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Structure of the respiratory MBS complex reveals
iron-sulfur cluster catalyzed sulfane sulfur
reduction in ancient life
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Huilin Li 1✉ & Michael W. W. Adams 2✉

Modern day aerobic respiration in mitochondria involving complex I converts redox energy

into chemical energy and likely evolved from a simple anaerobic system now represented by

hydrogen gas-evolving hydrogenase (MBH) where protons are the terminal electron

acceptor. Here we present the cryo-EM structure of an early ancestor in the evolution of

complex I, the elemental sulfur (S0)-reducing reductase MBS. Three highly conserved protein

loops linking cytoplasmic and membrane domains enable scalable energy conversion in all

three complexes. MBS contains two proton pumps compared to one in MBH and likely

conserves twice the energy. The structure also reveals evolutionary adaptations of MBH that

enabled S0 reduction by MBS catalyzed by a site-differentiated iron-sulfur cluster without

participation of protons or amino acid residues. This is the simplest mechanism proposed for

reduction of inorganic or organic disulfides. It is of fundamental significance in the iron and

sulfur-rich volcanic environments of early earth and possibly the origin of life. MBS provides a

new perspective on the evolution of modern-day respiratory complexes and of catalysis by

biological iron-sulfur clusters.
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Respiratory complexes couple the energy released from
spontaneous electron transfer reactions to the generation of
chemical gradients. From archaea and bacteria to mam-

malian mitochondria, modern-day respiratory complex I contains
a 14-subunit core1–6 that oxidizes NADH, reduces quinone, and
translocates four protons across the membrane, used to drive
ATP synthesis thereby conserving energy7–11. Such complexes
first appeared billions of years ago in an anaerobic environment
where, without oxygen, oxidative microbial metabolism ulti-
mately reduced the ubiquitous proton to produce hydrogen gas
catalyzed by a membrane-bound [NiFe]-hydrogenase (Fig. 1a,
MBH)6,12–15. As the atmosphere became more oxidized, ancestral
MBH evolved to reduce elemental sulfur (S0), now represented by
sulfane sulfur reductase or MBS, and ultimately to reducing
quinone, as in complex I12–15 and related NDH16.

MBH and MBS are found in the anaerobic hyperthermophilic
archaeon Pyrococcus furiosus17, which oxidizes the redox protein
ferredoxin, produces H2S or H2, and conserves energy by
pumping Na+ (Fig. 1a)9,12,18,19. In the presence of S0, the genes
encoding MBS are expressed while those encoding MBH are
repressed19–21, resulting in a microbial cell yield twice that when
cells are grown without S0 9,22, suggesting that MBS is more
efficient in energy conservation although the underlying
mechanism is unknown. MBS reductively cleaves linear poly-
sulfide chains (Sn2−, where n ≥ 4), produced abiotically from the
reaction of H2S and S0 (Eq. 1) in the hydrothermal vent envir-
onments that P. furiosus inhabits, into two shorter polysulfides
(Eq. 2). Further reduction yields unstable di- and trisulfides
(Eq. 3) that spontaneously convert to S0 and H2S (Eq. 4). S–S
bond cleavage by MBS does not involve protons (Eqs. 2 and 3)

236 Å

b

90°

MbsA

MbsE MbsH MbsH' MbsM

MbsJ

MbsN

MbsK MbsL

MbsC
MbsB

MbsD
MbsG

MbsK MbsL

MbsA MbsE
MbsH

MbsH' MbsJ MbsN

178 Å
 1

22
 Å

 1
12

 Å

2-fold

Outside

Inside

Na+

Na+

Glycolysis

Na+

Na+

e– e–

e–

Na+

Na+
HS-

ATP ADP

– S° + S°

c

Outside

180°

MbsHMbsA MbsE MbsH'

MbsK

MbsN

MbsJ

MbsL

MbsM

MbsC
MbsB

MbsD
MbsG

MbsH

helix HL

MbsM

MbsK

MbsN
MbsL

MbsC

MbsB
MbsD

MbsG

MbsA

MbsH'

Cytoplasm

Membrane arm

TM15 TM16

[4Fe-4S] distal (N)

[4Fe-4S] medial (N)

[4Fe-4S] proximal (J)

12.1 (9.0)

13.9 (10.8)

P
er

ip
he

ra
l a

rm

a

MBH MBSATP
Synthase

2H+
Sn-x

2–

Sn
2–

Sn
2–

+ Sx
2–

H2

Fdred

Fig. 1 Overall structure of the P. furiosus MBS complex. a Schematic comparison of P. furiosus MBH and MBS complexes, both generating a Na+ gradient
for ATP synthesis. b Side (left) and top (right) views of the cryo-EM map of the dimeric MBS complex, segmented and colored by subunits. c The front
(left) and back (right) view of the atomic model of an MBS monomeric complex. Individual subunits are colored as in (b). Inset in the right panel: a chain of
three [4Fe-4S] clusters in the peripheral arm, with the center-to-center and edge-to-edge distances (in brackets) between metal sites indicated in Å.
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and H2S is produced abiotically (Eq. 4). Bacterial polysulfide
reductase (PSR, not present in P. furiosus) uses a molybdopterin
cofactor to reductively cleave the terminal sulfur of polysulfides as
H2S (Eq. 5)23,24 so the archaeal MBS must reduce a disulfide
bond by a different mechanism.
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The structure of MBH (298 kDa, 14 subunits) revealed its close
evolutionary relationship with complex I. Although MBH con-
tains a single proton pump compared to four in complex I, they
have the same structural elements thought to enable transduction
of redox energy to an ion gradient6,7,25–27. Herein we describe the
structure of MBS (357 kDa, 13 subunits), the proposed evolu-
tionary link between them9, and how a catalytic site evolved from
reducing protons to reducing large hydrophobic molecules like
Sn2– and cleaving an inorganic sulfur–sulfur bond, a reaction of
high significance in the primordial early earth.

Results
Structure of MBS. We determined the cryo-EM structure of MBS
in a dimer complex form (Fig. 1b, c, Supplementary Fig. 1,
Supplementary Fig. 2, Supplementary Table 1). The atomic model
contained 26 protein subunits and 116 transmembrane helices
(TMHs). The MBS monomer consists of a peripheral cytoplasmic
arm (MbsJ, K, L, and N), anchored to the membrane by MbsM,
and coordinates three [4Fe-4S] clusters that transfer electrons
from ferredoxin to the substrate polysulfide (Fig. 1c)19. The
membrane arm (MbsA, B, C, D, E, G, H, H’ and M) has 58 TMHs
and contains a module proximal to the peripheral arm (proximal
membrane module; MbsH’, MbsH, MbsD, MbsG and TMH1-2 of
MbsE) and a distal membrane module (MbsA, B and C, and
TMH3-6 of MbsE) (Fig. 2a, Supplementary Fig. 3a).

The MBS dimer complex is assembled via extensive contacts at
two main places between the proximal membrane module of one
MBS and the membrane-anchored peripheral module of the other
(Figs. 1b, 2a–c). The first contact involves a long amphipathic
horizontal helix (termed helix HL) of MbsH’ (Fig. 2d): the MbsH’
helix HL of one MBS interacts extensively with the N-terminal
region of MbsN and TMH8 of MbsM in the other MBS, including
several hydrophobic interactions and a salt bridge. The twofold
axis is located between two F566 residues preceding the helix HL
in the two MbsH’ of the MBS dimer complex. The second contact
involves the tryptophan-rich C-terminal extension (W90, W91,
and W94) of MbsD of one MBS projecting into a largely
hydrophobic cleft in the peripheral domain of the other (Fig. 2e).
The distal membrane module is not involved in the MBS dimer
interface and is likely somewhat dynamic, which may explain the
lower local resolution in this region (Supplementary Fig. 1g).

MbsH and MbsH’ each contain a proton pump. In the proximal
membrane module, the two largest subunits MbsH and MbsH’
are of similar fold, consistent with the idea from sequence com-
parison that MbsH’ is a gene-duplication product of MbsH19

(Supplementary Fig. 3b) that occurred prior to the evolution of
MBH and MBS and, as discussed below, during the evolution of

the Na+/H+ Mrp antiporter. MbsH and MbsH’ are homologous
to the antiporter-like subunits of complex I (T. thermophilus
Nqo12, 13 and 14) proposed for H+ pumping1–3,5. MbsH and
MbsH’ each contain two five-TMH repeating units: TMHs 4-8
and TMHs 9-13 that are superimposable when one repeat is
flipped upside down in the membrane (Supplementary Fig. 3b).
Each 5-TMH unit features a discontinuous α-helix—TMH7 in the
first repeat and TMH12 in the second repeat with conserved
charged residues around the helical kink: E219 and K393 in
MbsH, and K217 and K399 in MbsH’. Notably, the arrangement
between MbsH and MbsH’ as a unit is strikingly similar to Nqo13
and Nqo14 of T. thermophilus complex I (Fig. 3a, b). As a result, a
central charged axis across MbsH and MbsH’ (MbsH E138, K250,
and H330; MbsH’ E128, K248, and H336) is formed that is
conserved in complex I (Fig. 3c). These features are characteristic
of the proton pumps that are found in mammalian and bacterial
forms of complex I, which have been supported by structural
studies, mutagenesis analysis, and recent molecular dynamics
simulations1–3,28–30. We therefore propose that MbsH and
MbsH’ each contains a H+ pump in MBS.

Interestingly, MbsH’ contains two extra TMHs (TMH15 and
TMH16) that are connected by a long intervening loop
(LoopTMH15-16) and the horizontal helix HL. The helix HL and
its following TMH16 holds MbsH and MbsH’ together. This
element is conserved across the different respiratory complexes,
with the helix HL either shortened in MBH (with one antiporter-
like subunit MbhH) or elongated in complex I (with three
antiporter-like subunits) (Fig. 3a, b, Supplementary Fig. 4a),
strongly supporting the modular evolution of these respiratory
machineries31. Notably, LoopTMH15-16 and TMH15 of the C-
terminal end of MbsH’ tie together the membrane-anchored
peripheral module and the proton-pumping module (Supplemen-
tary Fig. 4a). This organization mode is conserved in the MBH
complex, though MbsM and MbsH’ form a tighter interacting
interface than the lipid-filled wide cleft between MbhM and
MbhH in the MBH complex (Supplementary Fig. 4b)6. In
contrast, in complex I, the membrane-anchored peripheral
module is located on the opposite side of the membrane arm
(Fig. 3a). However, in spite of this different architecture, a charged
axis within the membrane-anchored peripheral arm (MbsM E203,
E211, D196, E193, and E104) extends continuously into the
proton-pumping module (MbsH and MbsH’) (Fig. 3c), similar to
that proposed in complex I for energy transduction1–3,32.

The tentative Na+/H+ antiporter module. Except for MbsH and
MbsH’, the remainder of the proximal membrane module of MBS
is composed of two layers of helix bundles next to MbsH: one
layer composed of three TMHs of MbsD and the other layer
composed of five TMHs—TMH1-2 of MbsE separated by TMH1-
3 of MbsG in the middle (Supplementary Fig. 3a). This sub-
region together with MbsH is conserved among MBH and
complex I including key elements: charged residues E58 in MbsD,
E37 in MbsG, and a π-bulge distortion in TMH3 of MbsD
(Supplementary Fig. 4a and c). These are key features proposed
for proton transfer that are conserved in Nqo10 and 11 in
complex I and also in MbhD, G and E in MBH2,3,6,33, although
the precise mechanism is still under debate1,2,33. This suggests a
putative proton translocation path, termed Pc path for composite
proton translocator. We note that the assignment of the Pc
proton path is based on structural conservation among MBH,
MBS, and complex I, and therefore, this path is tentative. The
translocation stoichiometry of the H+ and Na+ is currently
unknown and has yet to be experimentally determined with either
Mrp, MBH, or MBS. The stoichiometry will help to determine if
Pc is a functional proton path.
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In the distal membrane module of MBS, MbsA at the far end
contains two TMHs and a following ferredoxin-like domain and
binds to the three 3-TMH subunits MbsB, C, and TMH3-6 of
MbsE, which in turn are attached to MbsD of the proximal
membrane module (Supplementary Fig. 3a). Notably, MbsB, C,
and E contain three conserved regions that are rich in charged/
polar residues and run across the interior of the membrane arm
(Supplementary Fig. 4e). In addition, the conserved MbsC P83
introduces a break in the middle of the membrane of MbsC
TMH3. These features are conserved in the Na+-translocation

path in MBH and in Mrp, but not in complex I as complex I does
not translocate Na+ ions (Fig. 3a, Supplementary Fig. 4d)6,34.
This suggests a Na+-translocation path within this sub-region.
This together with the adjacent H+ path (Pc) likely forms the
Na+/H+ antiporter module in the distal end of the membrane
arm (Fig. 3c).

During the review of this manuscript, the structure of Mrp
antiporter was published35. The structure enables a comparison
between MBS and Mrp to obtain direct evolutionary insights
between them (Fig. 4a). All subunits of the Mrp Na+/H+
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antiporter have homologous counterparts in MBS (Supplemen-
tary Table 2). Consequently, the MBS membrane arm (excluding
MbsM, which anchors the peripheral arm) shares a conserved
architecture with Mrp (Fig. 4a). It is clear that the Mrp structure
lacks the membrane-anchored peripheral arm and supports the
modular evolution of respiratory complexes31. The emergence of
MBS and MBH was likely a result of the combination of the Mrp
antiporter and a peripheral module related to a cytoplasmic
[NiFe] hydrogenase. MBH exhibits loss of the MrpA homolog
resulting in fewer proton pumps while its peripheral arm retains
the proton reduction activity. In contrast, MBS keeps all the Mrp
homologs while its peripheral arm shows concomitant changes in
the peripheral module to enable catalysis of the reduction of
polysulfide rather than protons (Fig. 4b). Conceivably, both MBS
and MBH are much more efficient in energy conservation as the

redox reaction is now physically coupled with the ion transloca-
tion across the membrane.

A three-loop system bridges the electron transfer site and the
ion-pumping membrane arm. The architecture of the MBS
cytoplasmic module closely resembles those of MBH and complex
I (Supplementary Fig. 5). In MBS, a large hydrophobic chamber,
similar in size to those in MBH and complex I, is formed by
cytoplasmic MbsL, MbsJ, and their membrane anchor MbsM
(Figs. 5a–c, 6a). The openings of the MBS and complex I
hydrophobic chamber are wider than that of MBH allowing entry
of hydrophobic substrates (polysulfide and quinone; Fig. 5d). The
end of this chamber in MBS coincides with the binding site of the
quinone headgroup defined by Nqo4 H38 and Y87 in complex I
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(Fig. 5e)1. However, these two residues for quinone headgroup
binding and also for protonation in complex I are absent in MBS
(Fig. 5f). Moreover, MbhL E21, the key residue for proton
reduction in the MBH complex, is also absent in MBS6. These
suggest a unique catalytic mechanism for MBS despite similar
modular overall architecture, as we will cover in the next section.

This hydrophobic chamber containing the catalytic site of MBS
in the peripheral arm is defined by three loops originating from
MbsH’ (loopTMH15-16, now termed Loop 1), MbsL (loopβ1–β2,
Loop 2), and MbsM (loopTMH5-6, Loop 3) (Fig. 6b). The three-
loop cluster connects the electron-transferring peripheral arm to
the ion-pumping membrane arm and is strikingly similar in the
three complexes (Fig. 6b)1–3,6. In MBS, Loop 1 via TM15 and
TM16 of MbsH’ connects to its horizontal helix HL that spans
two proton pumps (MbsH and MbsH’) (Supplementary Fig. 4a).
Similarly in MBH, Loop 1 connects TM1 and TM2 of MbhI to its
shorter helix HL that spans a single proton pump (MbhH). In
complex I, Loop 1 and its preceding TM1 of Nqo7 locate the
conserved membrane-anchored peripheral module to a different
site of the membrane arm via TM2-3 of Nqo7 while the much
longer helix HL of Nqo15 that spans three proton pumps (Nqo12,
13, and 14) is similar to MBS and MBH (Supplementary Fig. 4a).

A central charged axis in MBS extending from the three loops
across the membrane arm in parallel to helix HL is also found in
both complex I and MBH (Figs. 3c, 6c)1–3,6,32. Clearly, the
structural elements in MBH and complex I necessary for energy
conservation are maintained in MBS. Therefore, we suggest that
Loop1 and its preceding TM are a key structural feature that has
been conserved across evolution in order to sustain the
fundamental function of coupling the redox reaction in the
peripheral arm with ion translocation in the membrane arm.

The peripheral arm of MBS contains a uniquely coordinated
[4Fe-4S] cluster. In MBS, the three [4Fe-4S] clusters form an
efficient electron transfer pathway to the chamber from Fd
(Fig. 1c inset)36. MbsN coordinates the distal and the medial
[4Fe-4S] clusters (relative to the catalytic chamber; Supplemen-
tary Fig. 6a). The proximal (p-)[4Fe-4S] cluster in MBS and
complex I is at the top of the hydrophobic chamber (Supple-
mentary Fig. 6b) but, in stark contrast to that in complex I (and
MBH), the MBS p-[4Fe-4S] is coordinated by only three rather
than the expected four cysteines (C28, C93 and C123 of MbsJ;
Fig. 6d).
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the MBS structure (see inset panel to the right). b A possible evolutionary pathway from Mrp to MBH and to MBS. Mrp antiporter: PDB ID 6Z16;
cytoplasmic [NiFe] hydrogenase: PDB ID 2FRV; MBH: PDB ID 6CFW. The question mark above the proton path in each antiporter module indicates the
tentative nature of the assignment. Shown above the MBH and MBS structures are the reductive reactions that they catalyze and the associated free
energy changes. Located around each complex is the respective modular architectures of the Mrp-derived respiratory complexes. These modules are: Na
(green), sodium ion path; P (blue and purple), H+ path(s) formed within a single subunit; Pc (cyan), composite H+ path formed by multiple small subunits;
A (orange), membrane anchor for the peripheral arm; H (turquoise), peripheral arm for proton reduction; S (turquoise), peripheral arm for polysulfide
reduction.
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The different functions of the p-[4Fe-4S] clusters in these
enzymes (Fig. 5b) are determined by a conserved structural motif
containing a short N-terminal α-helix, a β-strand, a variable loop
with two cysteines and another short α-helix (in MbsJ for MBS
complex) (Supplementary Fig. 6b, c). In MBH and cytosolic
[NiFe] hydrogenases6,37, the two cysteines are two residues apart
and ideally positioned to both coordinate the proximal cluster,
which donates electrons to the NiFe-catalytic site. In complex I,
the two cysteines (C45 and C46 in Nqo6) are adjacent to
each other enabling sequential dissociation upon proximal
cluster reduction, which has been proposed to facilitate electron
and proton transfer to the quinone although this is under

debate16,38,39. In MBS, this structural motif is three residues
shorter than it is in MBH, leaving one of the cysteines (MbsJ C25)
no longer able to participate in cluster coordination (Fig. 6d,
Supplementary Fig. 6c). Hence, one iron atom of the p-4Fe-4S]
cluster in MBS has non-cysteinyl coordination (Supplementary
Fig. 2j) and therefore catalytic potential. Besides the three [4Fe-
4S] clusters, MBH has an additional proton-reducing [NiFe]-site,
which is coordinated by four cysteines of MbhL (Supplementary
Fig. 6d)6,40. Of these four cysteines, two are not present in MBS,
leaving the two conserved residues (C85 and C385 in MbsL)
adjacent to the proximal cluster (Fig. 7a). Complex I has lost all
four, supporting the stepwise evolution of MBS and complex I by
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sequential loss of the four cysteines coordinating the [NiFe]
center in MBH31,41.

In MBS, two potential polysulfide-reducing sites are close
(~12 Å) to the p-[4Fe-4S] cluster: MbsJ C25 and MbsL C85/
C385 (Fig. 7a). However, they are not involved in catalysis as
the C25A MbsJ and the C85A/C385A MbsL mutant enzymes
had comparable catalytic activities using the model substrate
dimethyltrisulfide (DMTS) to that of the wild-type (WT)
enzyme (1.8 ± 0.4 units/mg) (Fig. 7b). Cluster interconversion
was used to provide evidence that the p-[4Fe-4S] cluster of MBS
is itself reducing polysulfide, and doing so with a specific role
for its unique non-cysteinyl coordinated Fe atom. The WT-
enzyme was treated with potassium ferricyanide, a well-
established procedure to remove non-cysteinyl coordinated Fe
atom from an [4Fe-4S] cluster to generate a [3Fe-4S] cluster21.
This caused an ~98% loss of activity (Fig. 7b). Subsequently
incubating the enzyme under reducing conditions with ferrous
iron, conditions that are known to restore the [4Fe-4S] cluster

from a [3Fe-4S] cluster, the MBS activity was restored to its
original value (Fig. 7b).

Further evidence for the proposed catalytic p-[4Fe-4S] cluster
came from EPR spectroscopy. MBS from S0-grown cells gave rise
to an intense free-radical EPR signal (g= 2.00) unaffected by
chemical reduction (Supplementary Fig. 7a) but this was a
purification artifact because the enzyme from non-S0 grown cells
(in which transcription of the genes encoding MBS was controlled
by a non-regulated promoter) did not exhibit this EPR signal
(Supplementary Fig. 7b). Chemical reduction of MBS did lead to
the appearance of a broad EPR signal (g ~ 1.94), consistent with
three interacting and reduced [4Fe-4S] clusters (Supplementary
Fig. 7b). After treatment with excess ferricyanide, the inactive
enzyme (Fig. 7b) exhibited a complex EPR signal indicative of an
oxidized S= 1/2 [3Fe-4S]+ cluster (g= 2.09, Supplementary
Fig. 7c)21, supporting the conclusion that the p-[4Fe-4S] cluster
is catalytic and that activity is reversibly lost upon removal of its
unique iron. Importantly, chemically reduced P. furiosus MBH
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gave rise to an EPR signal (Supplementary Fig. 7d) similar to that
of reduced MBS (Supplementary Fig. 7b), but when treated with
ferricyanide under the same conditions used for MBS, no activity
was lost and the MBH sample was EPR silent, consistent with the
presence of only oxidized [4Fe-4S] clusters (Supplementary
Fig. 7e). Unlike MBS, the p-[4Fe-4S] cluster of MBH is only
involved in electron transfer and has full cysteinyl coordination,
hence it is not susceptible to inactivation due to iron loss and
oxidative cluster conversion.

The proximal [4Fe-4S] cluster uses a novel, ancestral
mechanism for sulfur reduction. The reduction of polysulfide by
the p-[4Fe-4S] cluster in the hydrophobic pocket of MBS (Fig. 7a)
is the first example in a biological system of reduction of an
inorganic disulfide bond without the release of H2S (Eqs. 2 and 3,
c.f. Eq. 5). Three types of enzymes use iron–sulfur clusters to
indirectly facilitate disulfide bond cleavage; heterodisulfide reduc-
tase42, hydrogenase processing protein HydD43, and ferredoxin
thioredoxin reductase (FTR)44. Based in part on FTR, we propose a
new mechanism for the reduction of an internal disulfide (which
could be either inorganic or organic) by MBS (Fig. 7c). The unique
Fe atom of its p-[4Fe-4S]2+ cluster binds polysulfide (Sn2−),
accepts an electron from the medial (m-)[4Fe-4S]1+ cluster
(Fig. 1c) and catalyzes the two-electron reduction of an internal
disulfide, generating two smaller polysulfides (Sn-x2- and Sx2-) and
the superoxidized form of p-[4Fe-4S]3+. As in FTR, the reduction
of the p-[4Fe-4S]2+ cluster actually leads to its superoxidation
because two electrons are used to reduce the disulfide. Moreover,
the cluster must be in the 3+ (rather than 2+) state to bind the two
product polysulfides at the unique Fe site (Fig. 7c). The catalytic
cycle is completed by reduction of p-[4Fe-4S]3+ by a second
electron from m-[4Fe-4S]1+ (after its reduction by the distal [4Fe-
4S]1+ cluster) and release of the two smaller polysulfides. This is
the simplest mechanism yet proposed for the reduction of an S–S
bond in either an inorganic or organic sulfide and is the first not
requiring either protons or amino acid residues42–44. This reaction
is clearly of fundamental significance in iron and sulfur-rich
hydrothermal vent environments of the early earth and possibly in
the origin of early life21, as well as in the subsequent evolution and
expansion of iron–sulfur cluster functionality in the diverse array
of modern-day iron–sulfur proteins22,45.

That catalysis by MBS does not require water or protons
(Fig. 7c) is consistent with a highly hydrophobic pocket and the
absence in MbsL of the well-defined proton transfer pathway to
the NiFe site found in MbhL and other hydrogenases6. The
requirement for binding two polysulfides (Fig. 7b) is super-
oxidation of the p-[4Fe-4S] cluster (3+), which is facilitated by
the hydrophobic site, analogous to superoxidation of hydro-
phobic [4Fe-4S] clusters in high potential iron–sulfur proteins
(HiPIPs)46. The spontaneous breakdown of tri- and disulfides to
release H2S does require protons (Eq. 4) and must occur in the
cytoplasm rather than the hydrophobic catalytic site (Fig. 7c). The
di- and trisulfides produced by MBS do not generate H2S (or
HS−), are stable in the hydrophobic pocket (where there are no
protons or water), and H2S is only generated when they are
released from the enzyme (Fig. 7c).

Discussion
The standard state ΔG (pH 7.0) of the electron transfer reactions
for MBS (41 kJ/mol/2e−) is more than twice that available to

MBH (12 kJ/mol/2e−), and half of that available to complex I
(81 kJ/mol/2e−)9, consistent with the pumping of two, one and
four protons, respectively1,2,7,8,47. The MBS structure confirms
that the transduction of redox energy into the spatially separated
translocation of ions involves the three-loop cluster1–3,31,48 and a
central charged axis1–3,7,32 (Fig. 6b, c), all highly conserved across
evolution. The proposed MBS mechanism also shows that there
are key fundamental differences in spite of a common overall
means of energy transduction. In MBS, oxidation of the reduced
m-[4Fe-4S]1+ cluster leads to superoxidation of the oxidized p-
[4Fe-4S]2+ cluster (2+/3+ redox couple) but in MBH and com-
plex I to reduction of the oxidized p-[4Fe-4S]1+ cluster (2+/1+

redox couple; Fig. 7c). Hence the loss of the NiFe site of an
ancestral MBH through evolution generated a highly hydrophobic
cavity enabling both MBS and complex I to use the p-[4Fe-4S]
cluster to directly interact with and reduce hydrophobic sub-
strates, albeit using different charge states of the cluster (Fig. 7d).

It is not clear how a change in the redox status of the m-[4Fe-
4S] cluster is ultimately coupled to a change in the dynamics of
the three-loop cluster, nor how the different amounts of free
energy released (12–81 kJ/mol/2e−) lead to corresponding dif-
ferences in the proton motive force that is generated (1–4 pro-
tons). It is interesting to speculate that MBS might conserve more
(or less energy) if one proton pump (MbsH’ or equivalent, see
Fig. 3c) were added (or inactivated, by mutagenesis) and that the
cell yield of P. furiosus growing on S0 would be correspondingly
higher (or lower). Such experiments are in progress. On a more
fundamental level, the question yet to be answered is, as illu-
strated in Fig. 7d, how does m-[4Fe-4S]1+ oxidation coupled to a
change in the conformation of the three-loop cluster lead to the
conservation of different quantities of energy in these three types
of the respiratory complex? In any event, the simple aprotic and
abiotic catalytic mechanism of S–S bond reduction by MBS might
be a modern remnant of an iron–sulfur world21 as well as the
precursor to more complex mechanisms involving iron–sulfur
clusters42–44 and those now found in the aerobic world, such as
the reduction of quinones by complex I.

Methods
Purification of MBS. The MBS holoenzyme (S-MBS) was solubilized and purified
anaerobically from Pyrococcus furiosus strain MW0491, in which a His9-tag had
been engineered at the N terminus of the MbhJ subunit19. Frozen cells were lysed
in 25 mM sodium phosphate, pH 7.5, containing 1 mM DTT and 50 μg/ml DNase I
(5 mL per gram of frozen cells). After stirring for one hour, the cell-free extract was
centrifuged at 100,000 × g for one hour. The supernatant was removed and the
membranes were washed twice using 50 mM EPPS buffer, pH 8.0, containing
5 mM MgCl2, 50 mM NaCl, 10% (v/v) glycerol, 1 mM DTT, and 0.1 mM PMSF.
The membrane pellet was collected by ultracentrifugation at 100,000 × g for one
hour after each wash step. The washed membranes were resuspended in 50 mM
Tris-HCl, pH 8.0, containing 5 mM MgCl2, 50 mM NaCl, 5% (v/v) glycerol, 1 mM
DTT, and 0.1 mM PMSF. MBS was solubilized by adding n-dodecyl-β-D-maltoside
(DDM, Inalco) to 3% (w/v) followed by incubation at 4 °C for 16 hours. The
solubilized membranes were centrifuged at 100,000 × g for 1 h. The supernatant
was applied to a 5 mL His-Trap crude FF Ni-NTA column (GE Healthcare) while
diluting it 10-fold with buffer A (25 mM sodium phosphate, 300 mM NaCl, pH 7.5,
containing 1 mM DTT and 0.03% DDM). The column was washed with 10 column
volumes of buffer A and the bound protein was eluted with a 20-column volume
gradient from 0 to 100% buffer B (buffer A containing 500 mM imidazole). The
eluted protein was further purified by applying it to a 1-mL His-Trap HP Ni-NTA
column (GE Healthcare) while diluting it 5-fold with buffer A. A 30-column
volume gradient from 0 to 100% buffer B was used to elute the bound protein. The
MBS sample was concentrated and further purified using a Superose 6 10/300 GL
column (GE Healthcare) equilibrated with 50 mM Tris-HCl, pH 8.2, containing
300 mM NaCl, 2 mM sodium dithionite, and 0.03% DDM.

Fig. 7 MBS catalyzed polysulfide reduction mechanism. a Cysteine residues within electron tunneling distance of the proximal [4Fe-4S] cluster.
b Polysulfide reduction activity assay of purified WT and mutant C-MBS subcomplexes, demonstrating that MbsJ C25 and MbsL C85 and C385 are
not involved in catalysis. Error bars are centered from the average value and represent standard deviation obtained using technical triplicate samples.
c Proposed catalytic mechanism of polysulfide reduction for the MBS complex. d A sketch summarizing energy transduction in complex I, MBH, and MBS.
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P. furiosus strain construction. The strains used in this study are summarized in
Supplementary Table 3. The genetically tractable P. furiosus strain COM1 was used
for the genetic manipulation of MBS49. An insertion cassette was amplified using
overlapping PCR50. The upstream flanking region (UFR), which also contained the
selection marker (Pgdh-pyrF) and the promoter of the gene encoding the S-layer
protein (Pslp), and the downstream flanking region (DFR), were amplified from
MW0567 gDNA. Mutagenesis was carried out using site-directed mutagenesis,
with primers designed to amplify the MbsJC25A mutation. The primers used are
listed in Supplementary Table 4. The fragments were assembled using overlapping
PCR and the insertion cassette was transformed into the intergenic space between
PF0265 and PF0266 of MW0011. The transformants were grown as previously
described49 and the PCR-confirmed colonies were sequence verified using Sanger
sequencing (Genewiz).

Purification of C-MBS, activity assays, and EPR methods. The three C-MBS
subcomplexes (WT, MbsLC85A/C385A, MbsJC25A) were purified anaerobically as
described previously19. Frozen cells were lysed in 25mM sodium phosphate, pH 7.5,
containing 1mM DTT and 50 µg/µL DNase I (5 mL per gram of frozen cells). After
stirring for one hour, the cell-free extract was centrifuged at 100,000 × g for one
hour. The supernatant was applied directly to a 5 mL His-Trap FF Ni-NTA column
(GE Healthcare) by diluting it 10-fold with 25mM sodium phosphate, pH 7.5
containing 300mM NaCl and 1 mM DTT (Buffer C). The column was equilibrated
with Buffer C before loading the sample. The column was washed with 5 column
volumes of Buffer C and the bound protein was eluted with a 20-column volume
gradient from 0 to 100% Buffer D (Buffer C containing 500mM imidazole).

All activity assays were carried out at 80 °C using anaerobic sealed cuvettes as
described previously19. The dimethyl trisulfide (DMTS) reduction assay used a
2 mL reaction mixture containing 100 mM 3-(N-morpholino) propanesulfonic acid
(MOPS), pH 7.5, and 150 mM NaCl. After pre-heating to 80 °C, 1 mM methyl
viologen reduced by titanium citrate and 2 mM DMTS were added and the reaction
was initiated by the addition of enzyme. For inactivation by cluster conversion, the
enzyme (2 mg/mL in 25 mM sodium phosphate, pH 7.5) was incubated
anaerobically with potassium ferricyanide (1 mM) for ~90 h at room temperature.
The sample was then buffer exchanged to remove excess ferricyanide before
measuring activity. To activate the enzyme, a mixture of sodium dithionite (1 mM)
and FeCl3 (1 mM) were added and after ~90 h at room temperature, the sample
was buffer exchanged to remove the excess reagent. Enzyme activity was measured
by the reduction of DMTS by monitoring the oxidation of methyl viologen at
600 nm (ε= 8.25 mM−1 cm−1) as previously described19. One unit of activity is
defined as 1 µmol of DMTS reduced per min.

All samples for spectroscopic studies were prepared under strictly anaerobic
conditions. X-band (~9.6 GHz) EPR spectra were recorded using a Bruker
EMXplus CW EPR spectrometer controlled with a Bruker PremiumX Ultra low
noise microwave bridge, equipped with a cryogen-free ColdEdge stinger system
and a Lakeshore temperature controller.

Cryo-EM analysis and data acquisition. MBS was purified using detergent DDM
and was concentrated to ~5mg/ml. Cryo-EM grids were prepared under the aerobic
conditions and the processes took 20–30min (MBS in air has a half-life of 19 h19). In
brief, three-microliter aliquots of the sample were applied to glow-discharged
Quantfoil R 1.2/1.3 gold grids (300 mesh). The grids were blotted for 3 s at 10 °C with
100% humidity and were flash-frozen in liquid ethane using an FEI Vitrobot Mark IV
device. Cryo-EM data were recorded on a K2 camera positioned post a GIF quantum
energy filter in a 300 kV FEI Titan Krios electron microscopy. Two datasets were
automatically collected with Serial EM 3.7beta and FEI EPU software package,
respectively, containing 8352 and 6355 movies respectively. Micrographs were
recorded in counting mode at a nominal magnification of 130,000× with a pixel size
of 1.03 Å on sample. Defocus values varied from−1.1 to−3 μm. The dose rate was 10
electrons per pixel per second. A total exposure of 6 s was dose-fractionated into
30 sub-frames, resulting in a total accumulated dose of 52 electrons per Å2.

Image processing. The two datasets collected on Titan Krios were processed using
a similar strategy. Dose-fractionated movies with a physical pixel size of 1.03 Å
were motion-corrected and dose-weighted with MotionCor2 1.151,52. The contrast
transfer function (CTF) parameter for individual micrograph was estimated by
CTFFIND4.1.1053. Further processing steps were carried out using RELION-3.054.
For each dataset, a small set of particles were manually picked and were subjected
to 2D classification. This generated templates for further reference-based automatic
particle picking. Particle sorting and reference-free 2D classification were applied to
the auto-picked particles for the removal of bad particles, resulting in 676,320 and
667,428 particles from the two respective datasets. The further 3D classification was
performed on these cleaned-up particles using an ab initio map generated by
cryoSPARC v2 as the initial model55. For each dataset, three of four 3D classes were
combined to get 467,320 and 419,868 good particles, respectively. Those were
subjected to another round of 3D classification. One 3D class from each dataset
with the best density features were combined. The combined dataset (203,673
particles) were used for 3D auto-refinement following CTF refinement, resulting in
a map with an overall resolution of 4.0 Å when twofold symmetry was applied.
We note that most regions, particularly in the peripheral arm and the proximal

membrane module, are of substantially better resolution in the range of 3.0–3.5 Å.
Some strategies including applying C1 symmetry, masking out detergent micelle or
expanding the symmetry failed to improve the map. We therefore reasoned that the
low overall resolution (4 Å) may be due to the partially flexible distal membrane
region. The resolution of the reconstructed map was estimated based on the gold-
standard Fourier shell correlation 0.143 criterion56. The final map was corrected for
the modulation transfer function of the detector and sharpened by applying a
negative B-factor, estimated by the post-processing procedure in RELION-3.0. The
estimate of Local resolution distribution was calculated using ResMap 1.1.557.

Model building and refinement. The initial models of the distal module (MbsA-C,
MbsE TMH3-6) and membrane-anchored hydrogenase module (MbsJ-N) were
generated with the SWISS-MODEL server58 using the structure of P. furiosus MBH
complex (PDB ID 6CFW) as the template. The initial model of the proximal module
(MbsD, MbsE TMH3-6, MbsG, MbsH, and MbsH’) were generated using the
structure of T. thermophilus complex I as a template (PDB ID 4HEA). These models
were individually rigid-body docked into the 3D density map using the Fit-in-map
function in Chimera 1.859. These fitted models were improved by manual adjust-
ments and rebuilding in Coot 0.8.960. The rebuilding process was aided by the good
density features of α helices and many bulky residues such as Phe, Trp, Tyr, and
Arg. The clusters within the peripheral arm were modeled based on their electron
densities and also the homology of cluster-coordinating subunits with complex I
and MBH. The real-space refinement of the MBS complex model against the cryo-
EM map was performed using the phenix.real_space_refine in PHENIX 1.1561.
MolProbity 4.1 (Duke University) was used to assess the final model62. Chimera and
PyMOL 1.8 (Schrödinger, LLC.) were used to prepare the Figures. Statistics of the
3D reconstruction and model refinement were provided in Supplementary Table 1.
Since all the subunits of Mrp antiporters have their counterparts in MBS (Supple-
mentary Table 2), the structure of B. subtilis Mrp antiporter was modeled based on
the MBS structure using the SWISS-MODEL server58.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The accession number for the atomic coordinates reported in this paper is PDB ID 6U8Y.
The accession number for the EM density map reported in this paper is EMD-20692.
Source data are provided with this paper. Other data are available from the
corresponding authors upon reasonable request. Source data are provided with
this paper.
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