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eter estimation failed. This is particularly relevant when GE is 
unexpectedly delayed. We recommend that WinBUGS be-
come the method of choice for analysing breath test data. 

 Copyright © 2010 S. Karger AG, Basel 

 Introduction 

 The  13 C-octanoic acid breath test ( 13 COBT) for gastric 
emptying (GE) measurement  [1, 2]  is a useful alternative 
to  � -scintigraphy since it confers no radiation burden, 
and is therefore suitable for application in vulnerable sub-
jects (e.g. children and pregnant women). It is particu-
larly useful for intervention investigations in healthy vol-
unteers. The underlying principle of the breath test is that 
after ingestion, short-chain fatty acids, of which octanoic 
acid is a convenient representative, pass unchanged 
through the stomach. However, on delivery to the small 
intestine, they are rapidly absorbed and transported to 
the liver where they undergo immediate oxidation  [1] . On 
this basis the rate limiting step in their metabolism is the 
residence time in the stomach, and therefore the rate of 
metabolism is a good proxy for the rate of GE.

  Unfortunately the  13 CO 2  that is the detectable meta-
bolic product of the labelled substrate is not excreted di-
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 Abstract 

  Background:    The  13 C-octanoic acid breath test is a conve-
nient method for assessing gastric emptying (GE). Success 
depends on obtaining a well-characterized time profile of 
the excretion of label in breath, which may not be the case if 
GE is delayed.  Aims:  To use Bayesian techniques in conjunc-
tion with hierarchical modelling as a method to increase the 
success of the modelling process.  Methods:  Retrospective 
analysis of 164 individual breath tests using the WinBUGS 
program. The approach was tested by analysing the com-
plete dataset simultaneously, and also as individual studies. 
 Results:  The time required for Bayesian modelling was com-
parable with that needed for the usual methods .  The results 
obtained were almost identical to those obtained from con-
ventional modelling for well-behaved breath tests, but much 
more realistic in cases where the experimental data was 
poor, or when GE was delayed.  Conclusions:  The use of 
Bayesian estimation of the parameters of the  13 C-octanoic 
acid breath test is demonstrated. By adopting a hierarchical 
model, realistic values for the lag phase and half-emptying 
time were obtained in situations when conventional param-
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rectly, but instead participates in the TCA cycle, and 
passes through the bicarbonate system before exhalation 
 [3–5] . The consequence of the former is that recovery of 
the label in breath is incomplete, and that of the latter is 
that the profile of the appearance of the label in breath is 
a delayed, blunted and reduced representation of the GE 
process. It is this indirect description of GE by the breath 
test which has attracted critical debate of the method  [2] , 
although recently a simple method of correcting for the 
effects of the delay in the bicarbonate pool has been pro-
posed  [3, 6] .

  There is, however, a second important consequence of 
the delay caused by the passage through the bicarbonate 
pool: although GE is complete in typically 2–3 h, it is nec-
essary to collect breath for at least twice this period in 
order to properly establish the kinetics of substrate oxida-
tion for the correct inferences to be drawn. In particular 
the parameter t 1/2 , defined as the time at which half the 
label has been processed, requires that the maximum 
amount of label recoverable in breath be well character-
ised. Since the fraction of the dose ever to be recovered is 
uncertain (due to an unknown fraction being sequestered 
in the TCA cycle), this maximum attainable recovery has 
to be taken as the asymptote of the plot of cumulative re-
covery versus time. The asymptote is well defined only if 
the breath measurements are made for a sufficiently long 
time. In cases of delayed or slow GE, this may well be in 
excess of the usual 6-hour collection time. Unless this is 
known before the experiment is performed so that a pro-
longed test can be made, the results of breath tests in these 
circumstances are often compromised.

  A Bayesian approach to the analysis can help to over-
come many of these difficulties. The Bayesian method 
differs from the usual nonlinear least squares (NLS) ap-
proach to the analysis of breath test output by allowing 
the incorporation of a priori knowledge (‘prior beliefs’) 
about the parameters of the curves used for fitting to the 
experimental data. There is a considerable amount of pri-
or knowledge concerning the breath test output, e.g. the 
total recovery of the label cannot exceed 100%, and the 
limiting fractional rate constant of elimination cannot be 
negative. In the Bayesian approach, these restrictions are 
incorporated into the model by the presumptions of par-
ticular distributions for the kinetic parameters that re-
strict the values they are allowed to adopt.

  In addition to adopting Bayesian methods to analyze 
the problem, we can also surmise that there will be a pop-
ulation distribution for the coefficients describing the ac-
tual GE parameters. This can be incorporated into our 
modelling strategy by drawing GE parameters for each 

subject studied from a distribution of those parameters 
in the study population as a whole (hierarchical analysis). 
It should be recognized that hierarchical techniques are 
not solely applicable to Bayesian analysis, nor are they 
necessary for it. The breath tests could be analyzed on a 
single basis using the same prior descriptions of the fitted 
parameters. However, there are advantages in letting the 
individual parameter values be drawn from a common 
distribution, since by imposing some degree of consis-
tency the individual parameter estimates can ‘borrow in-
formation’ from each other.

  The purpose of the work reported here is to introduce 
the concepts of hierarchical Bayesian analysis in the study 
of GE, and in doing so to re-analyse a number of previ-
ously reported studies so that the advantages of the Bayes-
ian approach can be demonstrated. In particular it will 
be demonstrated that adopting Bayesian philosophy and 
combining this with hierarchical methods can eliminate 
some of the modelling failures previously reported, and 
allow the full information to be extracted from the 
 13 COBT data.

  Methods 

 A number of studies previously conducted at our laboratories 
have been re-analysed for this work. Since the breath test proce-
dures were generally similar in each case, a generic protocol for 
GE measurement using the  13 COBT will be given, with any de-
viations from it noted in the specific study descriptions which 
follow.

  Generic Protocol for the Breath Test 
 The studies were performed in the volunteer suite at MRC Hu-

man Nutrition Research (MRC-HNR), Cambridge, UK, and were 
approved by the local research ethics committee. All the reported 
investigations were performed on healthy adults with no history 
of gastrointestinal disorder. Informed written consent to the tests 
was obtained from each subject following written explanations of 
the protocol and purpose of the study.

  Study Day Protocol 
 Subjects were asked to abstain from alcohol and strenuous 

physical activity, and to fast from 8.00 p.m. on the day before be-
ing studied. To prevent dehydration, a single glass of water was 
allowed on waking on the morning of the study. On arrival at 
MRC-HNR, height (without shoes) was measured to the nearest 
1 cm and weight determined to the nearest 0.01 kg for the estima-
tion of the basal metabolic rate  [4] . The  13 COBT used an egg-based 
meal, with a standard energy content of 2 MJ. The egg was sepa-
rated and a standard dose of 100  � l of  13 C-octanoic acid (621 
 � mol) was added to the yolk. The egg was then dry-fried in a non-
stick pan, and served with 3 slices of toasted bread spread with a 
total of 10 g butter, 100 ml of orange juice and 100 ml of water. 
Subjects were asked to consume the meal in less than 10 min.
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  Basal samples of breath were collected prior to the meal being 
consumed and continued for 6 h. For the first 4 h, samples were 
taken every 15 min, and every half hour for the final 2-hour pe-
riod. All breath samples were collected in duplicate. Isotope 
analysis was performed using isotope ratio mass spectrometry, 
with a reference gas traceable to an international standard 
V(PDB).

  The calculations performed were as follows:
  CO 2  production rate (mol/h),  F  CO  2  = 0.04518 W  0.5378  H  0.3964 

  based on the formula given by Evenepoel et al.  [5] , where  W  is the 
subjects weight (kg) and  H  the height (m). 

 The preferred equation taken to describe the data from a single 
breath test is  [3]   :
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    This can be generalized to explicitly indicate that, in this case, a 
number of such models were solved simultaneously by introduc-
ing an index  n  which specifies the particular breath test under 
consideration, thus: 
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   Here  F   G  ( n ) (the fraction of the dose recoverable in breath), 

 k ( n ) and  � ( n ) are parameters of the fit for the  n -th breath test;  d  is 
the isotope dose given (which was constant for all the tests in this 
study); ( PDB ) the isotopic composition of the international stan-
dard, and  � ( n ,  t ) and  �  b ( n ) (‰) the measured isotopic composi-
tions with respect to PDB for the  n -th breath test at time  t  and in 
the basal state, respectively. 

 From the coefficients of the fit, four parameters descriptive of 
the GE process were calculated  [7]  as:  
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   T  1/2  is the time when half of all the label which will be excreted in 
breath has been recovered, and is analogous to the GE half time. 
 T  lag  is the time of maximum rate of excretion of the label, analo-
gous to one definition of the lag phase from  � -scintigraphy, which 
is the time of maximum GE rate  [8] .  T  lag  and  T  asc  have been de-
scribed by Schommartz et al.  [7]  as parameters which are more 
discriminating in the determination of GE perturbations.  T  lat  is 
similar to an alternative description of the scintigraphic lag phase 
 [9] , where the breath response is approximated by a piece-wise 
linear model, the first phase of which is taken to represent the lag. 
Finally  T  asc  is suggested as a complementary parameter to  T  lat  to 
fully characterise the first half of the breath test. 

 Besides the parameters describing the observed breath curves, 
we also calculated the ‘self-corrected’ breath test profiles  [3, 6] :

   G ( n ,  t ) =  � ( n )(1 – exp{– k ( n ) t })  � (  n  ) – 1 
–  � ( n ) – 1)(1 – exp{– k ( n ) t }  � (  n  ) 

  From this, the associated half-time,  T  1/2(  in  ) ( n ), can be obtained by 
interpolation, and the lag time,  T  lag  (  n  ) ( n ) = ln{ � ( n )/2}/ k ( n ), and 
maximal emptying rate 
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   are calculated. 

 Frequent Feeding Study 
 This work, designed to investigate the effect of ‘snacking’ on 

the handling of a subsequent test meal has been fully reported 
previously  [10] . In an initial feasibility study conducted with the 
purpose of determining the reproducibility of the  13 COBT, four 
subjects were studied four times, and then in the main phase of 
the work sixteen subjects were studied both after periods of fre-
quent feeding (six small meals consumed hourly) or meal eating 
(two large meals with a 3-hour interval). In both the feasibility 
and the main studies the generic GE procedure was followed, ex-
cept that a prolonged measurement period of 8 h rather than 6 h 
was used.

  Obesity Study 
 As previously reported  [11] , the  13 COBT was used in two 

matched groups of sixteen women, one group lean (BMI  ! 25) and 
the other obese (BMI  1 30). The generic protocol was used without 
modification in this investigation.

  Meal Size Study 
 In the meal size study, the effect of changing the energy con-

tent of the test meal (1, 2 or 3 MJ) was investigated  [12] . The only 
change to the generic protocol was the manipulation of meal size.

  Meal Composition Study 
 In a parallel investigation to the meal size study, the total en-

ergy of the test meal was kept constant at 2 MJ, but the macronu-
trient composition was tailored so that the meals provided were 
either high in fat (15% protein, 60% fat and 25% carbohydrate), 
carbohydrate (15% protein, 25% fat and 60% carbohydrate) or 
protein (30% protein, 33% fat and 37% carbohydrate).

  Bayesian Hierarchical Analysis of Breath Tests 
 Bayesian modelling was performed using the WinBUGS pro-

gram  [13] . A schematic overview of the hierarchical model used 
is shown in  figure 1 . The analysis requires that the form of the 
underlying distributions of the parameters be specified. This is 
fundamental to the Bayesian process since these distributions are 
the prior knowledge (often just termed ‘priors’) which is taken to 
the analysis. Since the Bayesian method uses the current observa-
tions to modify the priors resulting in posterior distributions, the 
choice of prior is very important. If a parameter’s prior is specified 
with a high degree of precision (an informative prior), then it is 
possible that the new data will add little to our knowledge of the 
true value. Conversely, if the precision of the distribution chosen 
for the prior is low (vague prior) then the new data dominates the 
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estimate of the posterior distribution. In this case we chose to pa-
rameterise the model in terms of three parameters  F   G  ,  k  and  T  lag  
with the following vague prior assumptions regarding their glob-
al distributions.

  Prior  F   G   was assumed to be normally distributed with a mean 
of 60% and a standard deviation of 14%. This prior is relatively in-
formative and based upon the values obtained in the many breath 
tests that have been reported, as well as from other estimations of 
the amount of ingested labelled substrate lost in the TCA cycle  [14] .

  Prior  k  was assumed to be uniformly distributed in the range 
10 –4  to 10 3  h –1 .

  Prior T lag  was assumed to be uniformly distributed in the range 
10 –4  to 10 3  h. Both these priors are very vague, since they allow the 
parameter to adopt values over seven orders of magnitude.

  In all, a total of 164 sets of breath test data (16 from the fre-
quent feeding feasibility study, 32 from the frequent feeding 
study, 32 from the study on obesity, 36 from the meal size study 
and 48 from the meal composition study) were fitted simultane-
ously using the hierarchical method in just under 34 min on a 
standard desktop workstation. For comparison of results from 
individual studies with their NLS counterparts, subsets of the 
full dataset were used.

  Results from the Full Dataset 

 The global distribution defining the parameters  FG  BAY     , 
 k  BAY  and  T  Bl A

a
Y
g     were all found to be near-normally distrib-

uted (mean and median coincident, with symmetrical 
confidence limits). FG BAY          was found to be 42.9  8  0.8% 
(mean  8  standard deviation),  k  BAY  was found to be 0.511 
 8  0.012 h –1  and  T  Bl A

a
Y
g      was found to be 3.30  8  0.07 h.

The ranges of the individual GE time parameters were 
1.66 h  !   T  Bl A

a
Y
g     !  7.25 h, 2.23 h  !   T   B1A

/
Y

2        !  8.07 h, 0.74 h  ! 
 T  Bl A

a
Y

t          !  5.20 h, and 1.45 h  !   T  BaA
s

Y
c       !  4.74 h. In general, the 

standard deviation of the individual value of the param-
eter was found to increase with its absolute value, with the 
average coefficient of variation (c.v.) being 2.2, 2.7, 4.3 and 
6.5% for  T   Bl A

a
Y
g    ,   T   B1A

/
Y

2    ,   T  Bl A
a

Y
t    ,    and  T  BaA

s
Y

c    ,  respect ively.
  Comparison of the estimates of ( T  lag ), and ( T  1/2 ) from 

NLS methods and Bayesian analysis shows the effect of 
the ‘borrowing of strength’ in the hierarchical analysis 
( fig. 2 ).

Prior means and
distribution for
global F�, k and

Tlag
Prior precision of

mass spectrometric
measurement

F�, k and Tlag for 
breath test 1

F�, k and Tlag for 
breath test 3

F�, k and Tlag for 
breath test 2

F�, k and Tlag for 
breath test 1

Bayesian analysis

�, t1/2, tlat, tlag and self-corrected 
parameters for breath test 1

�, t1/2, tlat, tlag and self-corrected 
parameters for breath test 2

�, t1/2, tlat, tlag and self-corrected 
parameters for breath test 3

�, t1/2, tlat, tlag and self-corrected 
parameters for breath test 1

Isotope data for
breath test 1

Isotope data for
breath test 3

Isotope data for
breath test 2

Isotope data for
breath test 1

Population 
means and 

distributions

  Fig. 1.  Bayesian hierarchical analysis of the breath tests. Estimates of the individual parameters  F   G  ,  k , and  T  lag  
were made in parallel with the population characteristics (mean and distribution). The advantage of Bayesian 
estimation is the possibility of ‘information flow’ between individuals since the individual estimates rely on the 
observed mass spectral data, and also on the population distribution, which is in turn derived from the other 
individual estimates. This is sometimes referred to as ‘borrowing of strength’. 
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  A subset of the data (84 instances) had an independent 
assessment of GE made simultaneously by observing the 
incorporation of label from  2 H-octanoic acid into body 
water  [15] . This methodology gives two parameters,  t  1  and 
 t  2  describing the gastric input function. Direct compari-
son can be made between the ‘self-corrected’ parameter 
 T  lag  (in)  and  t  1 , and also between  Ġ  max  and 2/ t  2 . The self-
consistency of the WinBUGS analysis of the breath test, 
and the models proposed for post-absorptive processing 
is demonstrated by the high degrees of correlation (r 2  = 
0.80 for the first comparison, and r 2  = 0.65 for the second).

  Results from Individual Studies 

 In order to investigate the general utility of the Bayes-
ian approach in datasets of more limited size, the Win-
BUGS analysis was repeated for each of the five studies 
individually. The results obtained were compared with 
the NLS estimates to investigate if the conclusions drawn 
are dependent on the modelling method.
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  Fig. 2.  Comparison of results from an hi-
erarchical Bayesian analysis with individ-
ual least squares estimations. The unlikely 
high least squares estimates of  T  lag  and  T  1/2  
(most obvious in the inset graphs) are
replaced by more realistic values by the 
Bayesian method. 
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  Fig. 3.  Raw breath test results and the Bayesian fit (solid line median, dotted lines 95% CI) for the frequent feeding 
feasibility study. Note the graphs in the bottom line, which show data for a subject with slow GE, which were un-
able to be fitted satisfactorily using NLS methods.         
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  Frequent Feeding (Snacking) Study 
 Hierarchical analysis of the feasibility study data gave 

estimates of  FG BAY          ,  k  BAY  and  T  Bl A
a

Y
g         with good precision (c.v. 

of 7.9–28, 7.6–27 and 1.9–11.3%, respectively). The fits to 
the experimental data are shown in  figure 3 , and popula-
tion characteristics are indicated in  table  1 . Using the 
conventional NLS method, it was not possible to get a fea-
sible model for one subject  [10]  due to excessively slow 
GE. With the Bayesian approach, realistic interpretations 

0
0

10

20

30

40

50

60

70

80

90

100
NLS

Pe
rc

en
t l

ef
t i

n 
st

om
ac

h

1 2 3 4 5
Time (h)

6 7 8

0
0

10

20

30

40

50

60

70

80

90

100
Bayesian

Pe
rc

en
t l

ef
t i

n 
st

om
ac

h

1 2 3 4 5
Time (h)

6 7 8

  Fig. 4.  ‘Self-corrected’ GE curves for the 
four subjects in the feasibility study, de-
rived from NLS and Bayesian fitting. The 
error bars represent the standard error ob-
tained from four breath tests in the same 
subject. The dotted lines in the lower graph 
indicate the mean uncertainty (standard 
deviation) at each time point derived from 
the Bayesian analysis.         

Table 1. P opulation parameters obtained from hierarchical Bayes-
ian analysis for the frequent feeding feasibility study

Population characteristic Mean Median (95% interval)

FG BAY         0.489 0.488 (0.398–0.585)
kBAY, h–1 0.417 0.412 (0.323–0.500)
T  Bl A

a
Y
g    , h 4.66 4.64 (3.71–5.61)
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of the breath test could be made in all cases. This is due 
to the hierarchical nature of the approach (i.e. borrowing 
of strength between tests). For the subjects where satisfac-
tory analysis was obtained in both cases, their results 
were comparable ( table 2 ). Particularly striking is the im-
provement the Bayesian method gives for the ‘self-cor-
rected’ GE curves ( fig. 4 ).

  Turning now to the data obtained comparing frequent 
feeding with meal eating, there was a strong correlation 
obtained between the GE parameters deduced from the 
NLS and Bayesian methods ( fig. 5 ). The correlation coef-
ficients found were 0.992 ( T  lag ), 0.985 ( T  1/2 ), 0.997 (T lat ) 
and 0.961 ( T  asc ).

  In general, the Bayesian method was better at dis-
criminating between frequent feeding and meal eating 
behaviour. Whilst NLS indicated significant differences 
in T lag  (p = 0.028) and T lat  (p = 0.036) only, WinBUGS 
indicated greater significance in both parameters T lag 
(p = 0.015) and T lat  (p = 0.028), but also showed that T 1/2  
was also greater after frequent feeding (p = 0.043). The 
mean GE curves deduced from the Bayesian ‘self-cor-
rected’ profiles are illustrated in  figure 6 . The Bayesian 
analysis was also more discriminatory in the self-cor-
rected GE parameters, the NLS estimate of the increase 
in  t  1/2(  in  )  on the frequent feeding pattern being 0.32 h
(p = 0.014) compared with 0.30 h (p = 0.010) from the 

0
0

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

Ba
ye

si
an

2.0 4.0 6.0
NLS

Tlag (h)

8.0

0
0

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Ba
ye

si
an

1.0 2.0 3.0
NLS

Tlat (h)

4.0 0
0

1.0

2.0

3.0

4.0

5.0

6.0

Ba
ye

si
an

2.0 4.0
NLS

Tasc (h)

6.0

0
0

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

Ba
ye

si
an

2.0 4.0 6.0
NLS

T1/2 (h)

8.0

  Fig. 5.  Scatter plots of the GE parameters 
obtained from the frequent feeding study 
from the NLS and Bayesian analyses.         

Table 2.  Comparison of the breath test parameters derived in the frequent feeding feasibility study

Subject FG k, h–1 T lag, h
NLS Bayesian NLS Bayesian NL S Bayesian

1 5488% 5186% 0.37780.054 0.39680.054 3.9980.31 4.0080.30
2 3783% 4083% 0.53280.056 0.50080.047 2.9180.28 2.9380.28
3 54810% 5289% 0.45280.077 0.46180.073 4.3880.38 4.3980.37
4 N/A 5388% N/A 0.29180.061 N/A 7.2880.75

Not e that realistic estimates are obtained in all cases using Bayesian methods, whereas this is not the case for NLS.
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Bayesian method. The Bayesian analysis also gave a sig-
nificant difference in  t  lag  (  in  )  of 0.28 h (p = 0.02). Although 
a change of approximately the same magnitude was ob-
served in the NLS parameters, it failed to reach a signif-
icant level.

  Obesity Study 
 Comparison of the  13 COBT data from NLS and Bayes-

ian methods ( table 3 ) indicates much the same character-
istics as was found for the frequent feeding study. The 
highest values of F  G   obtained (always from obese sub-
jects) were reduced by the Bayesian methodology so that 
the apparent significant difference observed between the 
two groups by NLS is much reduced with the Bayesian 
method. The corollary to this is that the estimates of
T  B1A

/
Y

2       also become more uniform between the groups, and 
the statistical significance of this parameter is also lost.

  The effects of borrowing influence from other subjects 
are clearly illustrated in  figure 7 . For subjects where the 
GE curve is well-defined in the sampling interval, there 
is close agreement between NLS and Bayesian methods. 
However, for subjects with prolonged GE (i.e. when T 1/2  
approaches or exceeds the sampling interval), the agree-
ment becomes much poorer as can be seen by the devia-
tions from the line of unity in the top right of the graph.

  A somewhat surprising finding is that Bayesian analy-
sis indicates that the macroparameter k BAY  is identical for 
lean and obese subjects, but that  �  BAY  appears to be great-
er in the obese. Associated with this is the much increased 
significance in the difference in  t  lag  (  in  ) .

  Meal Size Study 
 As stated in the original report, 5 of the 36 breath tests 

could not be satisfactorily modelled by NLS methods  [12] , 

Table 3.  13COBT parameters obtained by NLS methods and 
Bayesian hierarchical techniques in a study comparing lean and 
obese subjects

Parameter Method Lean Obese p

FG NLS 0.42580.023 0.53580.028 0.006
Bayesian 0.41680.020 0.47280.018 0.04

k NLS 0.57680.028 0.52980.035 N/S
Bayesian 0.60680.027 0.60880.031 N/S

� NLS 5.2480.31 5.9580.54 N/S
Bayesian 5.7980.33 7.5480.61 0.016

Tlag NLS 2.8880.11 3.3480.11 0.005
Bayesian 2.8880.10 3.2680.09 0.008

T1/2 NLS 3.6780.14 4.2380.18 0.019
Bayesian 3.6380.13 3.9980.12 0.04

Tlat NLS 1.45480.062 1.71680.058 0.004
Bayesian 1.49780.065 1.81280.076 0.001

Tasc NLS 2.2280.11 2.5180.17 N/S
Bayesian 2.1380.09 2.1880.10 N/S

tlag(in) NLS 1.63280.077 1.92080.076 0.013
Bayesian 1.72480.078 2.10180.070 0.001

t1/2(in) NLS 2.07680.081 2.42280.068 0.003
Bayesian 2.11080.008 2.46680.067 0.002

0
0

5

10

15

20

25

30
Breath – snacking
Breath – meal
GE – snacking
GE – meal

Fr
ac

tio
n 

do
se

/h

1 2 3 4 5 6 7
Time (h)

8

2.0
2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Ba
ye

si
an

2.5 3.0 3.5 4.0 4.5 5.0 5.5
NLS

T1/2 (h)

6.0

  Fig. 6.  The mean breath test data and derived rates of GE obtained 
by ‘self-correction’ of the Bayesian fits to the breath test. The y-
axis represents the amount of the meal which has passed out of 
the stomach.         

  Fig. 7.  Comparison of T       1/2  for the obese (solid circles) and lean 
(open circles) subjects. 
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but this is apparently resolved using the Bayesian meth-
ods. A summary of the results is given in  table  4 . Al-
though the conclusions are largely unchanged, Bayesian 
methodology consistently reports increased significance 
in observed differences (for example p = 0.001 vs. 0.006 
for T lag , and p = 0.001 vs. 0.004 for T 1/2 ).

  Additionally, the Bayesian method produced esti-
mates of  T  lag  (p = 0.04),  t  lag  (  in  )  (p = 0.04) and  t  1/2(  in  )  (p = 
0.02) which were significantly correlated with body mass 
index for the 3-MJ meal only. These associations were not 
observed with NLS estimates.

  Meal Composition Study 
 In common with the NLS analysis, WinBUGS indi-

cated that the ‘standard’ meal was retained in the stom-
ach longest. The only material difference in the results 
from the two different analyses was that the Bayesian 
method indicated a significant difference for T lag  using 
ANOVA (p  !  0.05), which was not observed by NLS. Post-
ANOVA Bonferroni-corrected t tests indicated that Win-
BUGS detected a difference between the high protein 
meal and the standard meal. The meals did not give sig-
nificant differences in T 1/2  either by Bayesian or NLS 
methods, but in both cases the input parameters  t  lag  (  in  )  
and  t  1/2(  in  )  showed that the standard meal emptied at a 
lower rate than the other three.

  Discussion 

 We have demonstrated that Bayesian hierarchical 
methods form the basis of a convenient method of inter-
preting breath test data in GE studies. There are several 

reasons that make the method appealing, which can be 
summarised as:
  (1) a 100% success rate in obtaining meaningful estimates 

of the model parameters, which is due to the internal 
consistency of the underpinning theoretical founda-
tions of the method; 

 (2) the automatic generation of credible intervals (confi-
dence limits) for all parameters; 

 (3) an apparent greater discrimination between popula-
tions that might be expected to display altered GE; and 

 (4)  the analysis can be performed with the freely available 
WinBUGS package (http://www.mrc-bsu.cam.ac.uk/
bugs/); the code used to perform the modelling is rela-
tively short (around two thirds of a standard notebook 
page). 
 Criticism of the method might include that it is com-

putationally intensive, and that since all the model fits 
required for the study are performed simultaneously, a 
change in a single datum (for example to correct a typing 
error) requires that the whole set of breath-test curves be 
refitted. This is the case for hierarchical analyses, wheth-
er Bayesian or not. However, with relatively small studies 
such as those described (with around 50 breath tests in 
total), the fitting can be performed with WinBUGS on 
an average computer workstation in less than 10 min. In 
fact, this compares favourably with using the non-linear 
fitting routines in Microsoft Excel, for example, with 
several seconds being required for each individual fit to 
be performed. The advantage of the Bayesian approach 
is that it provides theoretically self-consistent and plau-
sible estimates of individual and population precisions, 
albeit with extra care being required during data prepa-
ration.

Table 4.  13COBT parameters obtained for the meal size study

NLS B ayesian

1 MJ (n = 12) 2 MJ (n = 10) 3 MJ (n = 9) 1 MJ  (n = 12) 2 MJ (n = 12) 3 MJ (n = 12)

FG1 0.50080.032 0.49980.028 0.51580.038 0.47180.024 0.49680.023 0.49580.021
k 0.58580.046* 0.43780.025 0.38080.046 0.58880.043* 0.41880.028 0.36180.033
� 4.3580.28 4.0880.037 4.4481.42 4.4980.32 4.3080.42 4.2981.01
Tlag 2.5680.12* 3.1780.14 3.3980.29 2.5880.12* 3.4080.18 3.6280.24
T1/2 3.3980.18* 4.2580.17 4.8280.40 3.4080.17* 4.6180.26 5.0980.31
Tlag(in) 1.3080.07 1.5380.15 1.3380.32 1.3580.07 1.6580.18 1.5780.25
T1/2(in) 1.7780.07* 2.1680.12 2.1980.25 1.8180.08* 2.3480.16 2.4380.22

* I ndicates significant difference (p < 0.05) from the 2-MJ meal according to paired t test.
1 Values differ from those previously quoted [12] due to a different method of calculating CO2 production being used.
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  Although a hierarchical approach was adopted in this 
illustration, Bayesian methods are equally applicable to 
the analysis of a single breath test. In this case the fitting 
took less than 30 s. Prior knowledge is still incorporated 
into the analysis, but when used in this way the model 
loses the advantages of shared information. However, this 
approach might be considered more relevant in a clinical 
setting where the result of a single breath test for diagnos-
tic purposes is required.

  No independent estimates (or true values) of the breath 
test parameters are available to confirm the results gener-
ated by the Bayesian methodology. However, from the 
fact that the results obtained are in almost perfect agree-
ment with NLS methods when the breath test output 
curve is adequately defined within the timeframe of the 
measurement period, we can infer that the Bayesian esti-
mates are reliable.

  Indeed, in cases where GE proceeds at normal rates, 
and the sampling timeframe of the experiment is suffi-
ciently long, there is no difference between the results 
obtained from NLS or Bayesian methods (for example in 
the frequent feeding study;  fig. 5 ). The advantages of the 
Bayesian method are demonstrable only when the data-
set contains subjects illustrating delayed substrate pro-
cessing, for which the data would have to be discarded if 
NLS methods are deployed.

  A further advantage of the Bayesian method over NLS 
techniques is that the former can accommodate errors in 
the basal (pre-test) isotopic composition in breath. Ob-
taining a good estimate of the basal value is vital when 
using NLS methods since this is subtracted from all of the 
other time points. Under the Bayesian scheme the mea-
sured value can be associated with a suitable prior (in this 
work a normal distribution with a standard deviation of 
1% was used), and then treated as a stochastic node in the 
analysis. As an example, the prior and post distributions 
of a typical basal value are shown in  figure 8 .

  The consequences of the sampling regime on the re-
sults of GE experiments have been investigated by others 
 [16] . The conclusion from this work was that the breath 
test should be conducted over a 4-hour period with a 30-
min period between samples. Clearly, this protocol would 
not be satisfactory for some of the studies considered in 
this work. Even with the test prolonged to 6 h there were 
an appreciable number of failures when NLS methods 
were used. The Bayesian approach can be used to elimi-
nate these failures, but caution must be exercised. For
example, by limiting the period over which fitting is
performed, the 4-hour protocol can be investigated. A 
marked decrease in precision of the estimated parameters 

occurs with the reduced sampling time, e.g. the fraction 
of cases where  T  1/2  is estimated with a coefficient of vari-
ation of less than 5% drops from 66% to only 17%, and 
whilst 99% of all breath tests returned estimates of this 
parameter with a c.v. of less than 10% using the full 6-hour 
data, the fraction decreased to 78%.

  A difficulty with the  13 COBT is that it has no well-
defined physiological basis to the model used for its in-
terpretation: the form of the equation used is purely 
based on the empirical observation that the output has 
the form of a bell-shaped curve. This means that the two 
parameters k and  �  cannot be unambiguously associated 
with a particular physiological process. Because of this, 
the significance of observations such as the apparent 
change in  �  in obesity revealed by the Bayesian method 
are unclear. For any given k, increasing  �  not only repre-
sents a delay in substrate processing, but also an increase 
in the maximum rate at which the substrate is processed 
 [10] .

  Studies of kinetics at the population level are widely 
used in drug pharmacokinetics since knowledge of in-
tersubject variability ensures the safety of dosing re-
gimes. The first introduction of these methods into 
physiological modelling was their application to the 
minimal model of glucose kinetics  [17–19] . As is the case 
for GE, using NLS techniques to fit the minimal model 
is subject to failure in some instances, producing im-
plausible (i.e. negative) values for insulin sensitivity or 
glucose effectiveness  [20] . Bayesian analysis with suit-

–28 –27 –26 –25
Delta PDB

–24 –23 –22

  Fig. 8.  Prior (light line) and posterior (heavy line) distributions 
for a typical basal delta value.         
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ably selected priors has been shown to eliminate this 
problem  [17] .

  In summary, Bayesian hierarchical methods provide a 
robust and reliable way to analyse the GE breath test. The 
methods avoid parameter estimation failure in cases 

where data quality is sub-optimal, yet reproduce the re-
sults of standard NLS methods when the data is well-be-
haved. We would recommend that the WinBUGS pack-
age be adopted routinely for the estimation of GE by 
 13 COBT. 
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