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Abstract

Motivation: Tumours are composed of distinct cancer cell populations (clones), which continuously adapt to their
local micro-environment. Standard methods for clonal deconvolution seek to identify groups of mutations and esti-
mate the prevalence of each group in the tumour, while considering its purity and copy number profile. These meth-
ods have been applied on cross-sectional data and on longitudinal data after discarding information on the timing of
sample collection. Two key questions are how can we incorporate such information in our analyses and is there any
benefit in doing so?

Results: We developed a clonal deconvolution method, which incorporates explicitly the temporal spacing of longi-
tudinally sampled tumours. By merging a Dirichlet Process Mixture Model with Gaussian Process priors and using
as input a sequence of several sparsely collected samples, our method can reconstruct the temporal profile of the
abundance of any mutation cluster supported by the data as a continuous function of time. We benchmarked our
method on whole genome, whole exome and targeted sequencing data from patients with chronic lymphocytic leu-
kaemia, on liquid biopsy data from a patient with melanoma and on synthetic data and we found that incorporating
information on the timing of tissue collection improves model performance, as long as data of sufficient volume and
complexity are available for estimating free model parameters. Thus, our approach is particularly useful when col-
lecting a relatively long sequence of tumour samples is feasible, as in liquid cancers (e.g. leukaemia) and liquid
biopsies.

Availability and implementation: The statistical methodology presented in this paper is freely available at github.-
com/dvav/clonosGP.

Contact: dimitris.vavoulis@oncology.ox.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cancer cells undergo a process of Darwinian evolution in response
to selective pressures in their local micro-environment, for example,
as a result of therapeutic intervention (Merlo et al., 2006; Nowell,
1976). This induces cell propagation and diversification during tu-
mour growth, which result in a heterogeneous population of phylo-
genetically related, but genotypically and phenotypically distinct
cancer cell populations, known as clones. Tumour heterogeneity is
clinically important because it complicates the molecular profiling
of tumours and enables the fittest cancer cells to escape treatment

leading to relapse. Monitoring this process of continuous adaptation
requires a detailed characterization (through the use of next-gener-
ation sequencing, bioinformatics and statistical analysis) of the som-
atic aberrations harboured by the tumour at various time points
over the course of the disease.

A major challenge in solving the problem of clonal deconvolu-
tion using bulk sequencing data is the fact that tumour heterogeneity
is not directly observed, but rather inferred through the analysis of
samples, each of which is a mixture of normal and cancer cells from
various clones. Despite (or because of) this, clonal deconvolution
has been the subject of much statistical innovation (see
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Beerenwinkel et al., 2015; Dentro et al., 2017; Ismail et al., 2019;
Salcedo et al., 2020 for a review). Current statistical methodologies
seek to identify the number of clones in a tumour, their somatic mu-
tation content, prevalence and phylogenetic relations and they can
be used for the analysis of cross-sectional data (obtained, for ex-
ample, through multiple biopsies from the same patient) or longitu-
dinal data after discarding any information on the timing of tissue
sample collection (Abécassis et al., 2019; Deshwar et al., 2015;
Donmez et al., 2017; El-Kebir et al., 2015; Fischer et al., 2014;
Jiang et al., 2016; Marass et al., 2016; Miller et al., 2014; Myers et
al., 2019; Roth et al., 2014; Rubanova et al., 2018; Sengupta et al.,
2014; Yuan et al., 2015, 2018; Zare et al., 2014; Zucker et al.,
2019).

In this article, we pose the following two questions: (i) how can
we incorporate temporal spacing information in the analysis of se-
quentially collected samples (typically over several months or years)
and (ii) is there any benefit in doing so? We begin with a standard
Bayesian non-parametric model for clustering somatic mutations
with similar observed frequencies, while simultaneously correcting
for sample purity and local copy number variation. We extend this
model by treating the cluster prevalences as functions of time, which
follow a Gaussian process prior. The advantage of this approach is
that we do not need to impose a particular functional form on the
time dependence of cluster abundances, but only some general prop-
erties (e.g. smoothness, amplitude and time scale), which are esti-
mated from the data. In return, we obtain a continuous
reconstruction of the time course of each cluster during the course of
the disease from a small number of sequentially collected samples.
We test various model configurations on whole genome sequencing
(WGS), whole exome sequencing (WES) and targeted genome
sequencing (TGS) data from patients with chronic lymphocytic leu-
kaemia (CLL; González-Rincón et al., 2019; Schuh et al., 2012), on
data from the liquid biopsy of a patient with melanoma (Cutts et al.,
2017) and on synthetic data, and we demonstrate that incorporating
temporal information in our analysis can boost the performance of
clonal deconvolution.

2 Materials and methods

We present a series of models of increasing complexity starting with
the statistical model for a single tumour sample.

2.1 Model for a single tumour sample
We assume that a tumour has been sequenced at N bi-allelic genom-
ic loci harbouring somatic mutations. For each locus i, we can calcu-
late the observed variant allele fraction (VAF) as the ratio
ri=ðri þ rref

i Þ , where ri and rref
i are the number of reads harbouring

the alternative and reference alleles, respectively. The expected value
hi of the VAF for mutation i is a function f of the cancer cell fraction
(CCF), i.e. the fraction ~/i of cancer cells that harbour the mutation,
hi ¼ f ð~/iÞ . The population of cancer cells is partitioned in a finite,
but unknown, number of clones, each harbouring a unique set of
mutations. This implies that different mutations share the same CCF
value, i.e. the mutation-specific fractions f~/ ig

N

i¼1 are not all distinct.
We model this structure with a Dirichlet Process prior on ~/i with
concentration parameter a and a uniform base distribution G0 �
Uð0;1Þ (Gelman et al., 2013; Nik-Zainal et al., 2012). Using the
stick-breaking representation of the Dirichlet Process, ~/ i is mod-
elled as an infinite mixture, as shown below:

~/ i �
X1
k¼1

wkd/k
ð~/iÞ /k � G0 uk � Bð1; aÞ

w1 ¼ u1 wk ¼ uk

Yk�1

l¼1

ð1� ulÞ
1

1þ a
� Uð0; 1Þ

where d/k
ð�Þ is the Dirac delta function centred at /k and Bð�; �Þ

indicates a beta distribution. The uniform prior on the mean of the
beta function ð1þ aÞ�1 implies that the prior on the concentration
parameter is a � ð1þ aÞ�2 , which is similar to the standard

exponential distribution, but with higher kurtosis, resulting in a
heavier tail. In practice, we approximate the above infinite sum by
truncating at a large value K (Ishwaran and James, 2001). Here, we
take K¼20, which is more than twice the largest number of esti-
mated clusters across all examined datasets (see Section 3; Fig. 4).

2.2 Joint model for clonally related tumour samples
The above model can be extended to multiple clonally related sam-
ples by allowing the CCF variables to vary between samples (Bolli et
al., 2014; Roth et al., 2014). For M samples (and truncation K), we
have:

f~/ijg
M

j¼1
�
XK

k¼1

wk

YM
j¼1

d/jk
ð~/ ijÞ /jk � Uð0; 1Þ

where the rest of the model remains the same as for the one-sample
case. Effectively, we incorporate multiple samples in the model by
allowing the cluster centres /jk to vary across samples. As a prelude
to the next section, we note that the transformed variable wjk ¼
log /jk � log ð1� /jkÞ follows a standard logistic distribution, wjk �
Logisticð0; 1Þ . Below, instead of the logistic distribution, we use a
parameterized multivariate normal distribution, as explained in
more detail in the next section.

2.3 Single-output Gaussian process model for

longitudinal tumour samples
The above model does not consider the temporal spacing of the M
samples, in case these have been collected longitudinally. If such in-
formation is indeed available, it can be included in the model by
treating the transformed CCF variables as functions of time, wkðtÞ .
On these functions, we impose a Gaussian Process prior (Gelman et
al., 2013; Rasmussen and Williams, 2006; Roberts et al., 2013):

wkðtÞ � GPð0; jðt; t0ÞÞ

where the kernel function jðt; t0Þ encodes the covariance of wkðtÞ at
times t and t0 . This non-parametric approach permits modelling the
time-dependency of the transformed CCF variables without any
strong prior assumptions on the functional form of this dependency.
The above implies that if M samples have been collected at times
t1 ¼ 0; . . . ; tj; . . . ; tM ¼ 1 , then the variables wjk ¼ wkðtjÞ follow a
multivariate Normal distribution:

fwjkg
M

j¼1
� NMð0M;KMÞ

where 0M is the M-dimensional zero vector. The elements of the co-
variance matrix KM ¼ fjðtj; tj0 Þgj;j0 encode the covariance between
the values of wkðtÞ at all possible pairs of sampling times tj and tj0 .

We consider kernels of the form jðt; t0Þ ¼ h2gsðt; t0Þ; where h is
an amplitude parameter, while the function gsðt; t0Þ , which is
parameterized by an inverse squared time scale parameter s, takes

any of the following forms: (i) exponential: gsðt; t0Þ ¼ e�
ffiffi
s
p
jt�t0 j , (ii)

Mat32: gsðt; t0Þ ¼ ð1þ
ffiffiffiffiffi
3s
p
jt � t0jÞe�

ffiffiffiffi
3s
p
jt�tj, (iii) Mat52: gsðt; t0Þ ¼

ð1þ
ffiffiffiffiffi
5s
p
jt � t0j þ 5ðt�tÞ2

3s Þe�
ffiffiffiffi
5s
p
jt�t0 j and (iv) exponentiated quadrat-

ic: gsðt; t0Þ ¼ e�sðt�t0 Þ2=2 . These four kernels are members of the
Matérn family of covariance functions ordered in terms of increas-
ing smoothness (Rasmussen and Williams, 2006). Finally, we im-
pose gamma priors on the amplitude and time scale parameters,

h2 � Gð1;1Þ and s � Gð1; 1Þ .

2.4 Multi-output Gaussian process model for

longitudinal tumour samples
In the above model, the cluster-specific scalar-valued functions wkðtÞ
share the same Gaussian Process prior, but they are otherwise inde-
pendent. We can directly model possible correlations between differ-
ent clusters (i.e. different values of k) by assuming that the vector-
valued function of time, wðtÞ ¼ fwkðtÞg

K
k¼1 , follows a Gaussian

Process prior:
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wðtÞ � GPð0K; kKðt; t0ÞÞ

where kKðt; t0Þ is a matrix-valued kernel encoding the K�K covari-

ance matrix between vectors wðtÞ and wðt0Þ . Given M longitudinally
observed samples, the above implies that the matrix of CCF values

WM�K ¼ fwjkgj;k
follows a multivariate Normal distribution of

dimensionality MK:

vecðWM�KÞ � NMKðvecð0M�KÞ;KMK�MKÞ

where the operator vecð�Þ vectorizes its matrix argument by stacking
its columns on top of each other, 0M�K is a matrix of zeros and

KMK�MK is a positive semi-definite block matrix encoding the co-
variance between wjk and wj0k0 .

Assuming that the above kernel is separable (Álvarez et al.,
2012), we can write the factorization kKðt; t0Þ ¼ gsðt; t0ÞRK , where
gsðt; t0Þ is the same as in the previous section. RK is a positive semi-

definite matrix factorized as RK ¼ DCD , where D ¼
diagðh1; . . . ; hKÞ and C / jCjg�1 is a correlation matrix following

the LKJ prior (Stan Development Team, 2020) with concentration
parameter g. A value of g¼1 implies a uniform prior over correl-
ation matrices, while g¼2 (the value we adopt here) concentrates

more probability mass around the identity matrix. This structure for
RK implies both cluster-specific amplitudes h2

k , as well as correla-

tions between clusters. Alternatively, we can assume that RK ¼
diagðh2

1; . . . ; h2
KÞ , which implies that different clusters have different

values of the amplitude parameters h2
k .

Finally, we examine the case where KMK�MK is a block-diagonal
matrix, with each of the K matrices along its main diagonal induced

by the kernel jðt; t0Þ ¼ h2
kgsk
ðt; t0Þ , where both amplitude h2

k and
time scale sk parameters are cluster-specific.

2.5 Relation between VAF and CCF
In this section, we give more details about the form of the function
hij ¼ f ð~/ ijÞ , which encodes the relationship between VAF and CCF
of mutation i in sample j. With respect to mutation/locus i, each

sample is viewed as a mixture of three cell populations (Roth et al.,
2014): (i) a normal population of CN

j non-cancer cells, (ii) a refer-

ence population of CR
ij cancer cells, which do not harbour mutation

i and (iii) a variant population of CV
ij cancer cells, which harbour

mutation i. The total number of cancer cells in the sample is CT
j ¼

CR
ij þ CV

ij . The reference and variant populations may each be fur-
ther subdivided into sub-populations, where a different number of

chromosomes covers locus i in each sub-population. The total num-
ber of chromosomes in the normal, reference and variant popula-
tions overlapping locus i in sample j are, respectively, equal to 2CN

j

(assuming diploid normal cells), DR
ij C

R
ij and DV

ij CV
ij , where DR

ij and
DV

ij are the average numbers of chromosomes per cell covering locus

i in sample j in each of the two cancer cell populations. Similarly,
the total number of chromosomes harbouring mutation i in sample j
is equal to dV

ij CV
ij , where dV

ij is the multiplicity, i.e. the average num-

ber of chromosomes per cell in the variant cancer cell population
harbouring mutation i in sample j. We write:

hij ¼
dV

ij CV
ij

2CN
j þDR

ij C
R
ij þDV

ij CV
ij

¼
dV

ij qj
~/ ij

2ð1� qjÞ þDR
ij qjð1� ~/ ijÞ þDV

ij qj
~/ij

¼ f ð~/ijÞ

where qj ¼ CT
j =ðCN

j þ CT
j Þ is the purity of the tumour and ~/ij ¼

CV
ij =ðCR

ij þ CV
ij Þ . At this stage, two simplifying assumptions are often

made: (i) there are no sub-clonal copy number events, which implies
that dV

ij ; DV
ij and DR

ij are whole numbers, and (ii) the reference and

variant cancer cell populations have the same copy number profile
at locus i in sample j, i.e. DR

ij ¼ DV
ij ¼ Dij . Under these assumptions,

the above expression simplifies to:

hij ¼
dV

ij qj

2ð1� qjÞ þDijqj

~/ ij

¼ fij
~/ij

where fij is the value of hij if mutation i in sample j is clonal (i.e. ~/ij ¼
1 ). The quantities qj and Dij can be independently estimated using
software such as ASCAT (Van Loo et al., 2010), ABSOLUTE (Carter
et al., 2012), TITAN (Ha et al., 2014) and others, and they are con-
sidered fixed. One way to approximate the multiplicity dV

ij is as fol-
lows: first, we calculate uij ¼ dV

ij
~/ ij ¼ hijq�1

j ð2ð1� qjÞ þDijqjÞ.
Then, we estimate dV

ij using the following rule:

dV
ij ¼

½uij� uij � 1
1 uij < 1

�

where ½uij� is the closest integer to uij. For a justification of this esti-
mation procedure, see Dentro et al. (2017).

2.6 Observation models
We complete the above models by introducing expressions for the
distribution of the read counts rij harbouring mutation i in sample j.
Since high-throughput sequencing data often exhibit over-disper-
sion, we consider a beta-binomial model:

rij � BBin Rij; vjf ð~/ijÞ; vjð1� f ð~/ ijÞÞ
� � 1

1þ vj
� Uð0; 1Þ

where Rij is the sum of reads harbouring the alternative and refer-
ence alleles at locus i in sample j and vj is a precision parameter. In
the absence of over-dispersion (i.e. when vj !1), the above reduces
to the binomial model, rij � BinðRij; f ð~/ijÞÞ. Both error models cap-
ture the discrete sampling of reads in the NGS data-generating pro-
cess and they account for read depth variability due to non-uniform
coverage across the genome. Parameter vj in the beta-binomial
model is sample-specific, which allows the model to adapt to differ-
ent degrees of over-dispersion across samples. Alternatively, a com-
mon precision parameter can be used for all samples in the absence
of a sufficiently large volume of data. In Supplementary Methods,
we further present a version of the above model, which explicitly
accounts for possible sequencing errors.

2.7 Inference
We implemented the above models using the probabilistic program-
ming language PyMC3 v3.8 (Salvatier et al., 2016) and inference
was conducted using Automatic Differentiation Variational
Inference (ADVI; Kucukelbir et al., 2017), instead of developing
bespoke estimation algorithms, which is a rather laborious process
particularly when multiple candidate models are considered
(Vavoulis, 2020; Vavoulis et al., 2015, 2017). Variational inference
(VI; Blei et al., 2017; Zhang et al., 2019) is a computationally effi-
cient approach for Bayesian inference, which aims to approximate
the posterior density pðzjyÞ of latent variables z given data y using a
surrogate probability density qgðzÞ parameterized by a vector of
variational parameters g . In our case, the data y are the locus- and
sample-specific read counts rij and Rij, the local copy numbers Dij,
the sample-specific purities qj and the sample collection times tj,
while the latent variables z are the CCFs /jk , the cluster weights wk,
the amplitudes h2

k , the time-scales sk and the sample-specific disper-
sions vj. VI approximates pðzjyÞ by maximizing the lower bound of
the marginal likelihood (or evidence) pðyÞ , which is known as the
evidence lower bound (ELBO), with respect to the variational
parameters g :

pðyÞ � H
�

qgðzÞ
�zfflfflfflfflfflffl}|fflfflfflfflfflffl{entropy

�
�
�
ð

qgðzÞpðy; zÞdz
�zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{energy

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ELBO

Maximizing the ELBO is equivalent to jointly maximizing the en-
tropy term (which leads to a more spread out variational distribu-
tion q and prevents over-fitting) and minimizing the average energy

Clonal de-convolution from longitudinal genomic data 149

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa672#supplementary-data


term (i.e. the discrepancy between q and p). Furthermore, the maxi-
mized ELBO, being a lower bound of the evidence pðyÞ , can be used
for model comparison (see below).

2.8 Performance metrics
We fit the above models against actual or simulated tumour samples
(see Section 3). In the first case, the ground truth or latent structure
of the data (i.e. the true CCFs, the number and composition of mu-
tation clusters) is by definition unobservable and therefore un-
known. This situation is the rule, not the exception, in the study of
complex systems and it complicates model validation and selection,
since model estimates cannot be verified against their true values. In
this case, we compare the performance of different models using the
model evidence, as approximated by the maximized ELBO (with a
higher value indicating a better model). This criterion naturally
favours simple models over complex ones, thus protecting against
over-fitting (a manifestation of Occam’s razor). It is implied that
models with higher ELBO better approximate the data generating
process and, by extension, the underlying latent structure of the
data. In the case of simulated data, the ground truth is known a pri-
ori and different models are compared using the Adjusted Rand
Index (ARI), as implemented in the Python package scikit-learn
v0.22 (Pedregosa et al., 2011). ARI takes values between -1 and 1,
with negative or close to 0 values indicating deviation from the
ground truth, while values close to 1 indicate close agreement to it.
ARI is symmetric, and for this reason, we also use it for estimating
the concordance between any two clustering models when these are
fitted on actual data. In Supplementary Methods, we give further
details on ARI and on two additional metrics, the Adjusted Mutual
Information (AMI) and the Fowlkes-Mallows Index (FMI). All three
scores are robust against agreement-by-chance and anisotropic clus-
ter shapes.

2.9 Model nomenclature
In Section 3, the various models described above are referred to as
follows. The model that assumes a uniform (i.e. flat) prior over the
CCF variables /jk is the Flat model. The model that assumes a sin-
gle-output Gaussian Process prior over the transformed CCF varia-
bles wjk is the GP0 model. The models assuming a multi-output
Gaussian Process prior on wjk are labelled GP1 (when RK is diag-
onal), GP2 (when RK is full rank) and GP3 (when KMK�MK is
block-diagonal with cluster-specific h2

k and sk parameters), respect-
ively. Each of the models GP0 to GP3 admits exponential (Exp),
Mat32, Mat52 or exponentiated quadratic (ExpQ) kernels and are
labelled accordingly, e.g. GP0-Exp, GP0-ExpQ, etc. In total, we
examined 17 models. If the number of parameters in the Flat model
is np ¼ LþM � L (where L is the number of clusters with non-zero
weights), the number of parameters in the GP0 to GP3 models is
np þ 2; np þ Lþ 1, np þ Lþ 1þ LðL� 1Þ=2 and np þ 2L,
respectively.

3 Results

We conducted a series of computational experiments on WES and
WGS data from patients with CLL (González-Rincón et al., 2019;
Schuh et al., 2012), on TGS data from the liquid biopsy of a patient
with melanoma (Cutts et al., 2017) and on simulated data. The aim
of these experiments was to demonstrate the application of the
above models on longitudinal data and to assess their relative
performance.

3.1 The case of patient CLL003
First, we demonstrate the application of model GP0-Mat32 on WGS
data from patient CLL003 reported by Schuh et al. (2012) (Fig. 1;
the performance of other models on the same dataset is summarized
in Figures 2A and 3, top-left panel; see also Supplementary Figs S1–
S3). Details on sequencing and bioinformatics analysis for obtaining
this data are given in the original paper. Briefly, peripheral blood
was collected at five specific time points during disease progression,

treatment and relapse together with a matched buccal swab (for ger-
minal DNA). All samples underwent WGS followed by bioinformat-
ics analysis, which identified 28 somatic mutations. Fitting the
model to this data was performed by maximizing the ELBO (see
Section 2), which can be used for assessing convergence of the esti-
mation algorithm (typically achieved in less than 3K iterations;
Fig. 1A). Following a non-parametric approach for clustering muta-
tions using a Dirichlet Process prior on the CCFs (see Section 2)
means that the number of clusters is not selected a priori, but rather
estimated along with other model parameters (Fig. 1B). We identi-
fied three major mutation clusters: one with median weight 	 35%
(i.e. any mutation has approximately 35% probability of belonging
to this cluster) and two slightly smaller clusters with median 	
30%. In Figure 1C, we illustrate the evolution of each cluster in
time. Sample (a) was collected before commencing treatment with
chlorambucil; sample (b) before treatment with fludarabine, cyclo-
phosphamide and rituximab (FCR); sample (c) immediately after six
cycles of FCR; sample (d) before treatment with ofatumumab; and
sample (e) after treatment with ofatumumab, spanning in total a
period of 35 months. Initial treatment with chlorambucil did not
alter significantly the prevalence of the three mutation clusters, with
median CCF>75% for clusters 1 and 3 and median CCF<10% for
cluster 2. The second treatment regime (FCR) induced a dramatic re-
duction in the prevalence of cluster 3, but only a minor reduction of
cluster 1. Concomitantly, the prevalence of cluster 2 increased sub-
stantially. By the end of the 35-months period, cluster 1 had recov-
ered and, along with cluster 2, it reached CCF values higher than
95%, while cluster 3 collapsed. Our algorithm soft-clusters muta-
tions, i.e. for each mutation, it calculates the probability of member-
ship to each cluster. From these, a hard clustering can be obtained
by assigning each mutation to the cluster with the highest median
membership probability. Figure 1D illustrates the hard cluster as-
signment for each mutation in the CLL003 dataset. It is interesting
to observe that, by considering multiple time-separated samples, our
method manages to deconvolve mutation clusters with similar VAF
values, which would otherwise be hard to distinguish [e.g. observe
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Fig. 1. Application of model GP0-Mat32 on data from patient CLL003 (Schuh et

al., 2012). (A) Parameter estimation was achieved via maximization of the evidence
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of clusters in the data was automatically estimated through the use of a Dirichlet

Process prior. In this example, three major clusters were identified. (C) The temporal
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the mixing of clusters 1 and 3 at time points (a) and (b) or clusters 1
and 2 at time points (d) and (e)]. Finally, we can visually confirm the
goodness of fit of the model to the data by overlaying the posterior
predictive distribution (red lines in Fig. 1E) on the histograms of
observed VAF values for each sample.

3.2 Benchmarks on CLL data with four or five samples
Next, we applied the remaining models on the data from patient
CLL003, as well as all models on data from patients CL006 and
CLL077 reported in Schuh et al. (2012) (models Flat and GP0-
Mat32 are illustrated in Fig. 2; the performance of all models, ex-
cept GP2, is summarized in Fig. 3). WGS and bioinformatics ana-
lysis were conducted as for patient CLL003 (see original paper for
details). For patients CLL006 and CLL077, samples were collected
over a period of 50 and 57 months, respectively. In addition, we
examined WES data from Patient 2 reported in the study by
González-Rincón et al. (2019), where collected samples spanned
79 months in total (for details of sequencing and bioinformatics ana-
lysis, see original paper).

There were 18, 21 and 32 somatic mutations in patients
CLL006, CLL077 and Patient 2, respectively (as well as 28 somatic
mutations in patient CLL003, as previously mentioned; Fig. 2Ai–
Di). A preliminary comparison indicates that, for patients CLL003
to CLL077, model GP0-Mat32 (Figs. 2Aii–Cii) identified the same
number of mutation clusters as the simpler Flat model (Fig. 2Aiii–
Ciii), i.e. three clusters with similar temporal dynamics. To assess
the clustering concordance between the two models (i.e. whether
they assign the same mutations to the same clusters), we calculated
the values of ARI, which were equal to 0.54, 0.79 and 0.58, respect-
ively. This indicates that the two models are not perfectly concord-
ant in any of these three datasets (despite both identifying the same
number of clusters) presumably due to the partial overlap between
different mutation groups, as illustrated in Figure 2Ai–Ci. One strik-
ing difference between the Flat and GP-based models is that while
the former estimates the latent state of the tumour only at the time
points of sample collection (this is indicated by the dashed connect-
ing lines in Fig. 2Aiii–Ciii), the latter provides an estimate of the
complete history of this latent state, i.e. both at and between these
fixed time points. This is a major difference in favour of the use of
GP-based models. In the case of Patient 2, the Flat and GP0-Mat32

models identify three and five clusters, respectively (ARI¼0.63; Fig.
2Di–iii). For comparison, in the original paper, the authors identi-
fied seven clusters using PyClone (Roth et al., 2014).

To further assess the relative performance of different models
(and without knowledge of the true clonal state of each tumour), we
used the ELBO as performance metric (see Section 2). The ELBO
provides a lower bound on the marginal likelihood of the data (i.e.
the evidence) and, at the same time, it includes an internal mechan-
ism that prevents over-fitting. Thus, it is often used in practise for
model comparison and selection, with higher ELBO values indicat-
ing a better model. As illustrated in Figure 3A, all GP0 models, all
but one GP1 models and all but two GP3 models outperform the
Flat model on the CLL003 data. The GP2 models, which have the
largest number of parameters, were by far the worst performers on
these datasets and they are omitted from the figure. There is a clear
trend of decreasing performance with increasing number of parame-
ters among the GP-based models, which is not surprising given that
the lower the number of time points, the lower the capacity of the
data to support overly complex models (as, for example, in the case
of GP2 models). In the case of CLL006 (Fig. 3B), the same trend is
observed, although the difference of the GP-based models from the
Flat model is less pronounced. In the case of CLL077 (Fig. 3C),
models GP0-Mat32 and GP0-ExpQ perform better than the Flat
model (although this difference is not particularly pronounced be-
cause of the high variance of the ELBO), but the remaining GP-
based models perform either clearly worse or comparably to the Flat
model. In the case of Patient 2 (Fig. 3D), the GP0 models are again
the best performers, unlike GP1and GP3 models, which are clearly
worse than the Flat model. In summary, there is always at least one
member of the relatively parsimonious (in terms of the number of
model parameters) GP0 family of models that performs better than
the Flat model in the above benchmarks.

3.3 Benchmarks on CLL and melanoma data with 10 or

13 samples
Next, we tested our models on longitudinal genomic data involving
a higher number of time points. The first dataset comes from Patient
1 in González-Rincón et al. (2019). A total of 13 peripheral blood
mononuclear cell samples (P1.1–P1.13) were collected over the
course of 6.5 years and underwent TGS. Samples were collected
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Fig. 2. Overview of CLL data and fitted models Flat and GP0-Mat32. Unlike GP0-

Mat32, the Flat model estimates the CCF of each cluster only at the points of sample

collection (dashed lines). Although both models identified the same number of clus-

ters in datasets CLL003 to CLL077, these were not concordant (see main text for

details)
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before or after treatment commenced. In particular, sample P1.1
was collected before the patient received a stem cell transplant and
the same holds for sample P1.8. Bioinformatics analysis identified
46 somatic mutations over all 13 samples (Fig. 4A; see original
paper for details). Model GP0-Mat32 identified nine mutation clus-
ters (Fig. 4B), while the Flat model identified five (Fig. 4C). For

comparison, in the original paper, the authors estimated four clus-
ters using PyClone (Roth et al., 2014). Overall, models GP0, GP1
and GP2 perform better than the Flat model, unless an exponenti-
ated quadratic kernel (ExpQ) is used (Fig. 4D). We speculate that
this is because ExpQ encodes perfectly smooth dynamics, which pre-
sumably cannot model sufficiently well the non-smooth bottleneck
points P1.2 and P1.8 which precede stem cell transplantation.
Model GP3-Exp is also performing better than the Flat model.

The second multi-sample dataset comes from the liquid biopsy
of a patient with metastatic melanoma (Cutts et al., 2017).
Peripheral blood samples were collected at 10 different time points
during pre-treatment, post-treatment and relapse over the course of
13 months. Targeted sequencing was conducted on extracted cell-
free DNA followed by bioinformatics analysis, which revealed 63
somatic mutations. Visual inspection of the data indicates the ab-
sence of a definitive cluster structure (Fig. 5A) and, for this reason,
this is an interesting dataset to use for model evaluation. Both the
Flat and GP0-Exp models identified five mutation clusters with little
concordance between them (ARI¼0.27) due to the extended over-
lap between different mutations bundles (Fig. 5B, C). The median
performance of model GP0-Exp is nominally higher than the Flat
model, although it is doubtful whether the difference is substantial
due to the high variance of the ELBO (Fig. 5D). The remaining GP-
based models perform worse than either Flat or GP0-Exp.

3.4 Computational experiments on simulated data
Overall, models GP0 (particularly GP0-Exp and GP0-Mat32) per-
form at least as well as the Flat model in all the above datasets.
More complex models (i.e. models with a larger number of parame-
ters), such as GP1, GP2 and GP3, require a higher number of longi-
tudinally collected samples for improved performance (Fig. 4).
However, this is not a sufficient condition, since data of low com-
plexity (i.e. with trivial or non-obvious cluster structure and dynam-
ics) can negatively affect the performance of the GP-based models
(Fig. 5).

We wanted to test whether these trends (i.e. the reduction in the
performance of the GP-based models in relation to the Flat model as
data size and complexity decreases) can be replicated using synthetic
genomic data. For a given number of samples M, mutations N and
mutation clusters K, data were simulated using actual experimental
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Fig. 4. Assessing model performance on CLL data from Patient 1 (González-Rincón

et al., 2019). (A) Observed VAF values for each somatic mutation over 6.5 years

and their cluster assignments (colours are the same as in (B). B) Mutation clusters

identified by model GP0-Mat32. (C) Mutation clusters identified by the Flat model.

(D) Comparative performance of various models. Notice that simpler models (GP0)

often perform equivalently to or better than more complex ones (GP1, GP2 and

GP3)
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Parameters used in data simulation were informed by the experimental data (see

main text for details)
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Fig. 5. Assessing model performance using data from a liquid biopsy on a subject

with melanoma (Cutts et al., 2017). (A) Observed VAF values for each somatic mu-

tation over 13 months of treatment and their cluster assignments (colours are the

same as in B). B) Mutation clusters identified by model GP0-Exp (due to extensive

overlap, credible intervals are omitted for clarity). (C) Mutation clusters identified

by the Flat model. (D) Comparative performance of various models. Model GP0-

Exp performs comparably to Flat
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data as template (see Supplementary Methods for details). In total,
we generated 729 datasets, each of which was processed using the
Flat and GP0 models (which were top performers on the actual
data) and their performance was assessed against the true cluster
structure of the dataset.

We may observe that when few samples are available (M¼3),
the baseline model (Flat) performs comparably to GP0 at all values
of N and K (Fig. 6). For large (M¼12) datasets, the Flat model falls
behind the other models, when the number of clusters in the data is
relatively high (K¼4 or 8). At medium sample numbers (M¼6), the
same effect is observed at small mutation numbers (N¼25). These
results indicate that in the presence of non-trivial cluster dynamics,
the baseline model is comparable to GP0 models, but only when the
number of samples or data complexity (here, the number of clusters)
is low. In Supplementary Results, we provide further benchmarks
against PyClone (Roth et al., 2014) and Canopy (Jiang et al., 2016),
as well as additional performance metrics (Supplementary Figs S4–
S6).

4 Discussion

Tumour heterogeneity in the form of distinct cancer cell populations
or clones is the outcome of a process of continuous adaptation of
the component cells to their local micro-environment. The outcome
of any therapeutic intervention depends on this latent cellular diver-
sity and, for this reason, statistical methodologies that help decon-
volve the clonal structure of tumours are valuable tools at the
disposal of clinicians and bioinformaticians.

Building on previous works (Nik-Zainal et al., 2012; Roth et al.,
2014), we propose a statistical methodology for clonal deconvolu-
tion based on longitudinal data, which explicitly considers the tem-
poral spacing of sample collection. Our approach combines two
Bayesian non-parametric statistical frameworks, namely Dirichlet
Process Mixture Models (for clustering in the absence of prior
knowledge on the number of clusters supported by the data) and
Gaussian Process Latent Variable Models (for modelling the time-
dependence of clone prevalence without any explicit assumptions on
the form of this dependence). The models we present in this article
are sufficiently flexible to capture many common scenarios without
additional assumptions or constraints, including monotonic increase
and/or decrease of CCFs, as well as stability of CCFs near (or at) 0
or 1. More elaborate scenarios (e.g. the introduction of change-
points in the function domain) are possible through appropriate de-
sign of the kernel function, possibly at the cost of increased model
complexity.

Using a combination of experimental data from patients with
CLL or melanoma, as well as synthetic data simulated using experi-
mental data as template, we demonstrate that there are advantages
in this approach, when compared to several baseline models (Fig. 6
and Supplementary Figs S4–S6). These benefits are particularly evi-
dent when longitudinal data of sufficient volume and complexity are
available. When this is not the case, our methodology performs com-
parably to baseline models, but it also manages to reconstruct the
time dependence of mutation clusters continuously in time (i.e. not
only at the points of sample collection, which is what baseline mod-
els do, but also between them) from a small number of sequentially
collected samples.

CLL is an ideal experimental model for the study of cancer evo-
lution, because it develops over many years and because the collec-
tion of a long sequence of blood samples from the same patient for
genomic analysis is easy, at least when compared to solid tumours.
Thus, we expect that our methodology will find applications in the
study of CLL and other liquid cancers. It can also be used as a gen-
eral purpose clustering tool for identifying populations of mutations
based on sequencing of circulating tumour DNA obtained through a
liquid biopsy.

As with other approaches for clustering mutations based on bulk
sequencing data, a phylogeny is not derived directly, but it can be
calculated retrospectively using the output of our method as input to
bespoke software (Dang et al., 2017; Niknafs et al., 2015; Qiao et
al., 2014). Furthermore, single-cell sequencing promises to alleviate

the confounding of clones inherent in methods based on bulk
sequencing by permitting direct observation of the genotypes of the
cells that compose each clone. However, it is in turn plagued by its
own technical limitations, namely high levels of noise, error rates
and missing values (Borgsmueller et al., 2020; Chen et al., 2019; El-
Kebir, 2018; Jahn et al., 2016; Malikic et al., 2019; Ramazzotti et
al., 2020; Ross and Markowetz, 2016; Roth et al., 2016; Zafar et
al., 2017, 2019).

Finally, an important assumption in our approach is the absence
of sub-clonal copy number variation [see assumptions (a) and (b) in
Section 5]. Although commonly adopted by statistical methods of
sub-clonal reconstruction based on single nucleotide variants (SNV),
we recognize that these assumptions may not always be exact. It is
possible to relax these assumptions, however, this would lead to an
intractable estimation problem in the resulting model. A possible
mitigation strategy is to complement a SNV-based approach as the
one we present in this article (which, as we show, does incorporate a
correction for copy number variation, CNV) by subsequently apply-
ing a CNV-based approach as well. Several such methods are avail-
able aiming to identify the copy number state of each sub-clone in a
tumour by typically using the measured B-allele frequency as input
to downstream estimation procedures (Carter et al., 2012; Fischer et
al., 2014; Ha et al., 2014; Nik-Zainal et al., 2012).

5 Conclusion

In conclusion, we propose that considering information on the tem-
poral spacing of longitudinal tumour samples can improve clonal
deconvolution and we show how this can be achieved in the context
of non-parametric Bayesian statistics.
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