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Computational methods using 
genome-wide association studies to 
predict radiotherapy complications 
and to identify correlative 
molecular processes
Jung Hun Oh1, Sarah Kerns2, Harry Ostrer3, Simon N. Powell4, Barry Rosenstein5 & 
Joseph O. Deasy1

The biological cause of clinically observed variability of normal tissue damage following radiotherapy is 
poorly understood. We hypothesized that machine/statistical learning methods using single nucleotide 
polymorphism (SNP)-based genome-wide association studies (GWAS) would identify groups of patients 
of differing complication risk, and furthermore could be used to identify key biological sources of 
variability. We developed a novel learning algorithm, called pre-conditioned random forest regression 
(PRFR), to construct polygenic risk models using hundreds of SNPs, thereby capturing genomic features 
that confer small differential risk. Predictive models were trained and validated on a cohort of 368 
prostate cancer patients for two post-radiotherapy clinical endpoints: late rectal bleeding and erectile 
dysfunction. The proposed method results in better predictive performance compared with existing 
computational methods. Gene ontology enrichment analysis and protein-protein interaction network 
analysis are used to identify key biological processes and proteins that were plausible based on other 
published studies. In conclusion, we confirm that novel machine learning methods can produce large 
predictive models (hundreds of SNPs), yielding clinically useful risk stratification models, as well as 
identifying important underlying biological processes in the radiation damage and tissue repair process. 
The methods are generally applicable to GWAS data and are not specific to radiotherapy endpoints.

Approximately 50% of cancer patients receive radiation therapy (RT) as part of their treatment at some stage 
during a course of treatment, resulting in a large number of survivors who are susceptible to the development of 
radiation-induced toxicities1–3. Despite advances in radiotherapy and biotechnology, some surrounding normal 
tissue is inevitably irradiated during a course of RT, which may lead to the development of side effects and a 
worsening quality of life for patients. A long-term goal of research in the field of radiation oncology has been to 
identify patients predisposed to severe complications who should therefore receive less dose or, potentially, other 
treatment modalities4. Non-sensitive patients could then be treated safely with effective doses.

It has been established that more than a hundred different genes are involved, to some extent, in the determi-
nation of radiosensitivity5. Efforts to find genetic markers that predict radiation response (called “radiogenom-
ics”) have focused on identifying one or a small number of germ-line single-nucleotide polymorphisms (SNPs) 
with genome-wide statistical significance6–9. There has recently been substantial progress in identifying SNPs 
that are thought to be associated with radiation-induced toxicities in several cancers using increasingly large 
(genome-wide) data sets4. However, such single-SNP methods are limited with respect to their ability to iden-
tify SNPs that are significantly associated with an endpoint because of the need for massive multiple-testing 
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corrections to limit false positive observations4,10, thereby limiting detection to relatively large effect sizes. For 
typical study sizes, such methods are unable to reliably identify modest effects from the many genes that are likely 
to contribute to the overall risk for polygenic processes such as tissue repair following radiation damage.

As an alternative approach, we hypothesize that predictive models with a large number of genetic markers 
(SNPs) are much more likely to be successful, because they allow for inclusion of small effects that individually do 
not reach genome-wide significance. Although some (even many) SNPs included in the resulting model are “false 
positives”, the final model merely needs to result in a reliable overall estimation of risk.

A key requirement for this approach is to design a computationally feasible, unbiased, and reliable algorithm 
that begins with the genome-wide scale of millions of SNPs11–14. This appears to be an attractive application for 
machine learning, which often focuses on building predictive models—even when the number of features is 
much larger than the number of training examples15. It is often said that a key drawback to machine learning is 
the “black box” nature of the algorithms. To the contrary, as we demonstrate, a machine learning-based ranking 
of the impact of a large number of genetic markers is a nearly ideal bioinformatics input to identify key underlying 
biology.

To address this problem, we designed a novel computational method that incorporates machine learning and 
bioinformatics techniques to predict individual radiosensitivity and to identify relevant biological processes. We 
tested our approach on a GWAS dataset, with the goal of predicting the risk of developing rectal bleeding and 
erectile dysfunction in prostate cancer patients treated with RT.

The American Cancer Society expects that 180,890 new prostate cancer cases will be diagnosed in 2016 with 
an estimated 26,120 deaths16. Radiotherapy for prostate cancer patients sometimes results in severe gastroin-
testinal (GI) toxicity such as rectal bleeding, ulcerations, or less commonly, strictures or fistulas17. Radiation 
induced-erectile dysfunction (ED) is also a common side effect, as well as other genitourinary (GU) severe tox-
icities such as dysuria, hematuria, and bladder ulceration or necrosis18,19. Accurately predicting who is at high 
or low risk of such complications has been elusive20. Hence, if successful, the method could have a significant 
impact on the ability to customize radiotherapy treatments for many patients, resulting in fewer severe treatment 
complications.

Materials and Methods
Data.  We analyzed a GWAS cohort dataset, previously reported in refs 19 and 21, consisting of 368 prostate 
cancer patients treated with RT at a single institution. This study received Institutional Review Board approval 
at Mount Sinai Medical Center and all patients provided informed consent. All experimental protocols and pro-
cedures were performed in accordance with the guidelines of the Mount Sinai Medical Center. We included all 
patients with at least one year of followup after RT, for two late radiation-induced toxicities: rectal bleeding and 
erectile dysfunction. Rectal bleeding was graded using the discrete Radiation Therapy Oncology Group (RTOG) 
late radiation morbidity scoring schema. Grade 2 or higher requires medical treatment (see Appendix in ref. 21 for 
detailed information). Erectile dysfunction was assessed using the patient-administered Sexual Health Inventory 
for Men (SHIM) questionnaire (see ref. 22 for detailed information) with the following 5 grades: no erectile 
dysfunction (SHIM total score, 22−​25), mild (17−​21), mild to moderate (12−​16), moderate (8−​11), and severe 
(1−​7). Patients with severe erectile dysfunction before RT were excluded from the analysis, i.e., patients with 
SHIM ≤​ 7 or the Mount Sinai Erectile Function (MSEF) score ≥​2 for those who were treated before introduction 
of the SHIM questionnaire. The MSEF scoring system is defined as follows: 0 =​ no erections; 1 =​ erections but 
insufficient for intercourse; 2 =​ erections suboptimal but sufficient for intercourse; and 3 =​ optimal erections19. 
For each endpoint, we defined cases and controls as follows: for rectal bleeding, cases and controls were defined as 
patients with the RTOG grade ≥​2 and grade ≤​1, respectively; and for erectile dysfunction, patients with at least 1 
post-treatment SHIM ≤​7 were considered cases and patients with all post-treatment SHIM ≥​16 were considered 
controls, which was previously used in ref. 19. These definitions resulted in 236 evaluable patients for erectile 
dysfunction and 365 evaluable patients for rectal bleeding. For an unbiased assessment of resulting predictive 
models, the dataset was split at the outset, once and for all, into two groups: a training dataset (2/3 of samples) and 
a validation dataset (1/3 of samples). The split was random except we continued random selection until the event 
rate was nearly equal in the two groups. Table 1 shows the number of samples used in the training and validation 
datasets for each endpoint. Under the assumption of an additive effect genetic model, SNPs were coded with the 
number of copies of the minor allele23.

Endpoint Group
Training 
samples

Validation 
samples

Rectal bleeding

Cases 49 25

Controls 194 97

Total 243 122

Erectile dysfunction

Cases 88 45

Controls 69 34

Total 157 79

Table 1.   Number of samples used in the training and validation datasets in the model building process of 
rectal bleeding and erectile dysfunction.
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Quality Control and Population Stratification.  A quality control test for the GWAS data was per-
formed, which excluded SNPs that did not fulfill the following criteria from the analysis: (1) missing rate >​5%; 
(2) minor allele frequency (MAF) <​5%; and (3) Hardy-Weinberg Equilibrium (HWE) p-value <​ 1 ×​ 10−5, result-
ing in 606,571 SNPs remaining.

The measured genetic inflation factor was <​1 and 1.06 for rectal bleeding and erectile dysfunction, respec-
tively, indicating negligible evidence of population stratification. In addition, a chi-square test showed that there 
was no significant difference in the number of events (toxicities) between populations for both endpoints with 
p-value =​ 0.37 and 0.43 for rectal bleeding and erectile dysfunction, respectively (Supplemental Material).

Model Building.  Paul et al. proposed a statistical model building method called pre-conditioning consisting 
of supervised principal component analysis (SPCA) followed by least absolute shrinkage and selection operator 
(LASSO) for a regression problem with a continuous outcome variable24. The motivation is to replace the meas-
ured original outcome variable with another continuous outcome variable that has high correlation both with 
important features as well as the measured outcome variable, thus providing a more informative input for further 
statistical learning. We incorporate this concept by proposing a predictive model that we term pre-conditioned 
random forest regression (PRFR) wherein we first convert a binary outcome variable (toxicity vs. non-toxicity) to a 
continuous outcome variable using principal components and logistic regression, and thereafter build a predictive 
model using random forest regression. The modeling tree nature of the algorithm, and the ability to effectively 
use many SNPs as biomarkers across hundreds of trees, makes it an attractive machine learning method to apply 
to SNP GWAS data. Random forests have previously been employed to effectively model the genetic risk to heart 
disease25, and Parkinson’s disease and Alzheimer’s disease26.

Before the model building process, to remove irrelevant SNPs and to make the process computationally tracta-
ble, SNPs with univariate p-values >​ 0.001 are filtered out, based on a chi-square test with a 3 ×​ 2 contingency 
table that consists of the counts of each genotype (i.e., common/common, common/rare, and rare/rare) vs. out-
come (toxicity, no toxicity). Note that single-SNP association tests are conducted using only training data.

Model building steps are repeated using 5-fold cross-validation (CV) on the training data, repeated 100 times 
with random shuffling of samples. For each shuffling of the training data, the process is as follows: (1) individual 
SNPs are then ranked based on the resulting area under the receiver operating characteristic curves (AUCs) 
resulting from univariate logistic regression over 5-fold CV samples, (2) using an increasing number of the top 
ranked SNPs, principal component analysis (PCA) is applied, (3) the first two principal components are weighted 
within a multiple logistic regression model fitted to the outcomes. This results in continuous pseudo-outcomes 
(the “pre-conditioned outcomes”) that can also be viewed as preliminary estimates of complication probability, 
(4) the pre-conditioned outcomes used in the model building process are found in a way that the resulting AUC 
values reach saturation (around 1.00) from step (3), and (5) a random forest regression model is then constructed 
using all SNPs that passed the threshold of p-value 0.001. Model performance and variance are estimated by tab-
ulating model performance on the hold-out validation dataset for each CV. Finally, a resulting predictive model 
built using the entire training dataset is assessed on the hold-out validation dataset by computing an AUC and 
examining a calibration plot. Algorithm S1 describes the proposed method.

Random forest regression is a well-known ensemble method, consisting of a collection of regression trees. 
Each tree sub-classifies each patient according to a subset of features that define the branches of the tree. Each tree 
is constructed using a bootstrap dataset that is randomly sampled with replacement from the original patient data, 
having the same size as the original data; likewise, a random subset of features is used at each node split. Trees 
are built by finding a best feature to create a branch at each level of the tree. The final answer is found by aver-
aging over many trees (a “forest”), thus capturing fitting to detailed characteristics while being insensitive to the 
prediction bias of any single tree14,26. Variability in model performance was estimated on the hold-out validation 
data by random forest models built repeating the modeling building process (steps 1–5) 500 times (5-fold CV ×  
100 iterations) on the training data. Each random forest model consisted of 1000 trees.

At each node of each tree, a best SNP was chosen from a subset of SNPs (the size equals to the square root of 
the number of SNPs that passed the univariate threshold with a p-value of 0.001) randomly selected. The min-
imum number of samples required to populate a node was set to 5. With this threshold, the tree stops growing 
when the number of samples arriving at the terminal nodes is smaller than 5.

To better characterize this approach, we compared performance with several other approaches, using LASSO 
instead of random forest, but still with the pre-conditioned outcomes (denoted PL); using a standard random 
forest classifier with the original outcomes (denoted RFC); and using LASSO with the original outcomes (LLR).

Identification of Enriched Biological Processes Associated with Endpoints.  We investigated the 
possible relationship between genes tagged by important SNPs used in the model building process and biological 
processes implicated in the endpoints. To do this, we created an estimate of importance for SNPs used in the 
random forest model building phase. We randomly permutated SNPs in the random forest predictive model 
and ranked the impact on predictive accuracy for out-of-bag (OOB) data (i.e., samples not selected at the time 
of tree construction). It is reasonable to assume that SNPs with larger importance scores have a greater chance 
of being causally related to the endpoint than those with smaller importance scores. We selected the top 25% of 
SNPs ranked using the importance score, and further selected only those SNPs that fall within 10 kb upstream 
or downstream of known genes, as determined using the UCSC genome browser. We then used this filtered list 
of genes as input to a curated bioinformatics database (MetaCore, Thomson Reuters) that can generally identify 
significant biological processes and key gene/protein interactions given a list of input genes. This process was 
repeated with the top 50%, 75%, and 100% of SNPs that passed the univariate threshold. We chose a best cutoff to 
GO enrichment analysis that resulted in the most reasonable biological relevance5,27.
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Generating SNP Importance Scores.  In more detail, we evaluated the importance of each SNP in the 
predictive random forest based on the following steps: (1) for each SNP, the prediction mean squared error (MSE) 
is computed in each tree using OOB data, (2) one SNP per tree in the OOB data is randomly permutated, whereas 
the remaining SNPs are left unchanged and the resulting MSE, denoted MSEp, is tabulated. MSEp is typically 
larger than MSE, and (3) these steps are iterated for all SNPs over the entire model building process. The differ-
ence between MSEp and MSE is averaged across all the trees and the averaged score is used as a final measure of 
individual SNP importance.

Data availability.  The GWAS data and clinical variables have been deposited in the dbGaP database (acces-
sion number: phs000772.v1.p1).

Results
Univariate Analysis using Training Data.  Figure 1 shows a quantile-quantile (Q-Q) plot for rectal bleed-
ing. Deviation from straight line behavior, as observed, supports the concept that a number of SNPs are involved 
with late radiation-induced rectal bleeding. Note that SNPs are not completely independent statistical predic-
tors; hence in the x-axis p-values are only nominal. We filtered out SNPs with p-values >​ 0.001 computed in the 
single-SNP chi-square test on the training data, resulting in 749 and 367 SNPs that met the threshold for rectal 
bleeding and erectile dysfunction, respectively.

Performance Evaluation of Predictive Models.  Figures 2A and B show box plots of the 500 AUC values 
(5-fold CV ×​ 100 iterations), indicating predictive power of the computational methods for rectal bleeding and 
erectile dysfunction on the hold-out validation data tested by predictive models built using cross validation-based 
training data. For both endpoints, PRFR outperformed other methods, with average cross validation AUCs of 
0.70 and 0.62 for rectal bleeding and erectile dysfunction, respectively, when the first two principal components 
were used in the PCA pre-conditioning phase (For rectal bleeding, using only the first principal component 
resulted in an average cross validation AUC of 0.69). There was no further performance improvement when the 
first 3, 4, and 5 principal components were used. In contrast, for erectile dysfunction, the predictive performance 
was saturated with the first principal component. Nonetheless, for consistency, we used the first two principal 
components for all modeling. The predictive performance of the three alternative methods was similar, but PRFR 
had the highest performance and smallest standard deviation (STD) on cross validation. The random forest-based 
models including PRFR and RFC had smaller STDs compared with the LASSO-based models. All final compari-
sons with the hold-out validation data and biological analyses were based on the PRFR model.

Identification of Key Biological Processes Associated with Endpoints.  For the 749 and 367 SNPs 
obtained in univariate analysis on the training data, associated with rectal bleeding and erectile dysfunction, 
respectively, we assessed the extent of importance of each SNP in the PRFR model. Figures 3A and B show the 
sorted importance score of these SNPs. The y-axis scale is an estimate of the mean square increased by permuta-
tion for each SNP on OOB samples. Using the top 25%, 50%, 75%, and 100% of these SNPs, we searched for genes 
within 10 kb upstream or downstream. With this threshold, 198 and 90 unique genes were found, respectively, for 
rectal bleeding and erectile dysfunction. Interestingly, there were no common SNPs between the two sets of SNPs, 
whereas 11 common genes were found, including: ANKS1B, CNTN4, DLG2, DPP6, ETV6, FHIT, GABRB1, 
MCTP2, PDE4D, PDZRN3, and TBC1D9. We uploaded each list of genes identified with a different percentage 
of the top SNPs into the curated MetaCore database, and performed GO enrichment analysis in order to identify 
associated biological processes for these genes28–30. For rectal bleeding, we found that the list of genes (133 genes) 
identified with the top 50% of SNPs (374 SNPs) was more biologically plausible than the list resulting from the use 
of 100% of SNPs. This should be expected, as the list of all SNPs relies only on the univariate threshold, whereas 
the list of the top 50% of SNPs relies on correctness of the modeling process, which cannot be dismissed given the 
good predictive accuracy of the final model. For erectile dysfunction, when the top 50% of SNPs (183 SNPs) were 
used, reasonable biological processes were also identified with 60 genes. Tables 2 and 3 show the top 10 biological 
processes implicated in either rectal bleeding or erectile dysfunction, along with the corresponding genes for each 

Figure 1.  Quantile-Quantile (Q-Q) plot for p-values obtained by single association tests using chi-square 
test on the training dataset in rectal bleeding. It is typical of GWAS that many of the highest correlations are 
false-positives. We address this problem via multi-SNP machine learning methods.
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biological process. For all 10 biological processes in both tables, the estimated false discovery rate (FDR) was less 
than 0.05. Interestingly, CACNA1D and CXCR5 involve all 10 biological processes implicated in rectal bleeding 
and erectile dysfunction, respectively. Tables S1 and S2 give a complete list of the biological processes identified 
for the different percentage of the top SNPs.

With the expectation that interacting proteins in a biological network have a similar function, we also explored 
directly connected protein-protein interaction networks produced using the given genes. The largest connected 
networks consisted of 10 and 5 proteins for rectal bleeding and erectile dysfunction, respectively, and are shown 
in Fig. 3C and D.

Under the assumption that the univariate cutoff is a process prone to error, and that the importance scores are 
a more reliable indication of SNP importance, we rebuilt predictive models using the top 50% of SNPs (374 and 
183 SNPs for rectal bleeding and erectile dysfunction, respectively) for both endpoints. The predictive power on 
the hold-out validation data for late rectal bleeding was (only) slightly improved with an average cross validation 
AUC of 0.71, whereas for erectile dysfunction there was greater improvement with an average cross validation 
AUC of 0.65.

Improvement of Predictive Power by Adding Clinical Variables.  We also investigated whether add-
ing clinical variables could improve predictive power. Clinical variables include age, Gleason score, tumor vol-
ume, smoking, diabetes, hypertension, prostate-specific antigen (PSA), radiation dose computed as biologically 
equivalent dose (BED), and the use of androgen deprivation therapy (ADT). Among all 236 evaluable patients 

Figure 2.  Performance evaluation of the proposed method on a validation dataset. Performance comparison 
of our proposed method (pre-conditioned random forest regression) with other computational methods on the 
hold-out validation data in (A) rectal bleeding and (B) erectile dysfunction. STD: standard deviation. (C) Box 
plots showing the performance of our proposed predictive model for rectal bleeding and erectile dysfunction, 
resulting from the list of SNPs obtained after the biological relevance test of gene ontology biological processes. 
For the erectile dysfunction model, two clinical variables (ADT and age) were also added in the model building 
process. The filled circle dot indicates an AUC when a final model for each endpoint, built using all training 
data, was tested on the hold-out validation data. For the final models, comparison of the predicted and actual 
incidence for (D) rectal bleeding and (E) erectile dysfunction on the hold-out validation data. The patients were 
sorted based on the predicted outcomes and binned into 6 groups with 1 being the lowest risk group and 6 being 
the highest risk group. The error bar indicates the standard error.
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used in the erectile dysfunction analysis, 85 (85/133; 63.9%) and 35 (35/103; 34.0%) patients received ADT in 
the case and control groups, respectively; there were 52 (39.1%) and 36 (34.9%) smokers; 6 (4.5%) and 3 (2.9%) 
patients had diabetes; 48 (36.1%) and 32 (31.1%) patients had hypertension; the mean age in years was 65.7 (STD: 
7.0) and 60.3 (STD: 6.4) in the case and control groups, respectively. In a logistic regression significance test for 
these clinical variables on the training data, no statistically significant variable was found for rectal bleeding, 
whereas for erectile dysfunction, age (p-value =​ 1.30 ×​ 10−5; odds ratio =​ 1.14), ADT (p-value =​ 0.0002; odds 
ratio =​ 3.45), and Gleason score (p-value =​ 0.008; odds ratio =​ 1.89) were statistically significant. Smoking, diabe-
tes, and hypertension were not statistically significant with p-values of 0.378, 0.410, and 0.522, respectively. Using 
the same threshold of p-value >​ 0.001 as used in filtering SNPs, the predictive model for erectile dysfunction 
was rebuilt by combining the two clinical variables (age and ADT) and the top 183 SNPs. As a result, predictive 
performance was further improved with an average AUC of 0.68 on the hold-out validation data after repeating 
5-fold CV 100 times as shown in Fig. 2C.

Results of the Final Model.  The final PRFR model built using all the training data was tested on the 
hold-out validation data, and the predicted outcomes were compared with the observed outcomes. Patients were 
grouped into 6 bins of increasing risk, with 1 being the lowest risk group and 6 being the highest risk group. 
Figure 2D and E compare the predicted incidence of endpoints and the actual incidence of endpoints in each 
group. The resulting AUCs were 0.70 and 0.69 for rectal bleeding and erectile dysfunction, respectively. Good 
agreement between the predicted incidence and the actual incidence was seen, with chi-square test p-values of 
0.95 and 0.93 for rectal bleeding and erectile dysfunction, respectively, indicating that the observations are sta-
tistically consistent with the model. As shown, the models are well calibrated, and track the validation data well.

Discussion
Individual variation of normal tissue radiosensitivity depends on the combined influence of radiation dose, clin-
ical variables, comorbidities, and genetic differences among patients4. This effort, called “radiogenomics”, has the 
ambitious goal of unravelling the association between genetic variants and clinical normal tissue radiosensitivity. 
To date, this has enabled identification of several SNPs associated with normal tissue injury in cancer patients 
treated with RT7,8,31. However, radiogenomics studies to date have relied on the classical single marker association 
test, which misses SNPs that make small, but real contributions to risk.

In our study, to predict the risk of individual radiosensitivity, we proposed a novel multi-SNP predictive model 
based on machine learning techniques. A hypothesis behind our approach is that although the impact of indi-
vidual SNP on an endpoint is small, combining contributions of highly significant SNPs and those that are rela-
tively weakly significant into a robust model can improve the capability of the model in predicting the risk of the 

Figure 3.  SNP importance score measured in the model building process for (A) rectal bleeding and (B) 
erectile dysfunction. The red dashed lines indicate the points of the top 25, 50, and 75% of SNPs. Directly 
connected protein-protein interaction networks for (C) rectal bleeding and (D) erectile dysfunction generated 
using the MetaCore software with the top 50% of SNPs. The line colors indicate the activation (green), 
inhibition (red), and unspecified (grey) effects.
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endpoint. This apparently works well because (a) SNP GWAS are low-noise sources, compared to, say, mRNA 
arrays, and (b) damage of radiation repair is a highly polygenic process. Using a GWAS dataset, we demonstrated 
that our method outperformed other existing computational methods in predicting the risk of rectal bleeding and 
erectile dysfunction that are common radiation-induced toxicities in prostate cancer patients treated with RT.

We had previously shown that, for late rectal bleeding, the LASSO was a useful modeling method for the sec-
ond step of our pre-conditioning algorithm. However, here we show superior results using random forests4. We 
also go beyond that report by analyzing the endpoint of erectile dysfunction and by demonstrating a method to 
connect SNP importance in the machine learning results to key biological functions.

Using the pre-conditioning idea, we converted the original binary outcomes (toxicity vs. non-toxicity) to 
continuous outcomes (pre-conditioned outcomes) that were used in the modeling (see Supplementary Figure S1). 
Our model with the pre-conditioned outcomes achieved much better predictive performance compared with 

Ranking GO Processes/Genes FDR

1 Regulation of ion transport 4.70E-06

CACNA1D,CCL13,DPP10,DPP6,GCK,GNB4,GPR63,HOMER1,IL1RAPL1,JDP2,KCNIP4,KCNJ6,NLGN1,NOS1AP,PRKCB,PRKG1,VDR

2 Regulation of potassium ion transport 5.33E-06

CACNA1D,DPP10,DPP6,GCK,JDP2,KCNIP4,NOS1AP,PRKG1

3 Regulation of metal ion transport 8.92E-06

CACNA1D,CCL13,DPP10,DPP6,GCK,GNB4,GPR63,HOMER1,JDP2,KCNIP4,NOS1AP,PRKCB,PRKG1,VDR

4 Regulation of cation transmembrane transport 1.76E-05

CACNA1D,DPP10,DPP6,GNB4,HOMER1,KCNIP4,NOS1AP,PRKCB,PRKG1

5 Regulation of potassium ion transmembrane transport 1.89E-05

CACNA1D,DPP10,DPP6,KCNIP4,NOS1AP,PRKG1

6 Regulation of ion transmembrane transport 2.31E-05

CACNA1D,CCL13,DPP10,DPP6,GNB4,HOMER1,IL1RAPL1,KCNIP4,KCNJ6,NLGN1,NOS1AP,PRKCB,PRKG1

7 Regulation of transmembrane transport 5.04E-05

CACNA1D,CCL13,DPP10,DPP6,GNB4,HOMER1,IL1RAPL1,KCNIP4,KCNJ6,NLGN1,NOS1AP,PRKCB,PRKG1

8 Cellular calcium ion homeostasis 1.27E-04

CACNA1D,CCL1,CCL13,GCK,GNB4,GPR63,HERPUD1,PRKCB,PRKG1,TMEM165,VDR

9 Regulation of system process 1.27E-04

CACNA1D,CTNNA2,FST,GPR63,GUCY1A2,NLGN1,NOS1AP,PRKCB,PRKG1,SLC1A1,TENM4,TNFRSF21,TNR

10 Regulation of ion transmembrane transporter activity 1.27E-04

CACNA1D,GNB4,HOMER1,NLGN1,NOS1AP,PRKCB,PRKG1

Table 2.   Top 10 biological processes and corresponding genes for rectal bleeding.

Ranking GO Processes/Genes FDR

1 Negative regulation of heart contraction 8.38E-10

CXCR5,PDE4D,PRKCA,SPX

2 Negative regulation of blood circulation 2.18E-08

CXCR5,PDE4D,PRKCA,SPX

3 Neutrophil chemotaxis 5.03E-08

CXCR5,PDE4D,PRKCA

4 Neutrophil migration 5.88E-08

CXCR5,PDE4D,PRKCA

5 Granulocyte chemotaxis 9.68E-08

CXCR5,PDE4D,PRKCA

6 Granulocyte migration 1.30E-07

CXCR5,PDE4D,PRKCA

7 Positive regulation of locomotion 2.63E-07

CXCR5,DAB2IP,MAP2K1,OPRK1,PDE4D,PRKCA,SEMA5A,SMAD3

8 Regulation of muscle system process 5.51E-07

CXCR5,GLRX3,MAP2K1,PDE4D,PRKCA

9 Regulation of muscle contraction 5.51E-07

CXCR5,MAP2K1,PDE4D,PRKCA

10 Positive regulation of cell migration 8.96E-07

CXCR5,DAB2IP,MAP2K1,PDE4D,PRKCA,SEMA5A,SMAD3

Table 3.   Top 10 biological processes and corresponding genes for erectile dysfunction.
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computational methods with the original binary outcomes. Note that we used the pre-conditioned outcomes 
only for modeling purpose. The performance test was carried out in comparison between the predicted out-
comes and the original binary outcomes for all models shown in Fig. 2. More specifically, two models including 
pre-conditioning random forest regression and pre-conditioning lasso used the pre-conditioned outcomes for 
modeling, whereas other two models including random forest regression classification and lasso logistic regres-
sion used the original binary outcomes for modeling. For all four models, the predicted outcomes on the valida-
tion data were compared with the original binary outcomes to evaluate predictive power. The pre-conditioned 
outcomes were produced using logistic regression with principal components (effectively, latent variables) such 
that the pre-conditioned outcomes are highly correlated with the original binary outcomes as well as a set of 
important SNPs, thereby denosing the original binary outcomes. The motivation for this approach is that the 
combination of two different ways of predicting complication probabilities would be likely to result in a more 
accurate model, assuming both have some validity and are not redundant. Pre-conditioning in some sense can be 
viewed as just a convenient method to combine prediction models.

To assess the variability of predictive performance in the proposed model, we used 5-fold CV. In addition, we 
tested our method using 60% of the validation samples that were randomly selected32. After 100 iterations, aver-
age AUC values were 0.70 and 0.64 for rectal bleeding and erectile dysfunction, respectively. That is, predictive 
power for rectal bleeding was the same as the method used in this study, whereas there was slight improvement 
for erectile dysfunction compared to AUC =​ 0.62 in this study. This test further supports the reliability of our 
proposed method.

As can be seen in Fig. 1, most SNPs are not associated with the endpoint. Removal of these irrelevant SNPs 
from further analysis greatly reduces computational cost. To that end, researchers have typically used a cutoff of 
p-values obtained in univariate analysis. However, it is challenging to find an optimal cutoff due to the tradeoff 
between eliminating true positive SNPs vs. keeping too many false positive SNPs. In this study, we initially 
employed a p-value threshold of 0.001, which has also been used in other studies for initial filtering33,34.

To probe the number of false positive SNPs included in the prediction model, we injected phoney SNPs into 
the rectal bleeding modeling process. To do this, we generated 60,000 synthetic SNPs using the GWAsimulator 
(http://biostat.mc.vanderbilt.edu/wiki/Main/GWAsimulator) relying on HapMap CEU data. With a p-value cut-
off of 0.001, 74 SNPs remained. We combined these SNPs with 749 SNPs that were originally chosen in uni-
variate analysis for rectal bleeding and iterated the model building process with the combined 823 SNPs (see 
Supplementary Figure S2). There were no noisy SNPs within the top 26 SNPs, suggesting that the most highly 
ranked SNPs contain many, though probably not all, real biomarkers. On the other hand, the inclusion of phoney 
SNPs in the model indicates that the model clearly balances true effects with statistical artifacts. The correlation 
with validation data outcomes demonstrates that a valid estimation of risk has been obtained.

We hypothesized that the predictive power of the models can be further improved by removing false-positive 
SNPs in the modeling and they can be detected by exploring biological processes via GO enrichment analysis. 
Using the SNP importance score measured in random forest regression, we identified nearby genes for the top 
25%, 50%, 75%, and 100% of SNPs and performed GO enrichment analysis to investigate biological processes 
for these genes (Supplementary Table S3). This approach assumes that SNPs with larger importance scores have 
a greater chance of becoming real biomarkers than those with smaller scores. Through our perception of the 
biological processes, we noticed that GO enrichment analysis, using the top 50% of SNPs (374 for rectal bleeding 
and 183 for erectile dysfunction) for both endpoints, found more plausible biological processes. With the top 
50% of SNPs, we repeated our model building process. There was no great performance improvement from 0.70 
to 0.71 AUC for rectal bleeding, whereas for erectile dysfunction there was relatively significant performance 
improvement from 0.62 to 0.65 AUC (Supplementary Figure S3). Alternatively, despite the increase in biological 
relevance, the improvement resulting from filtering out SNPs that are ranked lowly could also be viewed as a 
straightforward machine learning improvement step.

Figures 3C and D show directly connected protein-protein interaction networks for rectal bleeding and erec-
tile dysfunction constructed using each list of nearby genes for the top 50% of SNPs. There are several mouse 
model studies that showed that Vitamin D receptor (VDR) deficiency is highly associated with rectal bleed-
ing. Froicu et al. reported that VDR/IL10 knockout mice had severe rectal bleeding35 and similarly, Kong et al.  
reported that VDR deficiency resulted in an increased risk of mucosal damage and inflammatory bowel dis-
ease36. Their studies suggest an essential role of VDR in maintaining the intestinal mucosal barrier. There are 
several reports that showed a significant role of protein kinase C (PKC) and SMAD, shown in Fig. 3D, in erectile 
dysfunction. PKC is a key protein in regulating the contraction of vascular smooth muscle37,38. Wingard et al. 
showed in their animal model that PKC and Rho-kinase enhance vasoconstriction of the penile smooth muscle 
and contribute to erectile dysfunction39. Zhang et al. reported that overexpression of TGF-β​1 and activation of 
the Smad signaling pathway in the penis of diabetic rats play a central role in deteriorating erectile dysfunction40.

As shown in Table 2, most biological processes implicated in rectal bleeding are involved in the ion transport 
activity. The intestinal epithelium regulates the absorption and secretion of salt and water via the activity of ion 
transporters41. Dysfunction of epithelial ion transport can be caused by a variety of factors such as inflammation 
and toxins, resulting in diarrheal illnesses. McCole et al. reported that ion transport is abnormal by decreased 
sodium absorption in mice with colitis and epidermal growth factor receptor (EGFR) activation can alleviate 
diarrhea associated with colitis42. Since rectal bleeding often accompanies diarrhea, the biological processes 
shown in Table 2 seem plausible and associated with rectal bleeding.

It is generally accepted that risk factors for erectile dysfunction and cardiovascular disease are similar, includ-
ing age, smoking, high blood pressure, high cholesterol, and diabetes43. In our univariate analysis on the train-
ing data, age was significantly correlated with erectile dysfunction with p-value =​ 1.30 ×​ 10−5, whereas smoking, 
diabetes, and hypertension were not statistically significant with p-values of 0.378, 0.410, and 0.522, respectively. 
ADT was also a significant predictor of erectile function as shown in many published articles. Through 19 articles 
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found via PubMed (http://www.ncbi.nlm.nih.gov/pubmed/) literature searches, White et al. confirmed that RT/
ADT can significantly worsen erectile dysfunction44. When we added age and ADT in the model of erectile dys-
function, the performance was further improved with 0.68 AUC. The analysis conducted by Banks et al. provided 
general support that erectile dysfunction could serve as a sentinel symptom for an increased risk of cardiovascular 
disease45. Vascular endothelium, as a main link between erectile dysfunction and cardiovascular disease, is crit-
ically involved in the regulation of blood circulation46. Therefore, dysfunction of the vascular endothelium may 
cause blood to inadequately flow to the erectile tissues, which eventually leads to erectile dysfunction. Dozio et al.  
reported that myeloperoxidase (MPO), a heme-containing enzyme that is released by neutrophils may contrib-
ute to endothelial dysfunction, thus leading to erectile dysfunction47. Penile erection is a hemodynamic process 
that is regulated by a balance between corporal smooth muscle relaxation and contraction48–50. Thus inability of 
this mechanism can be a cause of erectile dysfunction. Based on the studies mentioned above, it is plausible that 
the biological processes shown in Table 3 would be implicated in erectile dysfunction. The studies we cited were 
searched by a PubMed search engine with keywords, including the gene/protein names in Fig. 3C and D, bio-
logical process names in Tables 2 and 3, endpoint names (rectal bleeding and erectile dysfunction) or important 
clinical variables.
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