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A B S T R A C T   

With the rapidly increasing number of patients with chronic disease, numerous recent studies have put great 
efforts into achieving long-term health monitoring and patient management. Specifically, chronic diseases 
including cardiovascular disease, chronic respiratory disease and brain disease can threaten patients’ health 
conditions over a long period of time, thus effecting their daily lives. Vital health parameters, such as heart rate, 
respiratory rate, SpO2 and blood pressure, are closely associated with patientsâ€™ conditions. Wearable devices 
and unobtrusive sensing technologies can detect such parameters in a convenient way and provide timely pre
dictions on health condition deterioration by tracking these biomedical signals and health parameters. In this 
paper, we review current advancements in wearable devices and unobtrusive sensing technologies that can 
provides possible tools and technological supports for chronic disease management. Current challenges and 
future directions of related techniques are addressed accordingly.   

1. Introduction 

Chronic disease is the world’s leading cause of death, accounting for 
over 60% of all-cause deaths globally [1]. The most common chronic 
diseases include cardiovascular diseases, diabetes, hypertension, stroke 
and chronic respiratory disease, affecting the patient physically and 
mentally [2]. More specifically, 17.9 million people die each year due to 
cardiovascular diseases according to reported data from the World 
Health Organization (WHO); this represents approximately 31% of all 
deaths worldwide. 235 million people suffer from asthma, a common 
chronic respiratory disease among children. Hypertension, also called 
high blood pressure, is another lifelong disease that can lead to severe 
health complications (such as heart disease and stroke) if not properly 
managed. In addition to the direct influences of symptoms, the chronic 
diseases also reduce human immunity. People with chronic diseases are 
fragile to the infectious diseases, leading to more serious comorbidities 
and complications. The current coronavirus disease-2019 (COVID-19) 
pandemic is a typical example. Due to its rapid and explosive spread 
across the globe, COVID-19 has become a severe public health issue, 

infecting more than 1.5 million people across 210 countries. One study 
has shown that 48% of COVID-19 patients have pre-existing chronic 
diseases and are more prone to present severe symptoms. Accordingly, 
chronic patients need to take extra precautions, including special 
attention to those specific organs or tissues already in a state of 
dysfunction. 

Since the situation of patients with chronic diseases may worsen 
suddenly and improve only slowly, long-term health management and 
monitoring of disease is an effective and necessary approach. Key 
physiological parameters (e.g., ECG, RR, SpO2, BP, etc.) are the most 
essential indicators for evaluating the state of an illness for those chronic 
diseases in clinical applications, allowing for early diagnoses of sus
pected cases and providing treatment guidance for doctors. However, it 
is impossible for patients to receive treatments in hospital over long 
periods due to the high cost of medical treatment. In response, the ideal 
scenario is that the physiological parameters of patients can be moni
tored during their daily activities and transferred to data centers that 
doctors can access through remote monitoring techniques. However, 
current remote monitoring using telecommunications technology is of 
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limited value when measuring disease progress, as it lacks the important 
physiological indicators for severity evaluation. Therefore, the use of 
wearable and unobtrusive monitoring devices, as an important tool to 
monitor physiological signals in daily life, are necessary for chronic 
patients to prevent significant deterioration and return to normal life. 

Fortunately, the development of wearable and unobtrusive moni
toring devices offers a promising solution. In recent years, numerous 
commercial products have been developed for the monitoring of phys
iological indicators during daily activities. HeartGuide [4] is the first 
wearable blood pressure monitor, and has received 510 K FDA clearance 
as a medical device. It can check BP values through an extra-stiff band 
that inflates to take an oscillometric measurement [5]. The 
FDA-approved ZIO patch is an effective wearable patch device for the 
long-term monitoring of ECG in a comfortable manner and is verified to 
be better at diagnosing arrhythmias than the Holter monitor [6]. Its 
design features no wires, batteries or leads, making it more favored to 
patients. Remote monitoring using wearable and unobtrusive devices 
can provide early predictions, continuous monitoring and remote 
diagnosis of chronic diseases in various real-world scenarios. These 
technologies are convenient to use, with low-cost and minimal inter
ference, and are suitable for large-scale monitoring. Personal data, 
including all essential physiological parameters, can be monitored 
effectively, meaning that these technologies can be deployed across 
almost every application scenario. 

The purpose of this study is to review advanced wearable and un
obtrusive monitoring technologies for possible applications in remote 
diagnosis of chronic disease. The structure of this review paper is 
organized as follows: Section II introduces the wearable devices. Section 
III describes the unobtrusive monitoring techniques. Section IV lists 
existing research on early warning and dysfunction detection. Section V 
discusses challenges and future directions for the development of 
monitoring techniques. 

2. Wearable techniques 

Wearable techniques are especially suitable for the long-term 
monitoring of physiological conditions in chronic patients due to their 
inherent ease of use and low cost [7,8]. A considerable number of 
wearable devices have been developed and validated for the monitoring 
of nearly every kind of vital physiological information. According to the 
studies on home care for patients with chronic diseases, wearable de
vices can be used for detecting several commonly observed symptoms 
and signs of deterioration, including the monitoring of cardiovascular 
functions and respiration as an urgent need [9,10]. In the case of pa
tients with arrhythmia, heart failure and other cardiovascular disease, 
online analysis of ECG can monitor the conditions of patients. For 
example, wearable ECG watches can automatically detect the onset of 
atrial fibrillation disease [11]. Breathing rate is an important physio
logical index for detecting chronic respiratory diseases. Once respiration 
monitoring devices detect abnormal conditions (such as a high or low 
breathing rate), they trigger a warning that can remind patients to avoid 
accidents directly and indirectly caused by the disease [12]. The various 
applications of these wearable devices show promise in greatly reducing 
the pressure of patients and their families from sudden deterioration of 
diseases. Our review in this section will illustrate how far modern 
wearable techniques have come and their potential contributions to 
practical use. An overview of the techniques involved is given in Fig. 1. 

2.1. Wearable devices for monitoring of cardiovascular functions 

Cardiovascular diseases, such as coronary heart disease and heart 
failure, have a high mortality rate and may easily become chronic due to 
the difficulty of radical treatment, causing serious economic and psy
chological burdens for patients [13]. Cardiovascular functions are vital 
physiological indicators of body conditions and have very close con
nections with symptoms of chronic cardiovascular diseases. As a result, 

wearable techniques for cardiovascular monitoring have been research 
hotspots in research for decades. Numerous wearable devices and al
gorithms have been developed and deployed into the consumer market. 
The primary clinical indexes, such as heart rate (HR) and heart rate 
variability (HRV), can be monitored directly using these devices. Other 
vital features like BP, oxygen saturation of blood (SpO2) and blood 
glucose can be derived through indirect measurement and machine 
learning involved physiological modeling. Early warning and detection 
of cardiac dysfunction based on these extracted indicators may also 
contribute to clinical decision-making for diagnosis and treatment. 

2.1.1. Measurement 
Electrocardiography (ECG) is widely considered the gold standard 

for heart monitoring. It consists of a projection of cardiac electric ac
tivities on the body’s surface, measured by the electrical potential dif
ference between two distant points. Many previous studies have proven 
the robustness of ECG measurements from the torso area, using either 
chest bands [14] or vests (singlets) [15,16] to attach the electrodes to 
the skin tightly and comfortably, in both adults and children [7]. Re
searchers have also been sought other user-friendly solutions through 
integrating ECG measurement into a variety of daily accessories. An 
interesting study by Wilhelm et al. attempted to embed ECG electrodes 
into a helmet for long-term monitoring when riding [17]. Besides, 
ear-phone styled devices have been proven effective for ECG acquisition 
and can provide high signal quality under strenuous daily head move
ment [18,19]. Wristbands (watches) are also widely employed in 
wearable ECG [20]. Several physiological indicators of ECG (including 
HR) can easily be measured from two fingers with confidence. However, 
other diseases such as infarct localization require multi-lead ECG re
cordings (e.g., ECG vest). The applications of long-term continuous 
monitoring are largely limited due to their strict measurement 
requirement. For most wristband styled systems, their capacity for 
long-term continuous monitoring is weakened by its measurement 
processs, during which userâ€™s fingers from the contralateral hand 
should be placed on the band (watch) to form a heart loop. An optimized 
solution may involve an armband worn on the single side with specially 
designed electrodes and carefully arranged electrode placement [21]. 
Fig. 2 lists typical prototypes for wearable ECG monitoring. 

Another common concern is the materials used. Unlike conventional 
ECG systems in which hydrogel electrodes are used, wearable ECG 
systems usually employ dry metal electrodes or textile electrodes (TEs) 
[22]. Considering its skin-friendly characteristics, TEs have been 

Fig. 1. An overview of the wearable techniques involved for long- 
term monitoring. 
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identified as a promising substitute for traditional electrodes. 
The effective realization of multi-lead ECG has also attracted special 

attention in the wearable literature. For instance, integrating the stan
dard 12-lead electrodes into a vest will introduce bundles of cables and 
connectors, increasing the complexity and size of the designed systems. 
Recent efforts have been made to resolve this issue by devising textile 
printed circuits [15] and new analog-signal-compatible communication 
buses [19]. 

Photoplethysmography (PPG) is another kind of vital sign, acquired 
by injecting photons into human body tissues and analyzing the trans
mitted (transmission-type PPG) or reflected (reflection-type PPG) light 
[23]. For wearable devices, reflection-type PPG is commonly used as it 
can be measured from any body part as long as there is sufficient 
perfusion in the subdermal vascular network [24]. PPG measuring from 
forehead using a headband has been reported [25], while similar devices 
can also be in the form of ear-phones [26] or gloves [20] (Fig. 3). 
Wrist-worn PPG has also raised particular attention in the literature 
because it can be easily integrated into commercial fitness wristbands 
(watches) [27]. 

The major obstacle to using PPG is its relatively low robustness and 
reliability under strenuous exercise due to motion artifacts [27]. For 
decades, researchers have been investigating effective solutions, and 
now a recent study has realized highly accurate average HR extraction 

Fig. 2. Prototypes for wearable ECG monitoring: (a) wrist-worn ECG monitor [20]; (b) wearable ECG smart vest system [15]; (c) wearable singlet type with TEs [16]; 
(d) ear-ECG device [18]; (e) and (f) wearable ECG vest for neonatal monitoring [28,29]. 

Fig. 3. Glove-style wearable PPG device [30].  
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[22] and waveform detail recovery [19,30] from corrupt PPG signal, 
ready for clinical use. 

In addition to ECG and PPG, other techniques for decoding the me
chanical information of heartbeats have been investigated. Ballisto
cardiography (BCG) and Phonocardiography (PCG) are two 
representative approaches [31]. BCG, usually collected from fixed 
weighing scales or chairs, has been made possible in wearable devices, 
by introducing highly sensitive accelerometers attached to torso [32]. 
The potential to embed PCG into wearable devices has also been shown, 
with reliable heart sound segmentation achieved by practical signal 
processing approaches [33]. However, both BCG and PCG are prone to 
environmental artifacts and are thus rarely used in daily living 
conditions. 

There is great promise for all the aforementioned measurements to 
be applied in abnormality monitoring of chronic cardiovascular dis
eases. However, the extraction of higher-level physiological parameters 
and information is required from raw measurement data before practical 
use can be achieved in clinical scenarios. The following subsections will 
deal with these concerns. 

2.2.2. Physiological parameter extraction 
Based on the aforementioned bio-signal measurements, several vital 

physiological parameters can be derived. Average heart rate (AHR), 
calculated by counting the number of heartbeats within a certain length 
of time, is widely used in commercial wearable devices for body- 
condition evaluation during exercise. AHR can be easily counted from 
ECG through QRS detection algorithms [15,34], whereas for PPG, the 
progress of calculating AHR is usually completed by analyzing spectrum 
features of PPG [27]. HRV is another essential index of body condition 
that can be acquired by wearable techniques. HRV has been proven a 
significant indicator for the diagnosis of cardiovascular diseases [35], 
and shows a strong correlation with the autonomic nervous system 
dysfunctions and sleep disorders [36]. Typically, the HRV calculation 
requires N–N intervals from ECG. Recent studies have also indicated that 
the pulse intervals of PPG, from which the Pulse Rate Variability (PRV) 
is derived, could also be a promising surrogate for N–N interval detec
tion [37]. The signal quality of PPG measures under static conditions is 
relatively high. Under such circumstances, linear approaches can be 
applied for deriving fiducial points. However, deriving pulse intervals 
from noisy PPG (which is unavoidable in daily-use wearable devices) is 
not as straightforward as those from ECG (where R peaks can be easily 
detected even under strenuous activities), because noisy PPG waveforms 
are usually poorly corrupted by motion artifacts, and fiducial points 
cannot be discerned correctly. Recent efforts have aimed to recover PPG 
pulse intervals during daily activities using instantaneous frequency 
[38], graph theory-based approaches [39], or deep learning-based 
methods [40]. 

In addition to HR and HRV, other vital signs can also be derived 
through physiological modeling, where machine learning is often 
involved. As a crucial physiological parameters reflecting the health 
status of patients with cardiovascular diseases [41], BP can be estimated 
using wearable devices. Thanks to the well-known Pulse Transit Time 
(PTT) theory, a large number of studies have been completed using the 
time intervals between ECG and PPG fiducial points, and clinical-level 
cuff-less continuous BP monitoring can be realized following delicate 
calibration [42]. Gopal et al. [43] have designed a wearable watch that 
can provide cuff-less BP estimation. The principle of the device is to 
compute the PTT by measuring ECG, PPG and tri-axial seismocardio
gram to obtain the BP estimation. Peripheral PTT-based method has also 
been proposed, using more than two PPG sensors to improve user 
comfort [44], which enables BP monitoring with a single sensing node. 
Since the coefficients in BP estimation models are subject-dependent 
and time-variant, calibration issue is another crucial problem to be 
addressed. Recent trends in this field include long-term calibration-free 
monitoring using deep recurrent neural networks [45,46]: the resulting 
algorithm has surpassed the traditional arterial PTT-based method in BP 

estimation accuracy because single-site PTT measurement on arterioles 
using multi-wavelength PPG shows a good correlation with BP [47]. 

SpO2 is another important physiological parameter that can be 
extracted from wearable PPG. The principle of SpO2, which uses a linear 
approximation of Lambert Beerâ€™s law (LBL), has been extensively 
studied [48]. LBL relates the concentration of absorbent in solution to 
the amount of light transmitted through the solution and absorbent. The 
modified method is widely used for calculating SpO2. However, motion 
artifact remains a major problem when deploying SpO2 measurement in 
wearable devices. Nonetheless, recent efforts have enabled accurate 
SpO2 measurement from motion artifact corrupted segments [49]. 

As diabetes is regarded as a risk factor for cardiovascular disease, 
blood glucose should be continuously monitored during the patient’s 
home recuperation, but the conventional means of invasive sampling 
cannot fulfill this requirement [50]. Smart contact lenses such as Nov
ioSense can provide continuous monitoring of glucose levels through 
tears [51]. However, user discomfort is the biggest limitation for this 
type of technology given the eyes’ sensitivity to foreign objects. Recent 
advanced techniques have enabled noninvasive continuous blood 
glucose measurement using only single-channel PPG, by extracting en
ergy and spectrum features [52] or modeling PPG waveforms [53]. 

2.2. Wearable devices for chronic respiratory disease 

Chronic respiratory disease, is increasingly threatening human 
health and life worldwide with the aggravation of air pollution [54,55]. 
Currently, it is reported that 235 million people have asthma worldwide, 
and more than 64 million people suffer from chronic obstructive pul
monary disease (COPD). Together, chronic respiratory disease causes 
about 6% of all deaths and has become the third leading cause of death 
worldwide [56]. Automatic early warning of lung injury related to 
dysfunction in ventilation has been made possible at home with the help 
of wearable respiratory monitoring. 

As one of the most basic physiological movements, respiration can 
deliver significant biological information for revealing the health con
dition of the human body. It has been applied to identify pneumonia and 
sepsis, and as a marker of hypercarbia and pulmonary embolism [57]. 

2.3.1. Direct measurement of respiration 
Many wearable devices have been developed for direct respiration 

monitoring based on various principles, including pressure-sensitivity, 
humidity-sensitivity, change of thoracic impedance, electromyography 
(EMG), and acceleration caused by chest movements [57,58]. Flexible 
pressure-sensitive materials have attracted extensive attention in the 
literature on wearable respiration monitoring due to their body-friendly 
characteristics and the ability to sense body displacement caused by 
respiration. They have been made into various wearable respiration 
sensors based on different mechanisms, such as piezoresistivity [58], 
piezoelectricity [59] and triboelectricity [60]. In recent years, 
self-powered pressure sensors have been considered to surpass the bulky 
design of traditional wearable breathing sensors [59], making them very 
suitable for long-term monitoring of chronic diseases. However, due to 
the uncertain response time in the mechanical deformation process, it is 
hard to obtain accurate timings of inhalation or exhalation via the 
pressure-sensitive sensor [61]. Humidity-sensitive sensors can overcome 
this deficiency by sensing the change of water molecules in the process 
of inhalation and exhalation. Therefore, humidity sensors are widely 
used in respiratory signal measurement with types of material, such as 
WS2 [62], MoS2 [63], and graphene [61]. 

Thoracic impedance measurement is a technique that can indirectly 
measure the change of lung volume caused by respiration through 
measuring the impedance changes between electrodes on the skin [64]. 
As a technology that has been used in the respiratory monitoring of 
severe patients or infants, thoracic impedance measurement is also 
widely used in wearable devices [65] thanks to their non-invasive and 
comfortable characteristics. The direct relationship between thoracic 

Y. Guo et al.                                                                                                                                                                                                                                     



Computers in Biology and Medicine 129 (2021) 104163

5

impedance and respiratory rate can be obtained by use of the lung model 
in relation to the electrode belt. Jayarathna et al. have used 
polymer-based stretchable resistive bands attached to a T-shirt to cap
ture breathing information from chest expansion during sleep and light 
exercise (Fig. 4(a)) [66]. The commercial product Zephyr BioPatch is an 
easy, off-the-shelf option to measure respiration and other performance 
factors (as shown in Fig. 4(b)) [67]. Other studies [64,68] have shown 
that if the impedance sensor is sensitive enough, the cardiac signal can 
also be obtained at the same time. 

Detecting respiratory effort using chest wall electromyography (CW- 
EMG) has been incorporated into sleep monitoring, and is able to classify 
different types of obstructive, mixed, or central apneas disorders with a 
high degree of accuracy [69]. The accelerometer is also an interesting 
alternative method to measure respiration rate given its low-cost and 
high reachability to patients. Previous studies have demonstrated the 
robustness of extracting RR signals from data collected by accelerome
ters under daily activity, including sitting, walking, running, and 
sleeping [70,71]. 

2.3.2. Indirect measurement of respiration 
Breathing is physiologically connected with cardiovascular activ

ities. Decades of research have revealed the indirect modulation of 
respiration in cardiac measurements such as ECG and PPG. These 
modulations can be divided into three types, namely baseline wander 
(BW), amplitude modulation (AM), and frequency modulation (FM) [57, 
72]. Baseline wander (BW) refers to the slow changes of signal baseline, 
which is usually discarded for heart analysis. AM and FM indicate the 
amplitude and frequency of cardiac-related peaks (QRS for ECG, systolic 
peaks for PPG), showing a high correlation with respiratory waveforms. 
While AM stems from changes in ECG recording condition (i.e., lower 
conductivity during inflation), FM originates from a common control of 
breathing and cardiac rhythms. 

The standard process of acquiring breathing information comprises 
the extraction of respiratory signals (waveforms) and estimation of RR 
based on the pre-processing data after AM and FM. In this process, the 
critical point is to obtain robust observation of continuous breathing 
waveforms. Although accurate extraction can be achieved with single- 
mode measurement using PPG [73], the research consensus suggests 
that information confusion is required at both the waveform extraction 
and RR estimation stages, using multi-mode measurements and multiple 
modulations [57]. 

A significant advantage of using indirect measurement for respira
tion is that these techniques can be easily and immediately deployed 
into commercial devices (PPG or ECG function enabled) with only tiny 
firmware modifications. Therefore, PPG and ECG based respiratory 
monitoring are especially suitable for health monitoring of patients with 
chronic cardiopulmonary diseases. However, the inherent problem of 
low signal quality is a significant challenge in most cases. Recent efforts 
have introduced signal quality evaluation indexes to deal with related 
issues [74–76]. Orphanidou et al. have used heartbeat features and 
template matching to assess signal quality, automatically labeling the 

ECG/PPG signal as acceptable or unacceptable [77]. Such methods can 
significantly reduce the false alarms resulting from low quality signals. 
In turn, these methods can improve the battery life of wearable devices 
by reducing energy consumption. The development of assessment 
methods is necessary and has great potential in wearable healthcare 
devices. 

2.3. Summary of wearable techniques for chronic patient monitoring 

In addition to the various conditions outlined above, brain diseases 
including epilepsy and stroke are represent chronic illnesses with high 
morbidity and mortality across the world. Recent advanced techniques 
have highlighted the potential of wearable devices based on electroen
cephalography (EEG), EMG and inertial measurement unit (IMU) in 
detecting/evaluating chronic brain disease. EEG, for instance, is the gold 
standard for diagnosing epilepsy and can be used for automatic seizure 
detection. After achieving the ideal performance of seizure detection in 
clinical environments, an EEG collection system that can comfortably be 
worn in daily life is in need of development. Rosenberg et al. have 
designed a smart helmet for collecting continuous EEG recordings [78], 
and Bleichner et al. have proposed a concealed and unobtrusive 
ear-centered EEG acquisition device [79]. Meanwhile, numerous studies 
have confirmed that behind-the-ear EEG, which acquires epileptic dis
charges similar to scalp EEG, can be used for seizure detection [80,81]. 
In addition, EMG and IMU can be used for evaluation of ischemic stroke 
since they are user-friendly and with low-cost. Li et al. have proposed a 
lower-limb motion classification method for the evaluation of hemi
paretic patients using IMU and EMG signals, demonstrating their po
tential in predicting the lower limb Brunnstrom stage for hemiparetic 
patients [82]. Meanwhile, Isezaki et al. have designed a sock-type 
wearable sensor for estimating lower leg muscle activity using distal 
EMG signals [83]: the sock-type EMG measurement systems can collect 
the target muscle electrical activity widely distributed around the shank. 

To provide a uniform judgment of the techniques mentioned above 
and help clinical physicians and device manufacturers to select appro
priate solutions for clinical use, we have summarized the wearable 
techniques in Table 1, with scores of convenience, costs, and robustness. 
We marked techniques that require no direct contact with skin and can 
be easily integrated into daily accessories as â€œGoodâ€ for conve
nience, whereas those requiring skin-contact or that are difficult to wear 
are marked as ̂a€œFairâ€ or ̂a€œPoorâ€. Costs are evaluated based on the 
market prices of relevant commercial devices. Some new materials- 
based devices/methods may also be considered as high-cost since they 
remain in experimental stages and are not available commercially. 
Robustness is judged on both inherent signal quality and noise resis
tance. The techniques in Table 1 are illustrated in Fig. 5 which marks the 
specific measuring sites for different wearable devices. 

In sum, the findings of the existing literature indicate that wearable 
techniques can provide robust support to the long-term monitoring and 
diagnosis of chronic cardiovascular, respiratory and other clinical 
conditions. 

Fig. 4. Prototype for wearable respiration monitoring [66,67].  
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3. Unobtrusive monitoring technology 

Wearable devices can provide convenient health monitoring in 
diverse scenarios, except for those daily activities that cannot be 
disturbed or should be free from contact, such as sleep, study and work. 
In the case of cardiovascular illnesses, coronary heart disease and 
ischemic stroke often attack at night, for the abnormality detection of 
patients’ states in time, so monitoring the relevant physiological signals 
for abnormalities at these times is essential. However, conventional 
clinical devices and even wearable devices may seriously interfere with 
patientsâ€™ sleep at night. For those relatively weak patients, especially 
the elderly and children, monitoring health conditions demands a more 
comfortable and ubiquitous solution that cannot be achieved using 
wearable devices alone. As a result, unobtrusive sensing technology that 
can be integrated into daily scenarios without user perception offers an 
effective response. 

In the majority of studies proposed, unobtrusive monitoring tech
niques measure physiological signals and health parameters in a non- 
contact way, such as through clothes or from a certain distance. On 
the other hand, certain studies have measured patientsâ€™ physiolog
ical signals in contact by placing sensors on objects that may be 
frequently touched during specified daily activities, such as steering 
wheels during driving [84] or toilet seats during defecation [85]. The 
common feature, in contrast to wearable devices, is that they work 
without usersâ€™ awareness and do not interfere with the users’ daily 
lives. 

The most widely used example of unobtrusive monitoring is the 
remote measurement of body temperature with infrared thermometers. 
This technology is based on infrared thermography and has been 
investigated for more than sixty years [86]. It has played an essential 
role in the screening of severe acute respiratory syndromes (SARS) in 
2003 [87,88] and COVID-19 in 2020 [89]. At present, this technology is 
very mature and has been implemented in many commercial products 
[90], supporting its immediate application to the temperature moni
toring of chronic patients. Further unobtrusive monitoring technologies 
have rapidly developed in recent years, as shown in Fig. 6. 

3.1. Unobtrusive monitoring of cardiorespiratory signals 

Symptoms of cardiovascular diseases like arrhythmia or dyspnea are 
dangerous and should be promptly detected by unobtrusive monitoring 
of cardiorespiratory signals. One of the most commonly involved 
methods for cardiorespiratory monitoring is body surface displacement 
caused by heart activity or breathing. These techniques can generally be 
divided into the categories shown in Table 2, including radar-based, 
laser-based, video-motion-analysis-based, and BCG-based methods. 
The radar-based method obtains cardiorespiratory signals by analyzing 
the frequency shift between transmitted and received signals of a radar 
transceiver [91,92]. The laser-based method employs a laser vibrometer 
or laser interferometry to measure micrometer displacement of the chest 
wall and extract HR [93] or RR [94]. The video-motion analysis method 
uses an RGB or infrared camera to extract the cardiorespiratory signals 

Table 1 
Summary of wearable techniques used for long-term monitoring.  

Aspect Measurement 
Function 

Techniques Physiological Parameters Diagnosis & Early 
Warning 

Con- 
venience 

Costs Robust- 
ness 

Cardiovascular 
Functions 

ECG Chest 
Band, 
Vest, 
Armband, 
Helmet, 
Wristband 

HR 
(N–N), 
HRV 

Non- 
invasive 
continuous 
BP 

Tachycardia, 
Arrhythmia, 
AMI 

Fair Medium Good 

PPG Forehead 
Band, 
Ear-worn, 
Glove, 
Wrist-worn 

AHR, 
PRV, 
SpO2, 
Blood 
Glucose  

AF, 
AMI, 
Mechanical 
Alternans 

Good Low Poor 

BCG Highly sensitive 
accelerometer 

HR, 
Râ€“J interval 

Mechanical 
Dysfunction, 
Arrhythmia 

Fair High Fair 

PCG Electronic stethoscope HR, 
Heart Sound 

Pathological 
Heart Sounds 

Poor Medium Good 

Respiration Direct 
Measurement 

Thoracic impedance Breathing Rate, 
Breathing Depth, 
Respiratory 
Modes 

Pneumonia, 
Sepsis, 
Hypercarbia, 
Pulmonary 
Embolism 

Fair Medium Good  

Thermo-sensitivity, 
Humidity change, 
Triboelectricity, 
Piezoelectricity   

Poor Medium Good  

CM-EMG   Fair Medium Fair  
Acceleration caused 
by chest 
movements   

Good Low Poor 

Indirect 
Measurement 

BW, AM, FM from ECG & 
PPG 

Breathing 
Rate 

Deterioration Good Medium 
/Low 

Poor 

Respiratory 
Sound 

Electronic stethoscope Breathing 
Sound 

Wheeze & Crackle Poor Medium Good 

Others (Epilepsy/ 
Stroke) 

EEG Helmet, 
Headset 

Duration of epileptiform 
discharges 

Seizure Fair Medium Poor 

EMG Armband, 
Sock-type, 
Wrist-worn 

Motor unit 
Discharges, 
Motor unit action 
potential 

Severity of stroke Good Low Good 

IMU Accelerometer and 
gyroscope 

– Severity of stroke Good Low Good  
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from body surface displacement quantified by optical flows [95]. These 
three methods are suitable for those chronic patients who do not need to 
move their body significantly during work or study, as the sensors can 
work remotely without affecting what they are doing. 

BCG signal is typically measured by two types of pressure-sensitive 
sensors that detect resistance or charge changes caused by pressure 
[96]. These pressure-sensitive sensors, such as Polyvinylidene Fluoride 
(PVDF), may be installed into the seat cushion of a chair or the insole of a 
shoe [97] (Fig. 7(a)). The BCG signal could also be acquired by 

pneumatic sensors [98], optical fibers [99], hydraulic bed sensors [100, 
101] (Fig. 7(b)) and accelerometers [102]. Since the body surface 
displacement caused by heart activity and breathing are simultaneous, 
both cardiac and respiratory signals can be extracted using 
displacement-based methods with a sufficient sensing resolution. 

Human tissue is considered a conductor with high impedance. As 
mentioned above, chest impedance changes with respiratory activity, so 
the respiratory signal can be obtained by measuring chest impedance. 
Similar phenomena also occur during heartbeat activity when the blood 

Fig. 5. Illustration of measurement sites for wearable devices used in long-term monitoring.  

Fig. 6. An overview of the techniques involved in the use of unobtrusive monitoring technologies.  
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proportion and volume of the heart change. There are two ways to 
obtain cardiorespiratory signals by measuring chest impedance changes. 
The first, termed the electric impedance method, involves passing high- 
frequency currents into the chest using electrodes, then measuring the 
voltage changes caused by chest impedance variation. This method 
usually requires direct contact between electrodes and skin. Conversely, 
the feasibility of measuring to measure signals through clothes in a non- 
contact way has also been investigated: the gathering of heart-related 
information has proven more challenging, specifically due to interfer
ence from stronger noises compared to those from the chest impedance 
change [103,104]. The second method, the magnetic impedance method 
uses: a magnetic field generated from coils close to the chest to measure 
the induced eddy current, which is regulated by chest impedance and 
thus contains cardiorespiratory information [105]. Because the coils can 
be placed a few centimeters away from the chest, this second method is 
more commonly used than the first in unobtrusive monitoring. For 
example, by simply sewing the coils into the patient’s quilt, clinicians 
can obtain relevant physiological signals to assess his/her health con
ditions. The magnetic impedance method is therefore more flexible in 
applications for long-term monitoring of chronic patients. 

The physiological signals obtained from the aforementioned tech
nologies can reflect heart-related information, such as HR and HRV in 
normal heartbeats. However, they still contain less information than 
clinical cardiac signals, including ECG and PPG. Fortunately, previous 
studies have shown that ECG and PPG can also be measured in a non- 
contact way. 

The technology of non-contact PPG measurement, known as remote 
PPG (rPPG), has been studied since the mid-1990s. In contrast to the 
photoelectric receivers used in contact PPG measurement, in rPPG 
measurement, a camera is used to receive reflected photons from the 
skin at a distance. Videos typically captured from the face, fingers, or 
palms contain microvascular blood volume changes caused by the heart 
pumping blood. By extracting the region of interest (ROI) from each 
frame of the video, synthesizing the spatial information of different 
wavelength light, eliminating the DC component, denoising, etc., PPG 
signal containing heart rate information can be obtained [106]. In pre
vious studies, an active light source with one or a combination of blue, 
green, near-infrared and red light was selected to provide photons and a 
scientific charge-coupled device was needed [107], restricting the 
realization and application of this technology in daily life. With the 
development of related hardware and algorithms, rPPG measurement 
can be realized more conveniently, even using consumer cameras or 
webcams [108] and ambient light sources [109,110]. However, many 
studies have shown that the accuracy of heart information estimation to 
be affected by the camera frame rate [111,112], image resolution [113], 
as well as video compression during storage [114,115]. Therefore, using 
consumer cameras to obtain stable and high-quality PPG signals still has 
some challenges, especially the low frame rate. Despite their high level 
of convenience, some of the above unobtrusive monitoring techniques 
are therefore not the first option in particular scenarios. 

The technology of non-contact ECG measurement, termed capacitive 
coupled ECG (cECG), has been studied since the mid-1990s. When 
measuring ECG through clothes, the electrode is separated from the skin, 
leading to an extremely large skin-electrode impedance, which further 
results in the high susceptibility of the measured signal to diverse in
terferences [116]. Designing a buffer with high input impedance close to 
the electrode makes it possible to measure ECG through clothes, with the 
option of a right leg drive (RLD) electrode to feed the common mode 
signal back to the body. In previous studies, cECG systems have already 
been embedded into various objects in daily life scenarios, such as beds 
[117,118], chairs [116], driver’s seats [119], toilet seats [120] and 
bathtubs [121]. The electrode materials used in these systems include 
conductive fabric, copper foil tape, and flexible printed circuit [116]. 
Together, these studies indicate that cardiorespiratory signals may be 
effectively measured in a range of everyday domestic settings, thereby 
allowing the ongoing monitoring of various chronic health conditions. 

In contrast with photoelectric receivers in contact PPG measurement, 
a camera that can shoot the region of interest from a distance is used to 
receive reflected photons using both ambient light and active light. The 
active light can be further divided into monochromatic light and poly
chromatic light, with one or a combination of blue, green, near-infrared 
and red light [122]. In previous studies, scientific charge-coupled device 
(CCD) camera system with high signal to noise ratio (SNR), quantum 
efficiency and frame rate has been used [107]. Consumer CCD cameras 

Table 2 
Comparisons of different unobtrusive cardiorespiratory monitoring technologies.  

Method Active Energy Injection Distance Number of Monitored Subjects Information Costs 

Radar-based yes m >1 little medium 
Laser-based yes m 1 little high 
Video motion no m >1 little low 
BCG no cm 1 medium low 
Electric impedance yes mm 1 little medium 
Magnetic impedance yes cm 1 little medium 
cECG no mm 1 large low 
rPPG yes m >1 large low  

Fig. 7. Prototype for unobtrusive sensing: (a) unobtrusive BCG smart chair seat 
cushion [97]; (b) hydraulic bed sensor [101]. 
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[109] were also applied in these studies. Moreover, use of smartphone 
camera applications have also been studied in recent years [110]. For 
example, when applied to sleep monitoring of chronic patients, cECG 
and BCG measurement systems with strip-shaped sensors placed across 
the bed are preferred (as shown in Fig. 8), given that patients may 
repeatedly turn over or arbitrarily move their bodies in unconstrained 
sleep. However, such techniques can still be promisingly employed in 
numerous scenarios without obvious movement, such as working, 
eating, and so on. 

All these cardiorespiratory monitoring technologies have different 
characteristics, as shown in Table 2. Unlike other techniques, where the 
distance between sensor and body is at the centimeter or even millimeter 
scale, radar-, laser- and camera-based technologies can work at sensor- 
to-body distances of up to 1 m. Additionally, the ECG and PPG signals 
measured by cECG or rPPG techniques contain the most salient physi
ological information because they are the most similar to the clinical 
cardiac signals. A comparison of a variety of characteristics of different 
techniques can be found in Bruser et al. [104]. 

3.2. Physiological parameter extraction 

As mentioned in section II, physiological signals including BP, SpO2 
and blood glucose can reflect the condition of patients with chronic 
cardiovascular disease, respiratory disease or diabetes and should be 
continuously measured. For monitoring in special scenarios, the above 
unobtrusive techniques can be used to measure these physiological pa
rameters indirectly. 

Similar to BP measurement in wearable monitoring (which can be 
derived from PPG signals), non-contact BP monitoring can also be ach
ieved using information from rPPG signals. For example, previous 
studies have investigated the correlation between BP and PTT calculated 
using rPPG signals from two different body parts, such as wrist and ankle 
[123,124]. However, the measurement of PPT between two body parts 
requires a relatively high sampling rate, which may be a challenge for 
consumer cameras with low frame rates [106]. Nevertheless, PTT ob
tained from rPPG signals and other wave features may then be combined 
to estimate BP. The advancement of unobtrusive monitoring of BP has 
been further promoted due to two factors. On the one hand, stable 
ambient light is made available for the light source to acquire rPPG 
signals [125]. On the other hand, BP can be estimated using rPPG signals 
obtained from a specific body part [126]. In a recent study by Luo et al. 
in 2019 [110], PPG signals from 1328 normotensive adults were 
captured using a smartphone camera. A multilayer perceptron machine 

learning algorithm was then employed to train a computational model 
for BP estimation. The results showed that the prediction errors of sys
tolic pressure, diastolic pressure and pulse pressure were 0.39% Â±
7.30 mmHg, â^’0.20 Â± 6.00 mmHg and 0.52 Â± 6.42 mmHg, 
respectively. 

Non-contact BP measurement methods based on other principles 
have also been proposed. Ohata et al. [127] have used a Doppler radar to 
measure cardiac signals; BP can then be estimated from the systole 
duration of each heartbeat. Sakajiri et al. [128] have integrated 
fabric-sheet electrodes into the design of a bed to measure cECG and 
BCG signals in a non-contact way: BP estimation is calculated using the 
pulse beat arrival time. A hydraulic bed sensor system for BCG mea
surement [101] has also been used to estimate relative systolic BP by 
extracting features based on the strength and morphology of the bed 
sensor BCG pulses. However, only the correlation between BP and 
extracted features was analyzed in these studies. In Ref. [129], an 
electric circuit model was constructed to describe the vascular structure 
of an entire face by thermo-hue hemodynamic analysis, which was then 
used to estimate BP. Despite the performance improvement achieved in 
subsequent studies [130,131], the estimation error of BP is still too large 
to meet the application requirements under international accuracy 
standards. 

Remote PPG is also the most commonly used method for unobtrusive 
SpO2 monitoring. At least two wavelengths of light are used to obtain the 
rPPG signals. SpO2 is then calculated by combining multi-wavelength 
rPPG signals. Typical wavelength combination is red and near-infrared 
wavelengths. The conventional signal combination method is the 
â€œratio-of-ratiosâ€ (RRs) method based on LBL [132]. In previous 
studies, one research direction has been to replace the RRs method with 
other methods, such as combining the obtained PPG signals to construct 
a pulse signal set with the best signal quality [133,134]. Further studies 
have also attempted to replace the combination of red and near-infrared 
light with a combination of visible lights, such as red and blue light 
[135], or red and green light [122], with the intention of remotely 
monitoring SpO2 using consumer cameras, such as those on smart
phones. These easily accessible cameras can contribute to the real-world 
applications of unobtrusive SpO2 monitoring in the very near future. 
Significant challenges remain, however, especially the low frame rate in 
consumer-grade cameras and the impact of video compression during 
storage. 

In addition, previous studies have also used smartphone cameras to 
monitor blood glucose. Dantu et al. [136,137] have used an HTC One X 
Android phone camera to detect the transmitted photons on finger, from 
which PPG signals with two wavelengths were obtained. However, only 
a near-linear correlation between blood glucose and the ratio of PPG 
signals with two wavelengths was obtained. Zhang et al. [138] have 
used a smartphone camera with a frame rate of 28fps to acquire PPG 
data on the left index finger and then employed a machine learning 
classifier to estimate blood glucose levels. 

In general, there have been two major developments in past studies 
on unobtrusive monitoring. On the one hand, the use of consumer-grade 
rather than scientific-grade sensors have made remote monitoring easier 
to implement in daily life. On the other hand, the proximity-sensing 
sensors have been successfully integrated into a variety of daily neces
sities, so that patients can imperceptibly monitor their chronic health 
conditions any given scenario, including work, sleep, driving, home life, 
etc. Therefore, these technologically mature techniques can support 
extensive long-term monitoring of chronic diseases. 

4. Early warning and dysfunction detection 

Monitoring physiological parameters continuously is not the full 
story of wearable device evaluation. State-of-the-art techniques have 
enabled early warning of health condition deterioration and 24-h real- 
time detection of dysfunction, which can provide timely information 
for decision-making in diagnosis and treatment. 

Fig. 8. Unobtrusive monitoring techniques for cardiorespiratory signal moni
toring overnight. 
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Although automated arrhythmia detection from single-lead ECG has 
been extensively studied, its state-of-the-art algorithms usually rely on 
high-accuracy QRS and PT wave detection [139], which may not work 
effectively if used directly on data collected from wearable devices, 
considering the relatively poor signal quality and limited computational 
resources. End-to-end deep learning-based methods have been devel
oped to solve this problem. Moreover, these approaches require no ECG 
segmentation, or only QRS detection (a simple task as mentioned 
earlier), and are more robust to ECG noise [140,141]. Deep 
learning-based methods have also been carefully optimized and can be 
deployed into mainstream wearable devices for real-time heartbeats 
screening [142,143]. 

Myocardial infarction (MI), is another common cardiovascular dis
ease, is mostly characterized by ECG via ST changes, with the exception 
of non-ST-elevation myocardial infarction (NSTEMI). The automatic 
detection and localization of MI using 12-lead ECG have been exten
sively studied using machine learning algorithms [144]. However, when 
wearable devices are used as data acquisition equipment, several mod
ifications are required to account for the limited numbers of leads and 
the relatively low signal quality. Research has also been conducted on 
wearable-compatible algorithms for acute MI (AMI) detection based on 
two pairs of electrodes and has achieved high sensitivity [145]. 

PPG has also shown potential in the diagnosis of cardiac dysfunc
tions. Atrial fibrillation (AF) detection on in-hospital patients using 
wrist-worn PPG has been illustrated in Ref. [146], showing impressively 
high accuracy within- and cross-subject. Another study has demon
strated that a deep neural network applied to wrist-worn PPG can 
passively detect AF through a large population with commercial devices 
[147]. PPG may also contribute to the automated screening of MI [148] 
and non-invasive detection of mechanical alternans of blood pressure 
[149]. 

Furthermore, several studies have proven the effectiveness of using 
AI techniques to identify pathological heart sounds [150]. We believe 
that the techniques above stand to provide substantial assistance in the 
monitoring and treatment of chronic cardiovascular diseases and to 
benefit patients at home who may experience a deterioration in car
diovascular function. 

Respiratory sound provides another way to monitor breathing con
ditions and can be easily measured by commercial electronic stetho
scopes attached to the chest. Abnormal respiratory sounds mainly 
include attenuated sounds as well as increased, abnormal sounds. A 
trained physician can easily recognize pathological breathing from 
respiratory sounds, while wearable techniques have enabled real-time 
ambulatory detection of abnormal breathing events. Respiratory 
sounds collected by wearable sensors have been used for wheeze and 
crackle analysis by applying a hybrid CNN-RNN framework on the Mel 
spectrogram [65]. Apnea events, another common abnormal respiratory 
event, can be detected using the sound-level sensor on a smartphone 
[151]. Compressive sensing is also involved in this issue to meet the 
real-time and low-consumption requirements of wearable devices [152]. 
These previous studies indicate the vast potential of wearable respira
tory sound monitoring for patients with chronic respiratory disease. 

5. Conclusion and future directions 

This review of existing studies on wearable devices and unobtrusive 
sensing technologies provides an array of possible applicable techniques 
may can be immediately used for chronic disease management. Despite 
the evident advancements, the tremendous true potential of technology- 
enabled healthcare management for patients and ageing people remains 
to be tapped. 

Although wearable devices have become a topic of widespread dis
cussion, frustratingly few wearable techniques are in practical circula
tion. Certain limitations restrict unobtrusive technologies from 
expansion into more practical contexts. Signal collection is not as robust 
as those from conventional medical equipment, for example. This may 

be attributed to the wearable setups (such as textile electrodes), which 
are primarily designed for long-term wear and thus have to compromise 
on signal quality. 

Unobtrusive sensing has shown great potential across many clinical 
scenarios. However, most technologies still cannot precisely monitor 
physiological signals over long periods. For example, remote monitoring 
technologies including rPPG, radar-based, laser-based and video motion 
methods cannot feasibly be used for sleep monitoring overnight at 
present due to activities that may inadvertently terminate monitoring 
during sleep, such as moving quilts or turning the body over. Therefore, 
a development direction for remote monitoring is to solve the inefficacy 
problem under the normal movement of daily activities. Moreover, 
considering that the signal measured by each individual technique is less 
reliable and of poor quality, sensor fusion is needed. Although smart 
mattresses that use a single technique (e.g., cECG or BCG acquisition) 
can achieve long-term sleep monitoring overnight, only limited health 
parameters can be measured, restricting their value to the health 
monitoring of chronic patients. By integrating cECG and BCG, or 
embedding non-contact PPG measurement techniques into the smart 
mattress, a broader range of health parameters, such as BP, SpO2 and 
blood glucose, could potentially be derived from the acquired signals in 
an indirect way. 

In addition, the majority of wearable or unobtrusive technologies 
reviewed here can achieve disease detection and analyze the patholog
ical mechanism automatically, thus reducing the heavy workload of 
medical staff. However, early warning of patient state deterioration is a 
more challenging prospect; if achieved, it could provide both patients 
and medical staff with sufficient time to avoid risks. For example, during 
the COVID-19 pandemic, early warning algorithms via respiratory dis
ease symptom monitoring can remind high-risk populations of infection 
risks, and taking advance precautions would contribute to limiting the 
widespread cross-infection of COVID-19. 

More broadly, rather than using wearable and unobtrusive technol
ogies separately, effective ways to integrate the two techniques in 
various application scenarios should be investigated. Another practical 
concern is the fact that the power consumption and battery size of 
wearable devices are largely limited by the requirements of hardware 
miniaturization and power supply safety, which greatly affect the lasting 
duration of health monitoring. Therefore, reducing energy consumption 
to ensure the long-term use of devices warrants further investigation. 
The hardware design of low-power consumption architecture and 
energy-efficient algorithms are two approaches to achieve high energy 
savings [153–155]. The former typically aims to reduce signal resolution 
while at the same time meeting the minimal requirements of application 
scenarios. For example, low-power consumption can be achieved by 
reducing the burden of data transmission with low sampling rate and AD 
resolution. The latter approach aims to achieve low power consumption 
by reducing model size or algorithm complexity without greatly 
reducing the performance of healthcare monitoring. 

Existing solutions to implement new and improved algorithms rely 
greatly on cloud computing, which means the data collected from ter
minals have to be fully uploaded via telecommunication. As a whole, the 
data uploading procedure may lead to privacy concerns, and users may 
worry that their data is disclosed by third parties. Most devices based on 
the Internet of Things (IoT) may also be susceptible to various threats 
and attacks, such as malicious data modification, impersonation attack, 
and eavesdropping [156]. Similarly, rising interest in blockchain tech
nology, which theoretically allows for the construction of a digital 
database among different users without sacrificing privacy [157], is still 
mired in security fears. Possible solutions including machine-learning 
ASIC, separating algorithms and cloud-based parts, which can facili
tate feature extractions from raw data and inform decision-making in an 
appropriate way. 

Finally, most studies on remote monitoring devices have focused on 
the function implementation of signal acquisition and diagnosis of the 
disease. However, the research on improving practicalities of remote 
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monitoring devices and promoting user experience remains limited. In 
particular, studies from the perspective of user interface and interaction 
design can greatly improve convenience, so as to foster patients’ 
acceptance, adoption and sustained engagement with these remote 
monitoring techniques [158]. For example, without professional in
struction, the practical everyday use of wearable or unobtrusive moni
toring devices is typically more challenging than that of conventional 
medical equipment, causing patients to question monitoring perfor
mance. Taking patientsâ€™ habits and behaviors into consideration and 
testing new devices across wider and more heterogeneous groups and in 
more complex scenarios are two effective methods to improve human 
computer interaction and user experience [159]. Such studies given 
greater emphasis to optimize wearable and unobtrusive monitoring 
devices for practical use. 
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