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Abstract: Chronic kidney disease (CKD)-associated uremia aggravates—and is aggravated by—gut
dysbiosis. However, the correlation between CKD severity and gut microbiota and/or their uremic
metabolites is unclear. We enrolled 103 CKD patients with stage 1 to 5 and 46 healthy controls.
We analyzed patients’ gut microbiota by MiSeq system and measured the serum concentrations of
four uremic metabolites (p-cresyl sulfate, indoxyl sulfate, p-cresyl glucuronide, and trimethylamine
N-oxide) by liquid chromatography–tandem mass spectrometry. Serum concentrations of the uremic
metabolites increased with kidney function deterioration. Gut microbial diversity did not differ among
the examined patient and control groups. In moderate or higher stage CKD groups, Oscillibacter
showed positive interactions with other microbiota, and the proportions of Oscillibacter were positively
correlated with those of the uremic metabolites. The gut microbiota, particularly Oscillibacter, was
predicted to contribute to pyruvate metabolism which increased with CKD progression. Relative
abundance of Oscillibacter was significantly associated with both serum uremic metabolite levels
and kidney function. Predicted functional analysis suggested that kidney-function-associated
changes in the contribution of Oscillibacter to pyruvate metabolism in CKD may greatly affect the
gut environment according to kidney function, resulting in dysbiosis concomitant with uremic toxin
production. The gut microbiota could be associated with uremia progression in CKD. These results
may provide basis for further metagenomics analysis of kidney diseases.
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1. Introduction

More than one trillion microbes are found in the human body [1], and they encode 3.3 million genes,
which is 150-fold higher than the number of genes encoded by the human genome [2]. By creating a
stable environment for symbiotic interactions with the host, these microbes play critical metabolic roles
in maintaining host health and homeostasis [2–5]. In chronic kidney disease (CKD), however, the influx
of urea, uric acid, and oxalate from the gastrointestinal tract increases as kidney function deteriorates,
which can perturb the balance between commensals and pathogens and lead to gut dysbiosis [2,6].
In parallel, the proliferation of urease-producing bacteria may result in the loss of intestinal barrier
integrity and a sequential increase of bacterial translocation to the systemic circulation, leading to the
deterioration of kidney function [2,7,8].

Gut dysbiosis due to kidney impairment is specifically associated with an alteration in uremic
toxin metabolism [9,10]. Various uremic toxins, including p-cresol and indole derivatives, produced
by dietary protein metabolism in humans have been identified [11]. The levels of p-cresol and indole
derivatives in serum are negatively correlated with kidney function and these protein-bound solutes
are inefficiently eliminated by dialysis [12–14]. They are also associated with decreased kidney function,
cardiovascular disease, and mortality in patients with pre-dialytic CKD [11,12,15,16]. In addition to
such amino acid-derived metabolites, trimethylamine-N-oxide (TMAO), which is produced by the
microbial degradation of dietary quaternary amines, including choline, betaine, and carnitine, is an
important uremic toxin related to the progression of CKD, atherosclerosis, heart attack, and metabolic
syndrome [17–19].

Although various studies have reported the relationship between gut dysbiosis and kidney
function impairment, as well as the involvement of gut microbiota in uremic toxin metabolism [8,19,20],
few studies have examined the consequential linkages among gut microbiota, uremic toxins, and kidney
dysfunction. This study was conducted to analyze the interrelationships among the gut microbiota,
uremic metabolites known to be produced in the gut, and kidney function impairment of patients in
various stages of CKD.

2. Materials and Methods

2.1. Study Participants

This study was approved by the Medical Ethics Committee of Seoul National University Hospital
(IRB number: 1808-153-967) and complied with the Declaration of Helsinki. The study included only
participants who provided informed consent and agreed to submit fecal specimens to the human
stool repository (IRB number: 1802-062-921). The human stool repository includes samples collected
from patients who underwent percutaneous kidney biopsy (IRB number: 1508-046-694) and from
kidney transplant donors and recipients prior to transplantation (IRB number: 1703-062-839). We also
obtained serum samples at the same time as feces collection from registered participants. The serum
samples for this study were provided by the Seoul National University Hospital Human Biobank, a
member of the National Biobank of Korea. All samples derived from the National Biobank of Korea
were obtained with informed consent under institutional review-board-approved protocols.

2.2. Clinical Information on Study Participants

We collected demographic information from the study participants, including details on age, sex,
height, and weight, and established whether any of these individuals had comorbidities, including
hypertension and diabetes mellitus, as determined from their clinical and medication histories compiled
in an electronic medical record system. Participants who had used antibiotics within one month were
excluded. Furthermore, given that gut microbiota may be affected by the systemic inflammation status,
we also collected data on the serum levels of highly sensitive C-reactive protein, which is used as a
marker of inflammation.
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Kidney function was assessed by measuring serum blood urea nitrogen and creatinine levels
at the time of fecal sample collection. The presence of hematuria and amount of proteinuria were
quantified based on urine microscopic examination and random urine protein to creatinine ratio
determinations, respectively. Plasma hemoglobin and serum albumin concentrations were examined
to evaluate the anemia and nutritional status, respectively. The etiologies of CKD were established by
pathological confirmation, imaging studies, or clinical diagnosis. The estimated glomerular filtration
rate was calculated using the Chronic Kidney Disease Epidemiology Collaboration calculation formula
according to CKD staging.

We divided the study participants into the following groups: kidney donors without evidence of
kidney disease as healthy controls; patients with stage 1 and 2 CKD as mild CKD; patients with stage 3
and 4 CKD, and stage 5 CKD without dialysis, as moderate to severe CKD; and patients with stage 5
CKD requiring dialysis as end-stage renal disease (ESRD).

2.3. Stool DNA Extraction and MiSeq Sequencing

The stool samples collected from all study participants were immediately stored in a deep freezer
at −80 ◦C. Stool DNA extraction was performed using a QIAamp® Fast DNA Stool Mini Kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instructions [21]. The extracted DNA was used to
amplify the V4–5 variable regions of the 16S rRNA gene. Amplification was performed in accordance
with the MiSeq system protocol for preparing a 16S metagenomics sequencing library (Illumina, Inc.,
San Diego, CA, USA). The amplicons of each sample were purified using Agencourt AMPure XP beads
(Beckman Coulter, Brea, CA, USA), and the purified amplicons were quantified using a PicoGreen
dsDNA Assay kit (Invitrogen, Carlsbad, CA, USA). Equimolar concentrations of each library were
pooled and sequenced using the Illumina MiSeq system (250-base pair paired ends) according to the
manufacturer’s instructions.

2.4. Sequence Data Analysis

For microbiota analysis, the obtained sequence reads were analyzed using the Microbial Genomics
Module of CLC genomic workbench v. 11.0.1 (Qiagen, Aarhus, Denmark). Briefly, raw sequences were
merged, and sequences with short read lengths (<400 base pairs of merged reads) or low-quality score
and chimeric reads were removed using the USEARCH pipeline v. 11.0.667 (http://www.drive5.com/

usearch). Primer sequences were removed from the merged sequences, and filtered sequences were
subsequently clustered into operational taxonomic units (OTUs) based on 97% sequence identity. The
taxonomic positions of representative sequences in each OTU were assigned based on comparisons with
the EzTaxon-e reference database [22]. To compare diversity indices among samples, sequence read
numbers were normalized by random subsampling and the indices were calculated using Mothur [23].
Principal coordinate analysis (PCoA) based on Bray–Curtis distances was performed using Calypso
to compare microbiota compositions among samples [24]. The functional roles of microbiota were
predicted using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States
(PICRUSt) [25], and the co-occurrence networks for microbiota in each group were inferred based on
Spearman correlation matrices and selected according to q < 0.05 (Benjamini–Hochberg-corrected).
Networks were constructed for significantly different direct interactions among genera in the different
patient groups, with the visualization of networks and calculations performed using CoNet with
Cytoscape (v. 3.4.0).

2.5. Serum Metabolite Analysis

Serum specimens collected from all study participants were stored in a −180 ◦C nitrogen tank.
To measure metabolites that are representative of uremic toxins, we selected as target metabolites
p-cresyl sulfate, p-cresyl glucuronide, indoxyl sulfate, and TMAO based on the findings of previous
studies [11,26,27]. The serum concentrations of these four metabolites were determined by liquid
chromatography–tandem mass spectrometry, as described previously [28,29]. Twenty-microliter

http://www.drive5.com/usearch
http://www.drive5.com/usearch
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samples were placed in microtubes, followed by the addition of 20 µL of acetonitrile containing an
internal standard and 500 µL of acetonitrile containing 0.1% formic acid. These sample mixtures were
vortexed for 30 s, followed by centrifugation at 13,000 rpm for 5 min. The resulting supernatants were
transferred into injection vials and subjected to liquid chromatography–tandem mass spectrometry.
We used an Agilent 1260 Infinity high-performance liquid chromatography system in conjunction
with an API 4000 QTRAP mass spectrometry system (Agilent Technologies, Santa Clara, CA, USA).
From the chromatograms, we calculated the area ratios of p-cresyl sulfate, p-cresyl glucuronide, indoxyl
sulfate, TMAO, and the internal standard and determined the concentrations of the metabolites using
previously prepared calibration curves. For p-cresyl glucuronide, the minimum detection limit was
5 ng/mL, and values were designated as zero when measurements were below this value.

2.6. Statistical Analysis

For the baseline characteristics, continuous variables are expressed as the means and standard
deviations and categorical variables are expressed as percentages. Differences between samples were
evaluated using the Mann–Whitney U and Kruskal–Wallis tests. The p-value for trends was calculated
using the Stata module “nptrend,” which is an extension of the Mann–Whitney U test that can be used
to perform nonparametric tests for trends across ordered groups; p < 0.05 was considered to indicate
statistical significance. Correlations between microbiota and uremic toxins were determined by linear
regression. The Benjamini–Hochberg false discovery rate (FDR) was applied to correct for multiple
testing and FDR-adjusted p-values of less than 0.05 were considered as significant. Statistical analyses
were performed using R v. 3.5.0 (R Core Team), Stata v. 15.1 (StataCorp, College Station, TX, USA), and
GraphPad Prism v. 8.1.1 (GraphPad, Inc., San Diego, CA, USA).

3. Results

3.1. Comparisons of Baseline Characteristics and Serum Uremic Metabolites according to CKD Group

We analyzed samples collected from a total of 149 participants, among whom there were 46 controls
and 103 patients with CKD. The patients with CKD comprised 36 subjects with mild CKD, 32 with
moderate to severe CKD, and 35 with dialysis-dependent ESRD. The baseline characteristics, laboratory
data, and uremic metabolite concentrations were compared among groups (Table 1). We found no
significant differences among groups with respect to the distributions of age and sex. Patients with
ESRD were, however, significantly leaner than patients in the control and other CKD groups (p = 0.003).
The participants with lower kidney function had more comorbidities, including hypertension and
diabetes mellitus (p < 0.001 and 0.020, respectively). In line with expectations, we observed that plasma
hemoglobin and serum albumin levels were negatively correlated with CKD severity (p < 0.001, in both
cases). The proportion of patients with anemia increased significantly with worsening CKD severity
(p < 0.001). However, serum levels of highly sensitive C-reactive protein did not differ significantly
among the four groups.

Measurements of the four uremic metabolites p-cresyl sulfate, p-cresyl glucuronide, indoxyl
sulfate, and TMAO in the sera revealed clear positive correlations with CKD severity (Kruskal–Wallis,
p < 0.001), although there were no significant differences in the levels of these metabolites between
participants in the control and mild CKD groups (Supplementary Figure S1).
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Table 1. Baseline characteristics between groups according to chronic kidney disease (CKD) severity.

Variables Control Mild CKD Moderate to Severe CKD ESRD

Total N = 149 N = 46 N = 36 N = 32 N = 35 p

Clinical parameters

Age (y) 47.0 ± 10.8 49.8 ± 15.1 52.4 ± 11.9 48.9 ± 12.2 0.251
Male sex (%) 16 (34.8) 21 (58.3) 17 (53.1) 15 (42.9) 0.15

Body mass index (%) 23.3 ± 3.0 24.6 ± 3.5 23.6 ± 3.2 21.8 ± 4.3 0.003
Diabetes mellitus (%) 0 (0) 3 (8.3) 6 (18.8) 6 (17.1) 0.02

Hypertension (%) 3 (6.5) 21 (58.3) 22 (68.8) 26 (74.3) <0.001
Blood urea nitrogen (mg/dL) 12.1 ± 2.9 14.4 ± 3.9 43.7 ± 25.7 45.8 ± 15.8 <0.001

Serum creatinine (mg/dL) 0.7 ± 0.2 0.8 ± 0.2 3.8 ± 2.5 7.8 ± 2.6 <0.001
CKD-EPI eGFR (mL/min/1.73 m2) 101.6 ± 19.0 98.3 ± 26.1 25.2 ± 17.2 7.2 ± 2.5 <0.001

Urine RBC (number /HPF) <0.001
0 24 (52.2) 4 (11.1) 7 (21.9) NA

1–4 17 (37.0) 7 (19.4) 9 (28.1) NA
5≤ 5 (10.9) 25 (69.4) 16 (50.0) NA

Urine protein/creatinine ratio 0.05 ± 0.03 3.6 ± 3.4 3.3 ± 3.4 NA <0.001
Plasma hemoglobin (g/dL) 13.8 ± 1.3 12.9 ± 1.6 11.1 ± 2.0 10.3 ± 1.6 <0.001

Anemia (%) 3 (6.5) 13 (36.1) 24 (75.0) 30 (85.7) <0.001
Serum albumin (mg/dL) 4.4 ± 0.3 3.5 ± 0.7 3.8 ± 0.5 3.8 ± 0.4 <0.001

Serum C-reactive protein (mg/dL) 0.1 ± 0.4 0.2 ± 0.3 0.7 ± 1.3 0.3 ± 0.8 0.321
Etiology of CKD (biopsy

proven/clinical diagnosis) <0.001

Diabetes mellitus NA 0 4 (0/4) 6 (0/6)
Hypertension NA 0 1 (1/0) 1 (0/1)

Glomerulonephritis NA 35 (35/0) 21 (18/3) 14 (4/10)
Polycystic kidney NA 0 4 (0/4) 3 (0/3)

Others NA 1 2 11
Serum uremic metabolites
P-cresyl sulfate (ug/mL) 9.5 ± 10.8 7.00 ± 8.7 63.2 ± 56.0 111.6 ± 87.0 <0.001

P-cresyl glucuronide * (ng/mL) 18.2 ± 18.0 19.8 ± 19.3 114.5 ± 110.1 746.7 ± 880.5 <0.001
Indoxyl sulfate (ug/mL) 0.7 ± 0.4 0.7 ± 0.6 7.3 ± 7.6 26.0 ± 17.8 <0.001

TMAO (ug/mL) 0.6 ± 1.1 0.8 ± 1.2 4.9 ± 5.9 13.9 ± 17.4 <0.001

* Calculated excluding samples measured below the minimum measurement limit of p-cresyl glucuronide (5 ng/mL).
Abbreviations: CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; RBC, red blood cell; HPF,
high-power field; TMAO, trimethylamine N-oxide; NA, not available.

3.2. Differences in Microbiota Composition according to CKD Group

A total of 1,796 OTUs were detected in all patients. To compare the diversity indices among samples,
read numbers were normalized to 6,400 by random subsampling, and we accordingly detected no significant
differences in bacterial diversity among the different patient groups (p > 0.05; Figure 1a). However, we
detected a larger number of observed OTUs in the ESRD group compared to the control and mild CKD
groups, respectively (p < 0.05; Figure 1b). PCoA based on Bray–Curtis distances did not clearly distinguish
differences in the microbiota in different CKD groups (Figure 1c). There were also no differences among
the groups with respect to the proportions of the different phyla, although Bacteroidetes, Firmicutes, and
Proteobacteria were dominant phyla in the gut microbiota of all groups (Figure 1d). A comparison of
the microbiota among groups at the genus level (Figure 1e) revealed 18 main genera, defined as those
constituting more than 1% of the total microbiota in samples. In most samples, Bacteroides and Prevotella
were the dominant genera (with averages of 28.5% and 15.0% in samples, respectively). When we evaluated
the differences in genera among groups based on multiple group comparisons, the proportions of Alistipes,
Oscillibacter, Lachnospira, Veillonella, and Dialister were shown to be significantly different among the four
groups (p < 0.05; Figure 2). The proportions of these genera in the microbiota of the control group were
significantly different from those in the moderate to severe CKD group, but not from those in the mild CKD
group. Furthermore, the proportions of Alistipes, Oscillibacter, Lachnospira, and Veillonella in the mild CKD
group differed from those in the moderate to severe CKD group. In contrast, we detected no significant
differences in the proportions of Alistipes, Oscillibacter, Lachnospira, Veillonella, and Dialister in the moderate
to severe CKD and ESRD groups. The relative abundance of Alistipes and Oscillibacter was increased with
the progression in CKD severity (tests for trends, p = 0.001 and 0.016, respectively), whereas the abundance
of Lachnospira, Veillonella, and Dialister decreased with increasing CKD severity (tests for trends, p = 0.019,
0.012, and p < 0.001, respectively).
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Figure 1. Comparison of diversity and taxonomy of gut microbiota according to chronic kidney disease
(CKD) severity. (a) Comparison of Shannon diversity indices of gut microbiota among CKD groups.
(b) Comparison of number of observed operational taxonomic units (OTUs) of gut microbiota among
CKD groups (*, p < 0.05; **, p < 0.01). (c) Principal coordinates analysis (PCoA) based on Bray–Curtis
distances of gut microbiota among healthy controls (red), patients with mild CKD (blue), patients with
moderate CKD (gray), and patients with end-stage renal disease (ESRD, yellow). The first two axes of
the PCoA plot are represented by principal coordinate axis 1 (PCoA1) and principal coordinate axis 2
(PCoA2). (d) Comparison of microbiota composition among CKD groups at the phylum level. red color,
Bacteroidetes; blue color, Firmicutes; yellow color, Proteobacteria; gray color, and other phyla with mean
relative abundances <1% of total abundance in samples. (e) Comparison of microbiota composition
among CKD groups at the genus level. The heatmap plot shows mainly detected genera with mean
relative abundances >1% of total abundance in samples; values <1%, unclassified or unidentified,
are classified as “others.” The abundances of all genera were plotted after conversion to a binary
logarithmic scale.
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Figure 2. Significantly different genera according to renal function in chronic kidney disease
(CKD) patients. We determined bacterial genera showing significant differences among patient
groups. (a) Genera showing significant increasing trends according to CKD group. (b) Genera
showing significant decreasing trends according to CKD group. q-values were determined using the
Benjamini–Hochberg method based on the p-values obtained using Mann–Whitney U tests. Single and
double asterisks for group comparisons indicate q < 0.05 and q < 0.005, respectively. ns, not significant.

To determine whether mutual interactions among the aforementioned five genera and other
gut microbes differed according to CKD severity, we performed co-occurrence network analysis.
We accordingly found that as kidney function decreased, the network appeared to become more active
and complex in terms of both positive and negative interactions of gut microbiota in these five genera
with other microbes (Figure 3). Oscillibacter and Veillonella were found to show the highest values of
betweenness centrality in networks and appeared to act as hubs in the microbial networks constructed
for patients with moderate or higher stage CKD. Oscillibacter showed positive correlations with other
genera, whereas Veillonella species were negatively correlated. These results indicate that the relative
abundance of Oscillibacter associated with kidney function impairment gives rise to the co-occurrence
of other gut microbiota.

3.3. Microbiota-Related Uremic Toxins

We subsequently analyzed differences in the relative abundance of gut microbiota according to
the levels of uremic toxins in the sera of patients and controls. The genera found to be associated
with the levels of uremic toxins are shown on a logarithmic scale in Table 2. According to the
FDR-adjusted p-values (q-values) in multivariable linear regression, p-cresyl sulfate showed a significant
association with six major genera, with positive correlations observed with Alistipes, Oscillibacter,
and Subdoligranulum (q < 0.001, q < 0.001, and q = 0.023, respectively) and negative correlations with
Lachnospira, Veillonella, and Megamonas (q = 0.039, q = 0.014, and q = 0.034, respectively). Serum
p-cresyl glucuronide and indoxyl sulfate levels were positively correlated with Alistipes (q = 0.010 and
q = 0.035, respectively) and Oscillibacter (q = 0.001 and q = 0.037, respectively). Serum TMAO levels
were associated only with Oscillibacter (q = 0.006). Unexpectedly, we found Oscillibacter to be associated
with all four measured uremic toxins, although each of these metabolites is derived from different
parent compounds.
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The size of circles indicates the relative abundance of each genus.

Table 2. Linear regression with each metabolite and major genera.

Predictors Regression
Coefficient Standard Error Adjusted R2 p FDR

p-cresyl sulfate (log)
Alistipes 0.207 0.050 0.100 <0.001 <0.001

Oscillibacter 0.238 0.045 0.155 <0.001 <0.001
Lachnospira –0.105 0.043 0.033 0.016 0.039
Veillonella –0.079 0.027 0.050 0.004 0.014

Subdoligranulum 0.234 0.085 0.042 0.007 0.023
Megamonas –0.092 0.036 0.036 0.012 0.034

p-cresyl glucuronate (log) *
Prevotella –0.023 0.009 0.034 0.014 0.062
Alistipes 0.189 0.057 0.062 0.001 0.010

Oscillibacter 0.213 0.053 0.094 <
0.001 0.001

Lachnospira –0.104 0.049 0.024 0.034 0.103
Subdoligranulum 0.224 0.097 0.028 0.023 0.081

Indoxyl sulfate (log)
Alistipes 0.126 0.043 0.048 0.004 0.035

Oscillibacter 0.112 0.041 0.043 0.007 0.037
Lachnospira –0.091 0.036 0.034 0.014 0.058

Subdoligranulum 0.177 0.073 0.032 0.016 0.058

TMAO (log)
Prevotella –0.016 0.007 0.027 0.026 0.080
Alistipes 0.104 0.046 0.027 0.026 0.080

Oscillibacter 0.145 0.042 0.067 0.001 0.006
Lachnospira –0.087 0.039 0.026 0.027 0.080

Dialister –0.107 0.043 0.034 0.014 0.080

Only variables with p-values under 0.05 are listed in this table while FDR was calculated with all major genera.
Listed variables are in descending order according to relative abundance. * Samples measured below the minimum
measurement limit (5 ng/mL) are calculated as imputation to zero. Abbreviations: FDR, false discovery rate; TMAO,
trimethylamine N-oxide.
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3.4. Predicted Functional Analysis of Gut Microbiota among the CKD Groups

The functions of the gut microbiota were predicted based on PICRUSt analysis and a comparison
of pathways based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) categories among the
different CKD groups. At KEGG Ortholog (KO) level 3, four pathways were predicted to be significantly
different among groups (q < 0.05; Supplementary Table S1). Among these significant pathways, KEGG
terms relating to “Pyruvate metabolism” and “Methane metabolism” were predicted to increase with
decreasing kidney function, whereas “Riboflavin metabolism” was predicted to decrease with kidney
function deterioration (Figure 4a).Microorganisms 2020, 8, x FOR PEER REVIEW 10 of 15 
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component (K00627). These findings indicate that Oscillibacter is a primary source of pyruvate 
dehydrogenase, a key enzyme involved in glucose oxidation that converts pyruvate to acetyl-CoA. 
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Figure 4. Predicted functional analysis. (a) Comparison of significantly different metabolic pathways
among chronic kidney disease (CKD) groups based on predicted functional analysis. Only pathways
showing a significant difference among groups were plotted (see Supplementary Table S1 for a complete
list of functional pathways). Single and double asterisks for group comparisons indicate q < 0.05 and
q < 0.005, respectively. (b) Comparison of the total contribution of genera to the pyruvate metabolism
pathway among groups. Only major genera showing a mean proportional contribution >1% among
all samples are listed. (c) Comparison of the proportional contributions of Oscillibacter (upper) and
Veillonella to the pyruvate metabolism pathway among patient groups. q-values were determined
using the Benjamini–Hochberg method based on the p-values obtained using Mann–Whitney U tests.
*, q < 0.05; **, q < 0.005.

Given that pyruvate metabolism represents a key intersection in the network of various metabolic
pathways, we focused on this pathway and examined the contribution of major genera to pyruvate
metabolism (Figure 4b). We accordingly found that only the proportional contributions of Oscillibacter
and Veillonella showed significant differences among the patient groups (p = 0.0011 and p = 0.0014,
respectively; Figure 4c), and as CKD severity increased, the contribution of Oscillibacter to pyruvate
metabolism increased, whereas that of Veillonella decreased.

As Oscillibacter showed some evidence of an association with uremic metabolites and CKD
severity as well as differences among CKD groups regarding the proportional contribution to pyruvate
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metabolism, we performed a detailed analysis of the contribution of Oscillibacter to each orthologous
gene involved in pyruvate metabolism. Among all orthologs, we found that functional orthologs of
the E1 component of pyruvate dehydrogenase (K00161, K00162) showed the highest proportional
contribution of Oscillibacter (33.0% for K00161 and 33.1% for K00162). Among all genera, Oscillibacter
also showed a high proportional contribution (21.3%) to the pyruvate dehydrogenase E2 component
(K00627). These findings indicate that Oscillibacter is a primary source of pyruvate dehydrogenase, a
key enzyme involved in glucose oxidation that converts pyruvate to acetyl-CoA. The proportional
contributions of Oscillibacter to each orthologous gene involved in pyruvate metabolism compared
with those of other genera are shown in Supplementary Table S2.

Although comparisons among the different patient groups revealed no significant differences in
the contributions of Oscillibacter to each of pyruvate metabolism orthologs according to CKD severity,
we found that the contribution to pyruvate dehydrogenase E1 component decreased by approximately
10% in CKD groups compared with the control group (for K00161: 40.1% in the control, 27.0% in
mild CKD, 32.2% in moderate to severe CKD, and 31.4% in ESRD; for K00162: 40.2% in the control,
27.0% in mild CKD, 32.2% in moderate to severe CKD, and 31.4% in ESRD). In contrast, we found
that the contribution of Oscillibacter to lactate dehydrogenase, which converts pyruvate to lactate,
was significantly increased (Kruskal–Wallis p = 0.003; q-value between control and ESRD = 0.009;
Figure 5). In addition, we observed significant increases in the contributions to other collateral metabolic
pathways, among which was an increase in oxaloacetate and formate production at the expense of a
direct generation of acetyl-CoA via pyruvate dehydrogenase (K01958: pyruvate carboxylase, p < 0.001;
K00656: formate C-acetyltransferase, p = 0.009; Supplementary Table S2 and Supplementary Figure S2).
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Figure 5. Schematic diagram showing the contribution of Oscillibacter to pyruvate metabolism according
to renal function. Flow charts were derived based on the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways. Small bar charts represent a comparison of the contribution of Oscillibacter to different
orthologous genes according to the patient group. q-values were determined using the Benjamini–Hochberg
method based on the p-values obtained using Mann–Whitney U tests. Asterisks in the bar charts indicate
significance (q-value) compared with the control group. ns, not significant; *, q < 0.05.

4. Discussion

The gut microbiota as a source of uremic toxin accumulation in patients with CKD has gained
attention. CKD affects bacterial fermentation processes, including colonic transit time and colon
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microbiota composition, resulting in changes in the microenvironment of the colon [2,6]. However,
the integrating effect of CKD on the gut microbiota and their associated metabolites have not been
characterized in detail. In this study, we investigated the associations between specific gut microbes,
including Oscillibacter, and levels of uremic metabolites, along with changes in predicted metabolic
pathways related to kidney dysfunction in patients with CKD.

Although several studies have analyzed the gut microbiota in patients with CKD, most studies
focused on the differences between patients with ESRD and healthy controls. For example, Vaziri et al.
identified a significant elevation in the relative abundance of 190 OTUs in patients with ESRD compared
with healthy controls [30]. Similarly, using a bacterial culture method based on diluted stool samples,
Hida et al. observed elevated contents of several gut bacteria in patients on hemodialysis compared to
healthy controls [31]. In contrast to these previous studies, we focused on patients with pre-dialytic
CKD, who were subclassified based on their estimated glomerular filtration rate to examine serial
changes in gut microbiota according to kidney functional impairment. We accordingly identified specific
gut microbes (Alistipes, Oscillibacter, Lachnospira, Veillonella, and Dialister), the relative abundances of
which showed continuous change concomitant with changes in kidney function. Given that previous
studies only investigated differences in OTUs at the family level or differences in OTUs between
control and subjected with ESRD [30,31], it is difficult to properly compare the changes in OTUs
discovered in previous studies and those in the current study. However, in the study of Varizi et al. [30],
the class Clostridia which includes Oscillibacter, was reported to show a significant elevation in patients
with ESRD compared with control subjects, thereby indicating that our findings are at least partially
consistent with those reported previously.

Of the bacterial taxa showing significant differences among the CKD groups, Oscillibacter and
Veillonella appear to have important roles as network hubs for the other microbes in the analysis
of network co-occurrence. Particularly, Oscillibacter showed significant positive associations with
diverse genera in patients with advanced CKD, indicating that the bacterial species in this genus
interact with those in other bacteria in the gut microbiota of patients with advanced CKD. Moreover,
we found that Oscillibacter showed common associations with the four uremic metabolites p-cresyl
sulfate, p-cresyl glucuronate, indoxyl sulfate, and TMAO, which are derived from a diverse range of
parent compounds, including phenols, indoles, and quaternary amines. These broad effects on uremic
metabolites and other microbes suggest that Oscillibacter play a pivotal role in creating a favorable
inflammatory environment that facilitates the proliferation and activation of a number of uremic
toxin-producing pathogens. Although they are poorly represented in culture collections, the genus
Oscillibacter was detected in human gut microbiota related to some pathologic state [32–34]. Elevated
Oscillibacter abundance had been found in patients with stroke and closely related to gut permeability
and host inflammation [34,35]. However, the physiological role of Oscillibacter with respect to kidney
disease has not been reported. Veillonella, another core microbiota associated with CKD stages, has
not been studied in gut microbiota from patients with kidney disease, although they were previously
reported to be decreased in saliva and oral swab samples of patients with CKD [36].

In the present study, we conducted predicted functional analyses to detect clues indicating the
physiological role of the microbiota in the production of toxins associated with kidney dysfunction.
We found that as kidney function deteriorated, there was an increase in the microbial contributions to
pyruvate metabolism, particularly with regards to the proportional contribution of Oscillibacter-related
genes. Moreover, we observed that the elevated abundance of Oscillibacter and their contribution to
pyruvate metabolism were weighted toward anaerobic glycolysis (represented by lactate production)
rather than to aerobic glycolysis as kidney function deteriorated. A recent metabolomics study revealed
that citric acid metabolism in the tricarboxylic acid cycle, a subsequent pathway of pyruvate, is the
most altered metabolic pathway in patients with nondiabetic CKD stages 3–4 compared to in healthy
controls [37]. Furthermore, the genus Oscillibacter is significantly associated with serum lactate levels
according to an animal study and the genus Veillonella is related to the metabolism of lactate to
propionate in athletes [38,39]. The changes in lactate metabolism mediated by these microbes promote
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changes in intestinal pH, a decrease in which has previously been shown to disrupt the growth of certain
members of the gut microbiota, thereby modifying microbial and metabolic interactions [40]. Based on
these processes, changes in the gut microbiota may influence the production and absorption of uremic
metabolites by gut intraluminal environmental disturbance, and vice versa. Further comprehensive
studies of the association between changes in local and systemic metabolic pathways and specific
microbes in patients with renal disease are needed.

Although the present study has notable strengths, such as including an entire spectrum of CKD stages,
there were also limitations. First, we did not establish any clear causal relationships among microbiota,
microbial metabolites, and CKD. Although we demonstrated associations between microbes and specific
metabolites within the microbiota, the causal mechanisms should be determined in further studies. Second,
the number of participants registered in each group was relatively small. However, compared with previous
studies of CKD and microbiomes, we evaluated a similar or larger number of participants. Furthermore,
although we obtained comparative values at certain times during CKD progression, we did not observe
serial changes in renal function over time. Finally, we did not assess interactions between the human host
and observed microbiota as immunological factors or perform gene expression analyses. However, this
study provides a possible association between gut microbiota and renal functions.

5. Conclusions

In this study, we detected significant correlations among the gut microbiota, uremic metabolites,
and renal functions in patients with CKD, providing insights into the role of the gut microbiome
in the progression of kidney disease. Our findings indicate that the deterioration in renal function
observed in patients with CKD is related to increases in the relative abundance of Oscillibacter within
the gut microbiota, the bacteria of which interact with other gut microbes. Based on our observations,
Oscillibacter may create a favorable environment for the production of various uremic metabolites,
and such action may be related to the altered contribution of Oscillibacter to the pyruvate metabolism
pathway. Further studies are needed to confirm our results and perform more in-depth analyses of the
various interrelationships among the gut microbiome, microbial metabolites, and CKD progression.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/8/6/907/s1,
Figure S1. Serum levels of four uremic metabolites according to CKD groups; Figure S2. Hypothetical pathway
diagram using the KEGG module associated with changes in Oscillibacter contribution according to renal function;
Table S1. Differentially represented KEGG categories predicted by PICRUSt (level 3) in 4 groups; Table S2.
Contribution of Oscillibacter to functional orthologs associated with the pyruvate metabolism pathway.
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