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The number of hyperthyroidism patients is increasing these years. As a disease that
can lead to cardiovascular disease, it brings great potential health risks to humans.
Since hyperthyroidism can induce the occurrence of many diseases, studying its genetic
factors will promote the early diagnosis and treatment of hyperthyroidism and its related
diseases. Previous studies have used genome-wide association analysis (GWAS) to
identify genes related to hyperthyroidism. However, these studies only identify significant
sites related to the disease from a statistical point of view and ignore the complex
regulation relationship between genes. In addition, mutation is not the only genetic
factor of causing hyperthyroidism. Identifying hyperthyroidism-related genes from gene
interactions would help researchers discover the disease mechanism. In this paper,
we purposed a novel machine learning method for identifying hyperthyroidism-related
genes based on gene interaction network. The method, which is called “RW-RVM,”
is a combination of Random Walk (RW) and Relevance Vector Machines (RVM). RW
was implemented to encode the gene interaction network. The features of genes
were the regulation relationship between genes and non-coding RNAs. Finally, multiple
RVMs were applied to identify hyperthyroidism-related genes. The result of 10-cross
validation shows that the area under the receiver operating characteristic curve (AUC)
of our method reached 0.9, and area under the precision-recall curve (AUPR) was 0.87.
Seventy-eight novel genes were found to be related to hyperthyroidism. We investigated
two genes of these novel genes with existing literature, which proved the accuracy of
our result and method.

Keywords: hyperthyroidism, gene interaction network, random walk, a novel machine learning method, multiple
Relevance Vector Machines

INTRODUCTION

Hyperthyroidism refers to a type of common endocrinology disease in which the level of thyroid
hormone in the body is abnormally increased (Ross, 2011). The main manifestations of patients
are palpitations, sweating, increased eating but weight loss, etc., which are harmful to the
cardiovascular system (Ertek and Cicero, 2013), digestive system (Journy et al., 2017), nervous
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system (Ku et al., 2005), etc. Hyperthyroidism will cause a certain
degree of damage, which will seriously affect the quality of
life of patients. Hyperthyroidism occurs mostly in the elderly
and pregnant women. Hyperthyroidism has significant adverse
effects on the heart, bones, and cognitive functions. Standardized
management is of great significance for improving the clinical
diagnosis and treatment of thyroid diseases in the elderly and
protecting the health of the elderly (Martin and Deam, 1996).
The thyroid hormone is very important for the health of
pregnant women and the growth and development of the fetus.
During pregnancy, thyroid function will undergo a series of
physiological changes (Moleti et al., 2019). Hyperthyroidism
during pregnancy can cause adverse pregnancy outcomes and
maternal and infant complications.

The common causes of hyperthyroidism in the elderly include
Graves’ disease (GD) (Okosieme et al., 2019), toxic multinodular
goiter (TMNG) (Azizi et al., 2019), and toxic adenomas (TA)
(Sharma and Abraham, 2020). Other rare causes include pituitary
thyroid-stimulating hormone (TSH) tumors, nourishment cell
layer tumors, and metastatic differentiated thyroid cancer. The
etiology spectrum of elderly hyperthyroidism is not completely
consistent with that of non-elderly patients: GD is mainly
observed in iodine-sufficient areas (Liu et al., 2017), and it
decreases with age after the age of 40 years; in iodine-deficient
areas, TMNG is the main source, and the proportion of people
over 60 years old with hyperthyroidism is 28–65%, while that
of people under 40 years old with hyperthyroidism is only 5–
10%. In pregnant women the blood TSH drops by 30–50% in
the first trimester and gradually rises in the second trimester
(Smaniotto et al., 2017). However, it is worth noting that the
TSH of some pregnant women cannot return to the non-
pregnancy level during the third trimester. The magnitude of this
physiological change of TSH is also different in different races.
These physiological changes leading to the diagnosis of abnormal
thyroid function during pregnancy must use the pregnancy-
specific reference range. Compared with the reference range of
TSH for non-pregnant women (Moon et al., 2015), the lower
limit of the TSH reference range for pregnant women is reduced
by about 0.1–0.2 mU/L, and the upper limit of TSH is reduced
by about 0.5–1.0 mU/L. And, the decrease in TSH is more
obvious than in the middle and late pregnancy (Asik et al., 2014).
Women with twin and multiple pregnancies have higher hCG
concentrations in their bodies, and their TSH also decreases more
significantly than women with single pregnancies.

Although several clinical studies have researched the
causal reason of hyperthyroidism, the genetic factors of
hyperthyroidism are still unclear. GD is caused by genetic and
environmental factors, and 79% susceptibility can be attributed
to genetic factors (Kuś et al., 2015). Through candidate gene
analysis, genome-wide association study, and some functional
studies, researchers had identified several susceptible genes of
GD, such as HLA, CTLA4, PTPN22, FCRL3, RNASET2, and
TSHR (Chu et al., 2011; Simmonds, 2013). GD can occur at
any age, but the cutoff age of early onset GD has not been
clearly defined (most researchers chose patients younger than
or 30 years old as early onset GD). Research about the unique
loci of early onset GD were reported several years ago, but

considering their insufficient sample size and deficient analysis
methods, these loci should be verified in more studies. A study
did genotyping of 196,524 polymorphisms in 106 early onset
patients (onset at age < 30 years) and 855 healthy subjects
through Illumina Infinium Immunochip and performed case–
control association analyses, which finally found 30 specific
single-nucleotide polymorphisms (SNPs) in early onset patients
(these SNPs were located in the genes of HLA-I, HLA-II, BTNL2,
NOTCH4, TNFAIP3, and CXCR4). Another study had reported
that FOXP3 in the X chromosome was a unique gene of early
onset patients (onset at age ≤ 30 years).

Although genome-wide association analysis (GWAS) can
reveal susceptible genes of hyperthyroidism, this method does
not take gene interaction into account. However, the regulation
relationship between genes plays a vital role in the occurrence
and development of diseases (Maurano et al., 2012; Zhao
et al., 2020b). Previous studies have proven the effectiveness
of biological network in identifying diseases-related molecules
(Peng and Zhao, 2020). Multiple computational methods have
been developed to process the biological network, which achieved
drug–target interaction prediction (Tianyi et al., 2020), regulatory
relationship prediction (Zhao et al., 2021a), diseases-related
metabolites (Zhao et al., 2020a), etc. Random Walk (RW) is a
common method to deal with biological networks. Researchers
have applied this method to identify miRNAs (Niu et al.,
2019), proteins (Rathore and de Pablo, 2002), gene expression
(Zhao et al., 2021b), and multiple diseases-related molecules. In
addition, Relevance Vector Machines (RVM) has been also widely
used in disease-related research. Veeramani and Muthusamy
(2016) used RVM-classified lung image to identify lung cancer.
Wang et al. (2013) implemented early diagnosis of Parkinson’s
disease by RVM. In this paper, we propose a novel method called
“RW-RVM” to predict hyperthyroidism. Using RW-RVM, we
extracted the topological relations of gene interaction network
and fused them with regulation relationship of non-coding
RNAs. Multiple RVM models were implemented to predict
hyperthyroidism-related genes by weight voting.

MATERIALS AND METHODS

Construction of Gene Network
First, we obtained hyperthyroidism-related known genes from
DisGeNET (Piñero et al., 2020). Two hundred sixty-nine have
been reported to be related to hyperthyroidism. These genes were
input into the String database (Szklarczyk et al., 2016), and the
gene interaction network was constructed as shown in Figure 1.

As we can see in Figure 1, most of these genes have
close interactions with each other, which supports our
hypothesis: Disease-related genes are related to gene interactions.
Therefore, the genes that can interact with these 269 genes
are potential genes related to hyperthyroidism. Our aim is to
determine the possibility that these genes are associated with
hyperthyroidism.

From HumanNet database (Hwang et al., 2019), we obtained
1,517 genes that can interact with these 269 genes. Using
these 1,786 genes, we constructed a gene interaction network.
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FIGURE 1 | Two hundred sixty-nine hyperthyroidism-related genes network.

The nodes in this network are genes, and the edges are
interactions between genes.

Random Walk
The edges of the gene network have different weights. Based on
the edges and known 269 genes, we implemented RW to traverse
this network to reach steady state. Because the gene interaction
network we constructed is a two-dimensional graph, when we
travel in the form of probability according to the interaction
scores and we know the current gene node information, the
historical gene node traversal information has nothing to do with
the future gene node traversal path. Therefore, we can regard

the method of mining disease-related genes based on RW as a
Markov chain. In each step of the Markov chain, the probability
distribution of hyperthyroidism-related genes can change from
one state to another or maintain the current state. The change
of state is called transition, and the probability associated with
different states is called transition probability.

If A is the adjacency matrix of the gene interaction network,
we can normalize A to:

P = D−1A (1)

D is a diagonal matrix, which is the degree matrix of
the gene interaction network, and its diagonal element is
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D(i, i) =
∑

A(i, j). Here, P is a RW matrix, and the sum of
transition probability of each node is 1, which is the probability
matrix of hyperthyroidism associated with all genes.

A RW matrix corresponds to a Markov chain, and
the probability distribution of hyperthyroidism-related genes
changes with the change of state in the Markov chain. The
probability from any state to the next state is as follows:

Pt+1 = AtP (2)

This process continues, and the relationship between
hyperthyroidism and genes is also changing. After a period
of time, it reaches equilibrium. The equilibrium state, also known
as steady state, means that the probability distribution of the
association between hyperthyroidism and genes does not change.
The calculation method of the steady state is as follows:

π = D(i, j)/
∑
i

∑
j

A(i, j) (3)

When πP = π, the whole system reaches steady state. This steady
state is the final calculated correlation between hyperthyroidism
and genes. The workflow of encoding the gene interaction
network is shown in Table 1.

Extracting Gene Feature
Since the relationship between genes and diseases is related to the
gene regulation, we extract the regulatory relationship between
non-coding RNAs and genes as a feature of genes. The features of
each gene could be represented as follows:

genet =
[
l1, l2, ..., ln
m1,m2, ...,mn

]
(4)

l1 represents the regulatory relationship between lncRNA1 and
genet , and m1 represents the regulatory relationship between
miRNA1 and genet . If lncRNA1 can interact with genet , l1 = 1;
otherwise, l1 = 0

After obtaining all features of the genes, the final features of
genes are the following:

Feature = Pt+1 • gene (5)

TABLE 1 | Encoding gene interaction network based on random walk.

INPUT:Probability matrix of initial hyperthyroidism-related genes P0 , parameter
γ,control accuracy is `, iteration times is N, gene interaction network G(V, E, W)

OUTPUT:Probability matrix of hyperthyroidism-related genes

1.FOR i = 0 to N{

2. Update the probability matrix of hyperthyroidism-related genes

Pt+1=(1−γ)APt+γP0 ;

3. IF ||Pt+1 − Pt|| > `{

4. Pt+1=(1−γ)APt+γP0 ;

5. }

6. ELSE {

7. RETURN Probability matrix Pt+1 ;

8. }

9. }

Therefore, the final features not only contain the regulatory
relationship between non-coding RNAs and genes but also
the topological characteristics of the gene interaction network.
In the next step, these features could be input into RVM
models to obtain the probability of genes associated with
hyperthyroidism.

Construction of RVM Model
The kernel function of the RVM is not limited by Mercer
conditions; it is more sparse and has less super-parameters so it
reduces the computational burden of kernel functions.

For a given dataset {xi, ti}i = 1N , xi ∈ Rd, the non-linear
model is:

t = y(x)+ ε (6)

N is the sample number, y is the non-linear function, ε is the
noise, ε ∼ N(0, σ 2).

The final function of RVM is:

t = 8ω+ ε (7)

ω = (ω0, · · ·,ωN)
T is the weight, and 8 is the

matrix of the kernel function. K() is the kernel function.
φi(xi) = [1,K(xi, x1), · · ·,K(xi, xN)] , i = 1, 2, · · · ,N.

The distribution of p(t|x) obeys N(t|y(x), σ2). The likelihood
estimation of data is:

p(t|ω, σ2) = (2πσ2)−N/2 exp{−||t −8ω||2/(2σ2)} (8)

Tipping defines a zero mean Gauss-type prior distribution on
ω :

p(ω/α) =
N∏
0

N(ωi|0, α−1
i ) =

N∏
0

αi
√

2π
exp(

ω2
i αi

2
) (9)

α is the super-parameter; it has a one-to-one correspondence
with the weight.

α and the variance of noise σ2 meet the Gamma distribution.

p(α) =
∏N

i=0 Gamma(αi|a, b)
p(σ2) =

∏N
i=0 Gamma(β|c, d)

(10)

The prediction based on the sparse Bayesian learning
framework can be expressed as follows:

p(tN+1|t) =
∫

p(tN+1|ω, α, σ
2)p(ω, α, σ2

|t)dωdαdσ2 (11)

tN+1 is the target value of the new observation xN+1.
For a new set of inputs x∗, the output t∗ should meet the

distribution p(t∗ |t)∼ N(µT 8 (x∗),σ2
∗).

t∗ = µT8(x∗) (12)

σ2
∗ = σ2

MP +8(x∗)
T
∑

8(x∗) (13)

σ2
MP is the final variance of noise.

To accomplish the construction of the RVM model, we also
need to set the various parameters in Table 2.
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TABLE 2 | Parameters and functions of RVM.

Setting items The value set

Max iterations 100

Kernel function Gauss

Since the output of the RW is not stable, we constructed three
RVM models to obtain the final prediction. These three models
have equal weights, so the average of the predictions is the final
probability of genes associated with hyperthyroidism.

The workflow of the RVM is shown in Figure 2.
As we can see from Figure 2, we generated three kinds

of features from three RW times. Then, the features of the
genes were input into the kernel function, and likelihood
estimation was done. After obtaining the prior distribution, three
RVM models could be built. Finally, we could obtain the final
prediction by averaging the three predicted values.

RESULTS

Results of 10-Cross Validation
Since we only know the genes which are reported to be related
to hyperthyroidism, we cannot define whether other genes
are related to hyperthyroidism. Therefore, we randomly select
negative samples from 1,517 genes. As we have 269 positive
samples, we randomly select 269 negative samples each time
and repeat 10 times. For each negative dataset, we combined it
with the positive samples as a whole dataset and implemented
10-cross validation. Therefore, we did 10-cross validation a
total of 10 times.

The process of 10-cross validation is as follows: (1) Randomly
group negative dataset and positive dataset into 10 groups. (2)
Select nine negative groups and nine positive groups to build
the RW-RVM model. (3) Input the other negative group and

positive group to test the RW-RVM model. (4) Repeat steps
2 and 3 10 times.

The results of performing 10-cross validation 10 times are
shown in Table 3.

As we can see from Table 3, the performance of the
RW-RVM model is stable. The average area under the
receiver operating characteristic curve (AUC) is 0.90, and
the AUPR is 0.87.

Compare With Other Methods
We compared RW-RVM with several other methods, such as
random forest (RF), naïve Bayes (NB), and artificial neural
network (ANN). The AUC and AUPR curves of these methods
are shown in Figures 3, 4.

As shown in Figures 3, 4, RW-RVM performed best among
these methods, and RF ranked second. Due to the small sample
set, ANN cannot be fully trained, so the AUC and AUPR of
the ANN are not satisfactory. The theory of RVM is similar
to support vector machine (SVM), which is very suitable
for small-sample modeling. Therefore, the performance of the
RVM is the best.

TABLE 3 | The AUC and AUPR of 10-cross validation.

Experiment AUC AUPR

1 0.89 ± 0.010 0.84 ± 0.012

2 0.92 ± 0.008 0.87 ± 0.013

3 0.89 ± 0.009 0.85 ± 0.011

4 0.88 ± 0.011 0.85 ± 0.012

5 0.90 ± 0.008 0.86 ± 0.013

6 0.91 ± 0.008 0.88 ± 0.012

7 0.91 ± 0.009 0.89 ± 0.017

8 0.89 ± 0.008 0.87 ± 0.011

9 0.90 ± 0.010 0.86 ± 0.009

10 0.90 ± 0.009 0.87 ± 0.011

Random walk
fused feature 1

Random walk
fused feature 2

Random walk
fused feature 3

Kernel function Likelihood 
estimation

Posterior
distribution

Output 1

Training 
variance 1

Output 2

Training 
variance 2

Output 3

Training 
variance 3

Weights of three 
models

Training
variance 1

Training
variance 2

Training
variance 3

Model 1 Model 2 Model 3

Output 1 Output 2 Output 3Prediction of three 
models

Final prediction

FIGURE 2 | Workflow of constructing RVM models.
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FIGURE 3 | AUC curves of four methods.

FIGURE 4 | AUPR curves of four methods.

DISCUSSION

Biological experiments have found that hundreds of genes
are associated with hyperthyroidism. However, as the cost of
sequencing continues to decrease and the amount of data
continues to grow, computing methods have already dug out
knowledge on a large scale from massive amounts of data. Gene
regulation information could help researchers reveal pathogenic
mechanisms. Therefore, in this paper, we proposed a novel
method, “RW-RVM,” to identify hyperthyroidism-related genes.
We constructed a gene interaction network based on the known
gene interactions and used RW to encode this network to obtain

the network topology relationship. In addition, we considered
the regulation relationship between genes and non-coding RNAs.
After fusing network topology relationship with regulation
relationship, we built RVM models to identify hyperthyroidism-
related genes. We performed 10-cross validation 10 times to
verify the effectiveness of our method. We compared our method
with several other methods and found our method performed
best in both AUC and AUPR. Seventy-eight novel genes were
found to be related to hyperthyroidism (Supplementary Table 1).

To verify the accuracy of our results, we did case studies. We
found CD34 and MBL2 were associated with hyperthyroidism.
Nagura et al. (2001) found that endothelial cells showing CD34
positivity were frequently observed in GD tissue. Filho et al.
(2012) reported that MBL2 gene exon 1 variants are related to
thyroid disease by sequencing 163 Brazilian patients and 214
healthy controls.

Overall, RW-RVM is a useful tool for discovering
hyperthyroidism-related genes in large scale.
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