG2a/2b
monoclonal Ab (2 g/mL; BD PharMingen) for 1 h, followed
by washings with PBS and the addition of streptavidin-
HRP conjugate (1 : 1000 dilution, BDPharMingen).The plates
were washed and developed with a tetramethylbenzidine
microwell peroxidase substrate system (Kirkegaard & Perry
Laboratories, Gaithersburg, MD) and read at OD 450.

2.8.1. Measurement of Cytokine Levels Concentration.
Cytokine concentration was measured by a sandwich
ELISA technique. Mouse IL-4, IL-5 ELISA Ready-SET-Go
(eBioscience, San Diego, CA), IL-12, IL-13, IL-17, INF-𝛾,
and TGF-𝛽 ELISA DuoSet (R&D System, Abingdon, UK)
were used to detect cytokine concentrations according to the
manufacturer’s protocol.

2.9. Reverse Transcription-Polymerase Chain Reaction. Rev-
erse transcription-polymerase chain reaction (RT-PCR) was
performed to determine the Eotaxin, RANTES, monocyte
chemotactic protein (MCP)-1 or 𝛽-actin mRNA expression.
Total RNA of lung was extracted using Trizol solution
(Life Technologies) and subjected to reverse transcription
with StrataScript H-reverse transcriptase (Strata-gene, La
Jolla, CA, USA) to generate cDNA. Gene-specific primer
pairs (sense and antisense, resp.) used are as follows:
RANTES, F5-AGAAGTGGGTTCAAGAATACAT-3 and
R5-GGACCGAGTGGGAGTAG-3; Eotaxin, F5-ACATGT-
TACATTTAAGAAATTGGAGTT-3 and R5-AGGTCA-
GCCTGGTCTAC-3; MCP-1, F5-ACCTGCTGCTACTCA-
TTCAC-3 and R5-TACAGAAGTGCTTGAGGTGG-3;
𝛽-actin, F5-GCTGGAAGGTGGACAGCGAG-3 and R5-
TGGCATCGTGATGGACTCCG-3. PCR products were
electrophoresed on 1.5% agarose gels and stained with
ethidium bromide. 𝛽-Actin amplification was used as an
internal control. The relative quantity of PCR products is
expressed as fold increase relative to 𝛽-actin.

2.10. Statistical Analysis. Data are presented as means ± SE.
Differences between mean values were estimated using a
Student’s t-test. A 𝑃 value < 0.05 was considered significant.
For comparisons of data that were not normally distributed,
a Mann-Whitney 𝑈 test was performed.

3. Results

3.1. Effects of SFYCT on Airway Inflammation and Hyperre-
sponsiveness in Der p Mice. Most allergic asthmatic patients
are sensitized by house dust mite allergens, such as Der p
[14]. Thus, repetitive Der p challenge protocol described in
Section 2 was used to induce chronic airway inflammation in
mice. Repeatedly exposing BALB/c mice to Der p via intra-
tracheal (i.t.) exposure induces lymphocyte proliferation,
Th2 cytokine release, airway inflammation, and remodeling
[12]. In the present study, 3 days after the last challenge,
the numbers and percentages of macrophages, neutrophils,
eosinophils, and lymphocytes in the BALF of nontreated
Der p mice significantly higher than those of control mice
(Table 1). AHR, determined using Penh values, in Der p mice
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Figure 1: The suppressive effects of SFYCT on airway hyperre-
sponsiveness in repetitive Der-p-challenged mice. Methacholine-
induced airway hyperresponsiveness was determined at day 3 after
the last challenge. Values represent the means ± SE of 6 mice. ∗𝑃 <
0.05 compares with Naive group; #𝑃 < 0.05 compares with Der p
group.

was higher than that in control mice (Figure 1). The results
showed clear signs, inflammatory cells infiltration and AHR,
of chromic asthmatic mice model. SFYCT decreased the
absolute number of inflammatory cells but did not changed
their percentages in the BALF of Der pmice (Table 1). SFYCT
also decreased the Penh value in Der p mice (Figure 1).

The inflammation degree and pathological change in
the lung of mice were observed. There was no pulmonary
inflammation in normal mice, but widespread peribron-
chiolar and perivascular infiltrates (Figure 2(a)) as well as
matrix deposition in subepithelial regions accompanied with
abrogation of mucus production by hyperplastic goblet cells
(Figure 2(b)) were shown in the lung of Der p mice. The
semiquantitation of inflammatory changes in the lung ofDer-
p mice is higher than that of normal mice (Figure 2(a)). The
collagen content, represented the levels of matrix within the
lung tissue, in Der p mice, was higher than that in control
mice (Figure 2(c)). SFYCT treatment inhibited inflammatory
cell infiltration, decreased matrix and mucus deposition, and
collagen content in the lung ofDer pmice (Figures 2(a)–2(c)).
These results showed that SFYCT could attenuateAHR inDer
p mice and protects against allergenic airway inflammation,
goblet cell activation, and collagen deposition.

3.2. Effects of SFYCT on Inflammatory Cell Number and
Cellular Distributions in BALF of Der p Mice. The total and
various cell counts inBALF fromnormalmice andDer pmice
with or without SFYCT treatment were analyzed (Table 2).
In the BALF of normal mice, there was few macrophages,
lymphocytes, or neutrophil but no eosinophil was detected.
In Der p mice, all kinds of inflammatory cell numbers
in BALF were markedly increased but SFYCT treatment
significantly decreased them.

The T-cell subset distribution in the BALF of mice was
determined by flow cytometry. The percentages of CD3+/
CD4+, CD3+/CD8+, and CD4+/CD25+ lymphocytes in Der

pmice were significantly higher than in normal mice. SFYCT
treatment decreased the CD3+/CD4+ andCD4+/CD25+ lym-
phocyte percentage but barely affected CD3+/CD8+ lympho-
cyte in BALF of Der p mice (see Figure 3).

3.3. Effects of SFYCT on Cytokine in Serum and BALF of
Der p Mice. To determine the possible effect of SFYCT on
T-cell responses, the levels of T-cell cytokine concentration
and Ab titers in the BALF or serum of Der p mice were
analyzed by ELISA. SFYCT treatment significantly decreased
the levels of Der p-induced cytokine, IL-5, IL-13, IL-17 and
TGF-𝛽, but enhanced IFN𝛾 as well as IL-12 secretion in BALF
of Der p mice (Figure 4). The elevated serum levels of IL-4
and IL-5 in Der p mice were reduced by SFYCT (Figure 5).
Furthermore, the serum levels of total IgE and Der-p-specific
IgE inmice were increased after repeatedDer p challenge and
SFYCT treatment reversed the phenomenon. The levels of
IgG1 normally associated with aTh2 immune response while
IgG2a/2b associated with aTh1 immune response [5, 21]. The
serum titers of IgG1 and IgG2a/2b Abs were elevated in Der p
mice suggesting amixedTh1/Th2 response. SFYCT treatment
decreased the IgG1 but not IgG2a/2b Ab titer in serum of Der
p mice (Figure 5).

3.4. Effect of SFYCT on Chemokine Expression in the Lung of
Der p Mice. The mRNA expression of chemokines includ-
ing Eotaxin, RANTES, and MCP-1 in the lung of mice
was analyzed by RT-PCR. The mRNA expressions of these
chemokines were higher in Der p mice than those in normal
mice. SFYCT treatment significantly inhibits the increased
Eotaxin, RANTES, and MCP-1 mRNA in the lung of Der p
mice (see Figure 6).

4. Discussion

TCMs have been reported with therapeutic effects on allergic
asthma [19, 22]. SFYCT, a formula designed following the
traditional Chinese medicine theories and clinical experi-
ence, has been used to treat asthmatic patients in Taiwan for
decades. Unlike the side effect from using corticosteroids,
SFYCT relieves asthmatic syndrome without total immune
suppression. In present study, the immunoregulatory effects
and possible mechanism of SFYCT were investigated in Der
p-induced chronic allergic asthma murine model. SFYCT
treatment suppressed air way inflammation, AHR, and Th1
response but increased IFN𝛾 and IL-12 production in asth-
matic mice.

SFYCTexhibited nonspecific anti-inflammatory property
with reducing the cell number of all kinds of inflammatory
cells in the BALF of Der p mice. Pathological observations
also showed that SFYCT reduced inflammatory cell
infiltration. Airway remodeling, including lamina thickening
and airway structural changes, a central feature of asthma,
is closely related to progression of AHR [21, 23]. TGF-𝛽 not
only regulates cellular biological processes leading to airway
remodeling [24] but also contributes to increased collagen
synthesis and AHR [25]. Treatment with the antibody to
TGF-𝛽 reduced the number of mucus-secreting goblet cells
in a murine model of asthma [26]. Although corticosteroids
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Figure 2: The effects of SFYCT on Der-p-induced airway inflammation, goblet cell hyperplasia, mucus hypersecretion, and collagen
deposition in lung tissue of mice. (a) H&E stain and inflammatory score show the histopathologic change and inflamatory cell infiltration
around the blood vessels of mice. (b) PAS stain shows the mucus of goblet cells in the airway of mice. Goblet cell hyperplasia and mucus
plug in airway from PBS sham treated mouse and nontreated or SFYCT treated Der p mouse. (c) Collagen levels in the lung of mice were
determined as described in Section 2. Values represent the means ± SE of 6 mice. ∗𝑃 < 0.05 compares with Naive group; #𝑃 < 0.05 compare
with Der p group.

Table 2: The total cell number and cellular distributions in BALF of mice 72 h after repetitive Der p challenge.

Total cells
(×104/mL)

Macrophages
(%)

Lymphocytes
(%)

Neutrophils
(%)

Eosinophils
(%)

PBS
16.5 ± 1.73

15.57 ± 1.85 0.61 ± 0.22 0.32 ± 0.22 0
(94.36 ± 11.20) (3.68 ± 1.33) (1.95 ± 1.36) (0)

Der p
71.25 ± 4.43

∗

50.39 ± 3.35
∗

3.81 ± 1.69
∗

13.16 ± 1.63
∗

4.28 ± 0.27
∗

(70.72 ± 4.70) (5.34 ± 2.37) (18.46 ± 2.29) (6.00 ± 0.37)

SFYCT
40.25 ± 3.5

∗#
27.19 ± 1.53

∗#
2.97 ± 1.67 8.87 ± 2.22

∗#
1.41 ± 0.27

∗#

(67.54 ± 3.81) (7.38 ± 4.15) (22.02 ± 5.50) (3.50 ± 0.66)

Values represent the mean ± SE of 6 mice. ∗𝑃 < 0.05 compares with naı̈ve; #𝑃 < 0.05 compares with Der p.

and 𝛽2 agonists are able to improve the management of
asthma, they are ineffective at inhibiting TGF-𝛽 to reverse
the structural remodeling of airways, especially in patients
with chronic asthma [27–29]. SFYCT treatment decreased
the TGF-𝛽 production in BALF and collagen synthesis in
the lung of Der p mice. Taken together, these results suggest
that treatment with SFYCT can suppress AHR by decreasing

airway inflammation and mucus hypersecretion associated
with TGF-𝛽 secretion. The properties of SFYCT with
anti-inflammation, decreasing airway remodeling, and
inhibiting AHR promise this formula an effective therapeutic
modality for asthma.

Immunoglobulin E (IgE), an important mediator of
allergic reactions, plays a central role in airway inflammation
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Figure 3: The effect of SFYCT on T-cell subsets in BALF of Der p mice. (a) CD3+/CD4+, (b) CD3+/CD8+, and (c) CD4+/CD25+ lymphocyte
levels were determined by flow cytometry with immunofluorescence of monoclonal antibodies. Values represent the means ± SE of 6 mice.
∗

𝑃 < 0.05 compares with Näıve group; #𝑃 < 0.05 compare with Der p group.

and asthma-related symptoms. Anti-IgE therapies have the
potential to block an early step in the allergic cascade [21].
In the serum of Der p mice, high level of Der-p-specific
IgG1 Ab, is associated with a Th2 immune response [30].
By contrast, increasing IgG2a production is considered to
be beneficial for asthma treatment [31]. SFYCT treatment
significantly decreased Der-p-specific IgE and IgG1 but
slightly increased IgG2a/2b in the serum of Der p mice.
These data suggested that the benefit of SFYCT treatment
might be related to inhibiting Th2 response. Furthermore,
Th2 cell play an important role in orchestrating the asthmatic
inflammatory response [32]. The flow cytometry analysis
showed that SFYCT treatment decreased the percentage of
the CD3+/CD4+ T-cell subset in BALF but increased the
CD3+/CD8+ T-cell subset. These data suggested that SFYCT
could modulate the Th-cell differentiation from Th2-cell
dominant to Th1-cell dominant in the airway of chronic
asthmatic mice.

IFN𝛾 is a key cytokine in bridging the innate and the
adaptive arms of the immune system and helps the develop-
ment of aTh1-type response [16]. SFYCT increased the IFN-𝛾
secretion in the BLAF of Der p mice.This immunoregulation
may be more beneficial than Th1 cytokine (IFN-𝛾 and IL-
12) or Th1 adjuvant therapy, which may cause undesirable

inflammation because of higher-than-normal levels of Th1
cytokines [33]. IL-12, produced by antigen-presenting cells,
promotes differentiation of Th1 cells, IFN-𝛾 production, and
inhibits differentiation of Th0 cells into IL-4–secreting Th2
cells [34]. Because SFYCT induced IFN-𝛾 and IL-12 as well
as reduced IL-4 and IL-5 production in BALF, whether this
effect was dependent on IL-12 should be further investigated.

Corticosteroids are the most powerful nonspecific anti-
inflammatory drugs routinely used to treat asthma. How-
ever, it is also well known that corticosteroids produce
overall immune suppression, which results in increased
susceptibility to infections. Corticosteroid immunosuppres-
sion is due to induction of T-lymphocyte apoptosis [6]. In
this study, SFYCT decreased the cell number of macrophage,
neutrophil, and eosinophil but not lymphocyte in BALF of
Der p mice. FASCs results also showed that SFYCT did
not decrease the distribution of CD3+/CD8+ T-cell subset.
These results suggest that SFYCT is not toxic to all lym-
phocytes, especially Th1-related lymphocyte. These findings,
together with SFYCT suppressing Th2 cytokines accompa-
nied with increasing IFN-𝛾 secretion, clearly demonstrate
that SFYCT actions on T cells differ from corticosteroids
and suggest that SFYCT might be of more benefit to asthma
patients.
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Figure 4:The effects of SFYCT on inflammatorymediators in the BALF ofDer pmice.The levels of (a) IL-5, (b) TGF-𝛽, (c) IL-12, (d) IL-13, (e)
IL-17, and (f) IFN-𝛾 were determined by ELISA. Values represent the means ± SE of 6 mice. ∗𝑃 < 0.05 compares with Näıve group; #𝑃 < 0.05
compares with Der p group.

Th2 cytokines play a central role in the pathogenesis of
asthma. IL-4 or IL-13 promotes B-cell switching to IgE pro-
duction andmucus hypersecretion. IL-5 has been shown to be
the primary determinant of eosinophil priming, activation,
recruitment, and survival [15, 16]. Anti-IL-4 or anti-IL-13
receptor antibodies could suppress antigen-inducedAHRbut
not eosinophilic inflammation [35, 36]. AHR is regulated
by integrated IL-13, IL-4, and IL-5 signals [37]. Compared
with the sham treated group, SFYCT treatment decreased

three major Th2 cytokines, IL-4, IL-5, and IL-13, production
in serum or BALF in Der p mice. It seems that SFYCT is
offering advantage over therapeutic administration of single
antibodies against IL-4, IL-5, or IL-13 or their receptors since
natural allergic airway reactions are mediated by a combina-
tion of Th2 cytokines. Furthermore, IL-17 was demonstrated
as indispensable to induce granulocyte influx into the lung
in allergic asthma model [38, 39]. IFN-𝛾 is indicated to limit
the IL-17-producing T-cell population [40]. IL-17 is mainly
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Figure 5: The evaluation of cytokine secretion and the antibody titers from the sera of mice. The effects of SFYCT on IL-4, IL-5 ((a), (b)), or
allergen-specific Ab concentrations (c)–(f) were evaluated at day 3 after the last challenge in the serum of Der p mice. Values represent the
means ± SE of 6 mice. ∗𝑃 < 0.05 compares with Näıve group; #𝑃 < 0.05 compares with Der p group.

produced bymacrophages in allergic inflammation related to
asthma [41].We found that IL-17 production andmacrophage
infiltration were attenuated while IFN-𝛾 production was
increased in SFYCT treated mice.These observations suggest
that SFYCT could limit the IL-17 related immune response by
increasing IFN-𝛾 production.

After asthma attack, Eotaxin and RANTES are chemoat-
tractants for eosinophils [42] while RANTES and MCP-1 are
involved in recruiting monocytes [43, 44] from system to

lung. Asthma-relevant chemokines, mentioned above, have
been targeted by humanized blocking mAb to their receptors
or removal of chemokines via soluble receptors or small
molecule receptor antagonists [44]. Here, SFYCT decreased
the mRNA expression of Eotaxin, RANTES, and MCP-1 in
the lung of Der pmice whichmay contribute to the reduction
in eosinophils and monocyte recruitment in airway.

In conclusion, SFYCT suppressed Der-p-induced air-
way inflammation, remodeling, and hyperresponseness in
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Figure 6:The effects of SFYCT on chemokine expression in the lung of mice.ThemRNA expression of Eotaxin, RANTES, andMCP-1 in the
lung of mice was evaluated by RT-PCR. 𝛽-Actin mRNA expression was included as internal control. (a) shows the representative experiment
and (b) shows the quantification of mRNA levels expressed as mean ± SE (𝑛 = 6 per group). ∗𝑃 < 0.05 compares with Näıve group; #𝑃 < 0.05
compares with Der p group.

chronic asthma murine model. The effect was accompa-
nied by inhibiting Th2 responses and decreasing chemokine
expression but elevating IFN-𝛾 and IL-12 production. This
is the first study of TCM formula, SFYCT, documented that
may attenuate asthma symptoms through skewing Der-p-
induced Th2 responses to Th1 responses by increasing IFN-
𝛾 and IL-12. SFYCT provides more clinical advantages over
corticosteroids for asthma treatments.
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