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ABSTRACT
SARS-CoV-2 is causative of pandemic COVID-19. There is a sequence similarity between SARS-CoV-2
and SARS-CoV; however, SARS-CoV-2 RBDs (receptor-binding domain) binds 20-fold strongly with
human angiotensin-converting enzyme 2 (hACE2) than SARS-CoV. The study aims to investigate pro-
tein–protein interactions (PPI) of hACE2 with SARS-CoV-2 RBD between wild and variants to detect the
most influential interaction. Variants of hACE2 were retrieved from NCBI and subjected to determine
the most pathogenic nsSNPs. Probability of PPIs determines the binding affinity of hACE2 genetic var-
iants with RBD was investigated. Composition variations at the hACE2 and RBD were processed for
PatchDock and refined by FireDock for the PPIs. Twelve nsSNPs were identified as the top pathogenic
from SNPs (n¼ 7489) in hACE2 using eight bioinformatics tools. Eight RBD variants were complexed
with 12 nSNPS of hACE2, and the global energy scores (Kcal/mol) were calculated and classified as
very weak (–3.93 to �18.43), weak (–18.42 to �32.94), moderate (–32.94 to �47.44), strong (–47.44 to
�61.95) and very strong (–61.95 to �76.46) zones. Seven composition variants in the very strong zone
[G726R-G476S; R768W-V367F; Y252N-V483A; Y252N-V367F; G726R-V367F; N720D-V367F and N720D-
F486L], and three in very weak [P263S-S383C; RBD-H378R; G726R-A348T] are significantly (p< 0.00001)
varied for global energy score. Zonation of the five zones was established based on the scores to dif-
ferentiate the effect of hACE2 and RBD variants on the binding affinity. Moreover, our findings support
that the combination of hACE2 and RBD is key players for the risk of infection that should be done by
further laboratory studies.
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Introduction

Server acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) is the causative of a global pandemic COVID-19, which ori-
ginated late December 2019 in Wuhan, China (Huang et al.,
2020). Based on genomic and phylogenetic analysis, SARS-
CoV-2 is recognized to be one member of the coronaviridae
family (Gorbalenya et al., 2020). The coronaviridae family are
seven members, the common human coronaviruses termed
as 229E, NL63, OC43 and HKU1 are causing mild symptoms,
in contrast to SARS-CoV, which is causing severe symptoms
(Li et al., 2020). Coronaviruses (CoVs) is named due to the
crown-like shape of the spike protein that is present on the
cell surface (Rabi et al., 2020). The genome is composed of
non-segmented positive single-stranded RNA with length
ranging between 26 and 32 Kb (Zheng, 2020), and the CoVs
possess four structural proteins termed as spike (S) glycopro-
tein, envelope (E), membrane (M) and nucleocapsid (N)
(Jiang et al., 2020). The Protein S is a huge protein with
amino acid (1160-1542) length; however, it is known to

specifically bind with the host cell. Spike (S) glycoprotein is
divided into two functional subunits. S1 subunit has a role as
host receptor, and the other is S2 subunit needed for mem-
brane fusion (de Haan et al., 2006; Walls et al., 2020). The
envelope (E) protein is a structural protein that determines
the shape of the viral envelope, while nucleocapsid (N) pro-
tein binds with SARS-CoV-2 genome which gives the power
of cycle replication within the host (Schoeman & Fielding,
2019). Human angiotensin-converting enzyme 2 (hACE2) is a
part of the renin–angiotensin system (RAS), and it acts as
multifunctional enzyme that has many protective roles in the
human body such as inflammation response, and controller
of body stability (Offringa et al., 2020). However, hACE2 has
a strong interaction with S1 receptor of SARS-CoV, but not
with SARS-CoV-2 (Hwang et al., 2006); moreover, there is
study claiming that binding affinity is 10–20� higher of
hACE2 with SARS-CoV-2 spike protein than the hACE2 with
SARS-CoV (Wrapp et al., 2020). In this study, we aim to inves-
tigate the Protein–Protein Interactions (PPIs) of hACE2 with
SARS-CoV-2 between wild and variants, and to detect the
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most impact on the interactions between them by using in
silico tools. SARS-CoV-2 spike protein interacts with human
hACE2 proteins irrespective of their combination of varia-
tions. Strong combinations of variants have been described.

Methods

SNPs data and protein sequence

hACE2 protein sequence was downloaded from NCBI data-
bank [Accession Q9BYF1-1 UniProt database, https://www.
uniprot.org] [UniProtKB ID: Q9BYF1 for hACE2]

Deleterious effect of coding nsSNPs of hACE2
receptor protein

For the purpose of detecting the most deleterious nsSNPs of
hACE2 receptor protein, we used in silico tools, such as: SIFT
(http://sift.jcvi.org/), Polyphen2 (http://genetics.bwh.harvard.
edu/pp2), SNAP2 (https://www.rostlab.org/services/SNAP/),
SNPs&Go (https://snps-and-go.biocomp.unibo.it/snps-and-go/
), Provean (http://provean.jcvi.org/index.php), Panther (http://
pantherdb.org) and Condel (http://bbglab.irbbarcelona.org/
fannsdb/home).

SIFT for prediction of the effect of nsSNPs on
protein function

Sorting Intolerant From Tolerant (SIFT) algorithm is predict-
ing whether an amino acid substitution is affecting a protein
function. The output is given as a SIFT score; a SIFT score
�0.05 corresponds to tolerated nsSNPs, and a SIFT score
�0.05 indicates a deleterious nsSNPs (Ng & Henikoff, 2003).

PolyPhen-2 for prediction of amino acid substation

Polymorphism phenotyping (PolyPhen-2) is a tool that pre-
dicts the possible impact of amino acid substitutions on the
human protein structure and function using structural and
comparative evolutionary considerations (Adzhubei
et al., 2013).

PROVEAN for prediction of protein function influences

Protein Variation Effect Analyzer (PROVEAN) is a tool specific-
ally to predict the functional effects of protein sequence var-
iations, which includes single amino acid substitution or
multiple amino acid substitutions and deletions or additions
of frameshift mutations (Choi & Chan, 2015).

SNAP2 for prediction of the alteration of
protein function

Screening for Non-Acceptable Polymorphisms 2 (SNAP2) and
PolyPhen-2 has similar levels of performance. They are used
to predict the change of a protein function, where, þ100,
strongly predicted to have an effect; �100, predicted to be
neutral (Hecht et al., 2015).

SNPs&GO for the functional gene

SNPs&Go is a tool used to predict the damage of a Single
Amino acid Polymorphism (SAPs) by processing the structure
and the function of a protein. Scores larger than 0.5 are con-
sidered to relate to diseases (Capriotti et al., 2013).

PANTHER evolutionary tool linked with protein stability
and its function

Protein ANalysis THrough Evolutionary Relationships
(PANTHER) is a tool used to predict the damaging effect of a
protein variant. If subPSEC score is �0.5, then nsSNPs are
considered deleterious (Mi et al., 2012, 2019).

CONDEL for prediction of pathogenic nsSNPs

CONDEL is tool that only uses the negative control by taking
deleterious scores; however, it is possible to provide the
mutation impact on the biological activity of the protein
(Gonz�alez-P�erez & L�opez-Bigas, 2011).

Homology modeling and validation

SARS-CoV-2 spike protein FASTA sequence (PDB ID: 6VSB)
was retrieved from RCSB PDB databank (http://www.rcsb.org/
) (Berman et al., 2002). hACE2 receptor protein and SARS-
CoV-2 spike protein three-dimensional (3D) structures were
created through SWISS-MODEL (https://swissmodel.expasy.
org/) and Swiss-Pdb viewer software (Guex & Peitsch, 1997)
as described earlier (Abdulazeez et al., 2019; AbdulAzeez &
Borgio, 2016; Borgio et al., 2016), and structures then were
carried on for validation through RAMPAGE and
Ramachandran plot analysis (http://mordred.bioc.cam.ac.uk/
�rapper/rampage.php) (Wang et al., 2016). Mutant structures
of hACE2 receptor and SARS-CoV-2 spike protein were cre-
ated using PyMol software (ver. 2.4, Schr€odinger) (Seeliger &
De Groot, 2010).

Multiple sequence alignment and phylogenetic analysis
of SARS-CoV-2

Multiple sequence alignment and phylogenetic analysis was
conducted through open source software named Molecular
Evolutionary Genetics Analysis (MEGA X), (ver. 10.1.8)
(Stecher et al., 2020). We tested 100 wild and 316 mutants
for RBD (receptor-binding domain) region that was obtained
from blast (https://blast.ncbi.nlm.nih.gov/Blast.cgi), by max-
imum-likelihood 8000 bootstrap (Boratyn et al., 2013).

Root-mean-square deviation (RMSD) prediction

Superimpose of RBD regions for SARS-CoV-2 spike protein
(Arg319–Phe541) (Lan et al., 2020) was implemented to
energy minimize by SuperPose (http://superpose.wishartlab.
com/) (Maiti et al., 2004). For hACE2 receptor, it was imple-
mented by SWISS-MODEL (https://swissmodel.expasy.org/)
(Waterhouse et al., 2018).
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Protein–protein interactions (PPIs)

Protein–protein interactions of hACE2 receptor and SARS-CoV-2
Spike protein were docked through PatcnhDock (https://bioinfo3d.
cs.tau.ac.il/PatchDock/php.php). Then, results were refined using
FireDock (http://bioinfo3d.cs.tau.ac.il/FireDock/php.php) (Mashiach
et al., 2008; Schneidman-Duhovny et al., 2005).

Statistical analysis

Cumulative score for various tools (SIFT, PolyPhen-2,
PROVEAN, SNAP2, SNPs&GO, PANTHER, CONDEL and PhD-
SNPs) was calculated by sum for the damaged nsSNPs as
results from the eight in silico tools of predicting the effect
of nsSNPs. The prediction of global energy scores (Jiang
et al., 2018) was estimated by FireDock that applied
Student’s t-test, and was calculated, and p< 0.05 is consid-
ered significant for the most impacting combinations of
hACE2 receptor and SARS-CoV-2 spike protein.

Results

All nsSNPs were analyzed using eight in silico tools to identify
the most deleterious nsSNPs, such as SIFT, PolyPhen-2,
PROVEAN, SNAP2, SNPs&GO, PANTHER, CONDEL and PhD-SNPs.
Nine out of the 48 nsSNPs among 7489 SNPs on hACE2 receptor
extracted from NCBI, and were considered as the most patho-
genic nsSNPs (Figure 1; Table 1). In addition to the nine patho-
genic nsSNPs, three nsSNPs were included for further analysis
(Table 1). The neutral results of nsSNPS in SNPs&Go 37 (77.1%),
PROVEAN 35 (72.9%), SIFT 32 (66.6%), SNAP2 29 (60.4%), PhD-
SNP 25 (52.1%), PolyPhen-2 23 (47.9%), Condel 20 (41.6%) and
Panther 16 (33.3%) (Supplementary Table S1). The amino acid
substitutions in hACE2 receptor: L595V, W459C, H378R, P263S
and Y252N scored the highest cumulative scores (CS ¼ 9), pre-
dicted by damaged by all the tested tools (Table 1). Three-
dimensional structure of hACE2 receptor was constructed and
validated (Figure 2). Maximum numbers of residues (99.5%) are
falling in the allowed and favored regions, which indicated the
constructed model is efficient for purpose of the protein dock-
ing (Figure 2(B)). Analysis of SARS-CoV-2 spike protein by MEGA

Figure 1. Predicting the effect of nsSNPs using various in silico tools.

Table 1. The list of selected pathogenic nsSNPs out of 7489 SNPs.

SNP Coordinate Substitution

Sift Polyphen-2
Panther

Provean Snap2 Snps&Go Phd-SNP Condel
CS

P S P S P P S P S P S P S P Label

rs148036434 15589801 L595V 1 0 1 1 1 1 –2.56 1 16 1 0.69 1 0.727 1 D 9
rs11798104 15593854 W459C 1 0 1 1 1 1 –12.36 1 68 1 0.809 1 0.907 1 D 9
rs142984500 15596376 H378R 1 0 1 1 1 1 –7.93 1 70 1 0.879 1 0.906 1 D 9
rs200745906 15605891 P263S 1 0 1 1 1 1 –7.33 1 42 1 0.871 1 0.768 1 D 9
rs371464495 15605924 Y252N 1 0.002 1 1 1 1 –6.84 1 82 1 0.815 1 0.931 1 D 9
rs375352455 15589896 S563L 1 0.001 1 1 1 1 –5.78 1 48 1 0.716 1 0.862 1 D 8
rs139980377 15582280 G726R 1 0.004 1 1 1 1 –2.82 1 79 0 0.206 1 0.778 1 D 8
rs140016715 15582154 R768W 1 0 1 1 1 1 –2.82 1 62 1 0.517 1 0.853 1 D 8
rs267606408 15603648 P284S 0 0.053 1 0.991 1 1 –7.65 0 0 1 0.838 1 0.864 1 D 7
rs41303171 15582298 N720D 0 0.092 0 0.006 1 0 –1.19 0 –32 0 0.139 1 0.5 1 D 3#

rs143936283 15599428 E329G 0 0.121 0 0.027 0 0 –2.21 1 5 0 0.108 0 0.343 1 D 2�#
rs146676783j 15618926 E37K 0 0.16 1 0.712 1 0 –1.86 0 –35 0 0.175 0 0.449 0 N 2�
CS: Cumulative Score; P: Prediction; S: Score. � These two amino acid substitutions were selected as they are reported as contact residues of RBD–hACE2 (Lan
et al., 2020). # SNP was observed in the Saudi population and was added for the regional interest. The values in P: 0 indicates neutral (N); 1 indicated dam-
aged (D).
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X (Figures 3 and 4) identified eight variants such as A348T
(QIS30335.1), S383C (6X29_A), A419S (QJA16640.1), G476S
(Q1Q49882.1), V483A (QIS30165.1), F486L (QJS39567.1), A520S
(QIS60489.1) and V367F (QK95522.1) were taken into consider-
ation because of their high report in many countries (https://

cov.lanl.gov/content/index) (Ou et al., 2020). Three-dimensional
structure of SARS-CoV-2 spike protein was constructed and vali-
dated (Figure 2(D)). Maximum numbers of amino acid residues
(99.37%) are in the favored and allowed regions; hence, the con-
structed model is competent for protein docking (Figure 2(D)).

Figure 2. Three-dimensional structures and their validations of A&B: hACE2, and C&D: SARS-CoV-2 spike protein.
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Each point of amino acid variations was generated in the
native protein model structure of hACE2 receptor, and SARS-
CoV-2 spike protein separately using PyMol software (Figure
5). RMSD of hACE2 receptor and SARS-CoV-2 spike protein
variants structures was calculated after the energy minimiza-
tion (Table 2). The protein–protein interactions of wild and
variants for both hACE2 receptor and SARS-CoV-2 protein
were analyzed using PatchDock, and the top 300 predictions
we refined using FireDock (Figure 6). The global energy score
(kcal/mol) was considered the final score to predict the inter-
action between the hACE2 receptor and SARS-CoV-2 spike
protein (Figure 7(A)). The global energy score indicates the
stability of the interaction, which means less binding energy
is giving higher binding affinity, and higher binding energy
is giving less binding affinity (Jiang et al., 2018). In order to
identify the variations in the binding affinity, the global
energy score (kcal/mol) was scaled in range of five zones for
all composition variations by the following formula:

Z ¼ A1�A2
5

Z ¼ Length of the zone
A1 ¼ Lowest global energy score (kcal/mol)
A2 ¼ Highest global energy score (kcal/mol)

Global energy score in different zones: Very weak (–3.93
to �18.43), Weak (–18.42 to �32.94), Moderate (–32.94 to
�47.44), Strong (–47.44 to �61.95) and Very strong (–61.95
to �76.46) (Figure 6). Seven composition variants in the very
strong zone [G726R-G476S; R768W-V367F; Y252N-V483A;
Y252N-V367F; G736R-V367F, N720D-V367F and N720D-
F486L], and three composition variants in the safe zone
[P263S-S383C; Spike protein-H378R and G726R-A348T]
(Figures 6 and 7(B)). Both zones are significantly
(p< 0.00001) varied for global energy score (Kcal/mol).

Discussion

The information about the variations in SARS-CoV-2 spike
protein and hACE2 receptor protein and their interaction in
the infection scale have not been studied properly, while the
reason remains unknown. In this study, eight in silico tools
(i.e. SIFT, PolyPhen-2, Provean, SNAP2, SNPs&GO, PANTHER,
CONDEL and PhD-SNPs) were used to determine the most
deleterious hACE2 receptor variants. Simultaneously, multiple
sequence alignment and phylogenetic analysis allowed us to
reveal the newly reported SARS-CoV-2 spike protein variants
from the protein sequence retrieved from RCSB PDB protein

Figure 3. Annotation of SARS-CoV-2 variants in the multiple sequence alignment of the spike protein sequence and reported variants. Arrow indicates the amino
acid substitutions.
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databank. Homology modeled hACE2 receptor, and SARS-
CoV-2 spike proteins were validated and used to generate
the mutated protein for protein–protein interaction studies
using PatchDock. The estimated PPIs binding affinity of vari-
ous hACE2 receptor and SARS-CoV-2 spike protein combina-
tions (Figure 7(A)) were refined from FireDock to attain the
global energy score (kcal/mol) to calculate the overall view
about the binding affinity degree of wild and hACE2 receptor
variants with SARS-CoV-2 spike protein. Moreover, in order to
understand what is the meaning of these scores, we catego-
rized the results into five zones (Figure 7(B)). One notable
finding is that irrespective of the variants in hACE2 receptor
and SARS-CoV-2 spike protein, the binding established from
weak to strong depends on the combinations of variants
(Figure 7(A)). The second finding is that we categorized the
risk of infection into five zones, such as very weak, weak,
moderate, strong and very strong due to the spectrum of

binding affinity among variants composition of hACE2 recep-
tor and SARS-CoV-2 protein. The present observations are
the first to study about the interactions between wild and
variants of SARS-CoV-2 spike protein and pathogenic variants
of hACE2 receptor. The hACE2 receptor variant [E329G]
showed a strong binding affinity that is present at three
zones, very strong [E329G-V483A, E329G-G476S], strong
[E329G-A419S, E329G-A348T] and moderate [E329G-S383C,
E329G-F486L]. Cyro-electron microscopy study for hACE2
receptor with and without the RBD has discovered that
hACE2 receptor [E329] variant would get weaken due to the
variant R426-N439 in spike (Wu et al., 2020), and this clearly
is in line with our observations on the variants in spike that
can influence the binding affinity. Study by Amin et al (2020)
reported hACE2 receptor [E329] variant with SARS-CoV spike
protein with high contribution for binding energy. Recently,
a study proved that wild hACE2 receptor and SARS-CoV-2

Figure 4. Phylogenetic analysis of SARS-CoV-2 spike protein was accomplished through maximum-likehood 8000 bootstrap. The list of sequences used to construct
phylogeny are listed in the Supplementary Data 1.
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spike protein (–35.33 Kcal/mol) are having a stable interaction
and are present at the moderate zone similar to the present
results (Veeramachaneni et al., 2020). Previous study reported
that SARS-CoV-2 spike protein [G476S] variant has a signifi-
cant very strong point and a strong direct binding affinity
with hACE2 receptor, and similarly, the G476S variant
showed strong binding [G726R] of spike and falling in the
very strong zone (Korber et al., 2020). Another study
reported three [A348T; G467S and V483A] SARS-CoV-2 spike
protein variants in RBD region from 579 whole genome of
SARS-CoV-2 isolated from US COVID-19 patients (Kaushal
et al., 2020), and all these three variants are analyzed for
their impact on the binding affinity. The analysis revealed
that these three variants are present at the very weak zone

[G726R-A348T] with low binding affinity (–3.93 Kcal/mol), at
the strong zone [P284S-A348T; E329G-A348T; L595V-A348T;
H378R-A348T and P263S-A348T, �48.72,–48.72, �48.72 and
�48.72 Kcal/mol, respectively], weak zone [ACE2-A348T
(–31.24 Kcal/mol) and N720D-A348T (–24.98 Kcal/mol)]; fur-
thermore, [G476S] variant of spike protein is present at all of
the three zones (very strong, strong and weak) and [G726]
variant of spike protein is present at very strong [G726R-
G476S] with binding affinity (–76.46 Kcal/mol), strong [ACE2-
G476S; E37K-G476S; P284S-G476S; E329G-G476S; L595V-
G476S; W459C-G476S; S563L-G476S; R768W-G476S and
Y252N-G476S] with binding affinity (–64.5, �64.5, �64.5,
�64.5, �64.5, �64.5, �64.5, �55.96 and �55.87 Kcal/mol,
respectively) and weak [H378R-G476S; N720D-G476S and

Figure 5. 3D structures of wild and variants of hACE2 receptor and SARS-CoV-2 spike protein.

Table 2. RMSD calculations for hACE2 and SARS-CoV-2 spike protein variants.

hACE2 receptor variants SARS-CoV-2 spike protein variants

nsSNPs Residue Change RMSD Number Residue Change RMSD

rs148036434 L595V 0.06 QIS30335 A348T 1.488
rs11798104 W459C 0.06 6X29_A S383C 1.488
rs142984500 H378R 0.06 QJA16640 A419S 1.488
rs143936283 E329G 0.06 QIQ49882 G476S 3.2
rs267606408 P284S 0.06 QIS30425 G476S 3.2
rs200745906 P263S 0.06 QIS30165 V483A 3.2
rs371464495 Y252N 0.06 QJS39567 F486L 3.2
rs146676783 E37K 0.06 QIS60489 A520S 1.488
rs375352455 S563L 0.06 QK95522.1 V367F 1.488
rs139980377 G726R 0.05
rs140016715 R768W 0.06
rs41303171 N720D 1.514
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P263S-G476S] with binding affinity (–31.47, �23.58 and
�22.67 Kcal/mol, respectively). [V483A] variant of spike pro-
tein is present at very strong [Y252N-V483A; E37K-V483A;
hACE2-V483A; E329G-V483A; L595V-V483A; H378R-V483A;
P263S-V483A and S563L-V483A] with binding affinity (–72.09,
�66.33, �65.57, �65.57, �65.57, �65.57, �65.57 and
�65.57 Kcal/mol, respectively) and weak [R768W-V483A and
W459C-V483A] with binding affinity (–30.47 and �29.17 Kcal/
mol) (Figure 7(B)). The spectrum of binding observed among
the four variants of spike reported from the USA gave a clue
on the spectrum of severity among COVID-19 patients; how-
ever, these computational observations need to be con-
firmed (Kaushal et al., 2020).

Wild hACE2 showed higher binding affinity with spike var-
iants [V483A and G476S] (ACE2-V483A �65.57 Kcal/mol and
ACE2-V367F �53.46 Kcal/mol) indicating that the wild hACE2
also binding acutely with variant of the spike protein and in
the strong zone, but not in the very strong; however, previ-
ous study reported same variants with low binding affinity

(Nelson-Sathi et al., 2020). Previous observations by Ou et al.
(2020) on [V367F and V483A] variants of spike divided the
variants into two groups, similar and higher binding affinity,
one variant [V367F] was considered with the higher binding
affinity and another [V483A] was considered with the similar
binding affinity with wild hACE2; however, we have observed
that [V483A] has relatively higher affinity with most of the
hACE2 receptor variants and are present at the very strong
zone (Ou et al., 2020).

Many genomic studies are working on detecting the type
of SARS-CoV-2 mutation (Hassan et al., 2020; Kaushal et al.,
2020). There are many studies on the variants of spike pro-
tein (Hassan et al., 2020), claiming the (S) protein is mainly
causing the severity of the COVID-19 condition (Zhang et al.,
2020), and mutation has a big impact on the severity of the
condition (Hassan et al., 2020; Othman et al., 2020); however,
the present observation has given an insight on the combin-
ation of variants on the interaction between spike and recep-
tor. The [F486] of SARS-CoV-2 spike protein forms a strong

Figure 6. Significant composition variations of hACE2 receptor and SARS-CoV-2 spike protein. A: Very weak Composition variation. B & C: Very strong compos-
ition variations.
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binding affinity with [Y83] of hACE2 receptor, and this study
observed [N720D] of hACE2 receptor and [F486L] of SARS-
CoV-2 spike protein as significant composition variation
located at the very strong zone (Wang et al., 2020). Zou
et al. (2020) revealed six out of eight SARS-CoV-2 variants
with high binding affinity with hACE2, one of them was
[F486], which showed similar results and in the very strong

zone with the present observation. The reported SARS-CoV-2
spike protein variant [D614G] has got attention is (Korber
et al., 2020; Ou et al., 2020); however this is not in the RBD
[Arg319-Phe541] (Lan et al., 2020), and hence, this has not
been included in the study. Variants of hACE2 receptor were
reported to be associated with severity of COVID-19 based
on the status of hypertension (Gomez et al., 2020). Variants

Figure 7. A: Heat map of Global energy score for composition variations of hACE2 and SARS-CoV-2 spike protein-generated Heatmapper (http://www.heatmapper.
ca/pairwise/) with matrix of Displaying data as-is. and their significant impact; B: graphical representations of all composition variations that reflect the degree of
binding to SARS-CoV-2.
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of hACE2 receptor will have stronger binding with wild
SARS-CoV-2 spike protein and variants. However, the severity
depends on the variant type, missense variants in hACE2
[T27R; F28W; L79W; G326E; G352Y; D30E; K31E; Y41N; Q41E;
L45E; Y83F; N330K; L353H] inhibit the interaction with SARS-
CoV-2 spike protein and contribute to the genetic risk in
COVID-19 patients (MacGowan & Barton, 2020), in line with
the present observation, suggesting that variants of hACE2
receptor cause susceptibility that will eventually lead to the
risk of COVID-19 severity (MacGowan & Barton, 2020). Jia
et al.’s (2020) study were the reports on SARS-CoV-2 variants
with low binding affinity with hACE2 receptor, but that
results were not comparable for this study due to mismatch
in selection of variants. Moreover, this study found that
SARS-CoV-2 protein variants are causing a high or low bind-
ing affinity with hACE2 receptor, depending on the variants.
The present observations are computational that have its
notable limitation and further laboratory work will provide
the confirmation of all different zones and their phenotypic
association among COVID-19 patients. Signaling pathways
and intricate protein–protein interaction networks are gov-
erned by proteins for cellular life (Paladino et al., 2020;
Serapian & Colombo, 2020; Serapian & van der Kamp, 2019);
furthermore, the enhanced spike-ACE2 interaction increases
chances on the entrance into the host cells (Serapian et al.,
2020; Spinello et al., 2020), and hence, the present observa-
tions on the strong and very strong protein–protein inter-
action will be a base for future clinical and wet lab studies
on selected variations on spike and ACE2.

Conclusion

The proposed risk of infection scale in COVID-19 patients
depends on the composition variations of hACE2 receptor
and SARS-CoV-2 spike protein is one of a kind to use as ref-
erence for further computational and laboratory studies to
correlate the spectrum of severity.

The principle cause of COVID-19 disease severity has been
categorized into five zones (very weak, weak, moderate,
strong and very strong). The wild hACE2 receptor and SARS-
CoV-2 spike protein are binding strongly to each other.
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