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Temporal lobe epilepsy, a common drug-resistant epilepsy in adults, is primarily a limbic network disorder associ-
ated with predominant unilateral hippocampal pathology. Structural MRI has provided an in vivo window into
whole-brain grey matter structural alterations in temporal lobe epilepsy relative to controls, by either mapping (i)
atypical inter-hemispheric asymmetry; or (ii) regional atrophy. However, similarities and differences of both atyp-
ical asymmetry and regional atrophy measures have not been systematically investigated.
Here, we addressed this gap using the multisite ENIGMA-Epilepsy dataset comprising MRI brain morphological
measures in 732 temporal lobe epilepsy patients and 1418 healthy controls. We compared spatial distributions of
grey matter asymmetry and atrophy in temporal lobe epilepsy, contextualized their topographies relative to spatial
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gradients in cortical microstructure and functional connectivity calculated using 207 healthy controls obtained
from Human Connectome Project and an independent dataset containing 23 temporal lobe epilepsy patients and
53 healthy controls and examined clinical associations using machine learning.
We identified a marked divergence in the spatial distribution of atypical inter-hemispheric asymmetry and region-
al atrophy mapping. The former revealed a temporo-limbic disease signature while the latter showed diffuse and
bilateral patterns. Our findings were robust across individual sites and patients. Cortical atrophy was significantly
correlated with disease duration and age at seizure onset, while degrees of asymmetry did not show a significant
relationship to these clinical variables.
Our findings highlight that the mapping of atypical inter-hemispheric asymmetry and regional atrophy tap into
two complementary aspects of temporal lobe epilepsy-related pathology, with the former revealing primary sub-
strates in ipsilateral limbic circuits and the latter capturing bilateral disease effects. These findings refine our no-
tion of the neuropathology of temporal lobe epilepsy and may inform future discovery and validation of comple-
mentary MRI biomarkers in temporal lobe epilepsy.
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Introduction
Temporal lobe epilepsy (TLE) is the most common drug-resistant
epilepsy in adults. Its hallmark is pathology of mesiotemporal
structures, notably the hippocampus, entorhinal cortex, amygdala
and temporal pole.1–5 The degree of atrophy in these regions corre-
lates with the tendency to express epileptic activity.6,7 Moreover,
unilateral anteromesial resection leads to worthwhile improve-
ment in approximately 90% of patients and long-term seizure free-
dom in more than 50%.8–10

MRI can identify the pathological substrate of TLE in vivo and
lateralize and define the surgical target. Indeed, MRI has provided
biomarker candidates for TLE diagnostics, prognostics and disease
staging.11–13 MRI analyses in TLE traditionally focus on manually
or automatically delineating individual mesiotemporal structures,
followed by (i) the analysis of inter-hemispheric grey matter asym-

in patients relative to healthy controls. Studies focusing on mesio-
temporal grey matter consistently reported atrophy and marked
asymmetry, reaffirming that TLE is primarily a limbic dis-
order.10,14–21

With advancements and automation of image processing tech-
niques, quantitative MRI analysis has been extended to the whole-
brain level using volumetric analysis and voxel-based morphom-
etry 20,22–27 as well as surface-based cortical thickness analysis.28–

32 These studies have mainly been cross-sectional regional com-
parisons between TLE and healthy controls, and explored patterns
of inter-hemispheric asymmetry in TLE only sporadically. Whole-
brain analyses often showed asymmetric mesiotemporal damage,
and also revealed widespread and bilateral decreases in cortical
grey matter outside the mesiotemporal lobe, with neither a limbic
nor lateralized predominance.31–35 Similar findings were con-
firmed by a multisite initiative aggregating and analysing brain
morphometric measures in common epilepsies.34,36

Outside the mesiotemporal regions, the scarcity of asymmetry
analyses precludes insights into how similar or different patterns
of atypical structural asymmetry are relative to patterns of region-
al atrophy in TLE. Analysing both atrophy and asymmetry features
could inform the development of individualized MRI bio-
markers.19,20,37,38 Moreover, comparing these patterns could clarify
whether these reflect different disease processes. One emerging
family of approaches stratifies cortical areas along spatial gra-
dients of cortical microstructure and connectivity.39–41 Cortical
areas indeed show variable microstructural characteristics, often
following sensory–fugal spatial gradients that relate to plasticity
and neural excitability.35,41–46 For example, paralimbic circuits dif-
fer from sensory networks by having an agranular architecture
with only subtle laminar differentiation and relatively low myelin
content, while sensorimotor areas have a marked layer IV and
higher intracortical myelin.35,47–50 Complementing these micro-
structural variations, recent work has shown gradients of func-
tional connectivity running from sensorimotor networks towards
heteromodal systems, notably the default mode network.39

Contextualizing atrophy and atypical asymmetry patterns along
these microstructural and functional connectivity gradients may
shed light on potential anatomical determinants of cortical path-
ology in TLE.

We used the ENIGMA-Epilepsy dataset to map the topography
of atypical inter-hemispheric asymmetry and regional atrophy in
732 individuals with TLE and 1418 healthy controls. Using a multi-
site mega-analysis, we systematically assessed the commonalities
and divergences of these spatial patterns. We further contextual-
ized findings with respect to microstructural and functional con-
nectivity gradients, derived from parallel myelin-sensitive
microstructural MRI and resting-state functional

acquisitions,39,41,51 obtained from both Human Connectome
Project (HCP; 207 healthy controls) as well as a local cohort of TLE
patients and controls (23 TLE and 53 healthy controls). We formu-
lated the following hypotheses: (i) the spatial distribution of TLE-
related cortical asymmetry and atrophy would differ, with the for-
mer being particularly temporo-limbic; and (ii) atypical asymmetry
and atrophy maps would relate to cortical gradients, with the
asymmetry map being more closely related to the primary tem-
poro-limbic gradients derived from cortical microstructure. We
also assessed whether inter-hemispheric asymmetry and regional
atrophy mapping would show differential associations with clinic-
al parameters, notably effects of disease duration and age of onset.
In addition to benefiting from the high power of ENIGMA-Epilepsy,
we validated the consistency of our findings at the level of single
patients and individual sites.

Materials and methods
Participants

We analysed 2150 T1-weighted MRI datasets from 732 patients
with TLE and confirmed/suspected mesiotemporal sclerosis (55%
females, mean age ±SD = 38.56 ±10.61 years; 391/341 left/right TLE)
and 1418 healthy controls (55% females, mean
age ±SD = 33.76 ± 10.54 years) obtained from 19 different sites via
the Epilepsy Working Group of ENIGMA34,36,52 (Table 1). Individuals
with epilepsy were diagnosed by epilepsy specialists at each centre
according to classifications of the International League Against
Epilepsy.53 TLE patients were diagnosed based on electroclinical
and neuroimaging findings. Participants with a primary progres-
sive disease (e.g. Rasmussen’s encephalitis), visible malformations
of cortical development, or prior neurosurgery were excluded. For
each site, local institutional review boards and ethics committees
approved each included cohort study and written informed con-
sent was provided according to local requirements.

Gradients were derived from two independent cohorts containing
healthy controls and patients with TLE: (i) A sample of 207 unrelated
healthy young adults (60% females, mean age±SD = 28.73± 3.73 years)
from the HCP54; and (ii) a sample of 53 healthy controls (38% females,
mean age±SD = 30.84± 7.59 years) and 23 TLE patients (52% females,
mean age±SD = 37.29±11.96 years) from our local site at the MNI
(microstructure-informed connectomics; MICs). All participants gave
written and informed consent.

Data preprocessing
ENIGMA data

Participants underwent T1-weighted scans at each of the 19
centres, with acquisition protocols detailed elsewhere.34 Imaging
data were processed by each centre through the standard
ENIGMA workflow described in Supplementary material and
Supplementary Fig. 1.

HCP data

T1- and T2-weighted, as well as resting-state functional MRI (rs-
fMRI) data, were obtained using a Siemens Skyra 3 T at
Washington University.54 The T1-weighted images were acquired
using a magnetization-prepared rapid gradient echo sequence
[repetition time (TR) = 2400 ms; echo time (TE) = 2.14 ms; inversion
time (TI) = 1000 ms; flip angle = 8�; field of view (FOV) = 224 � 224
mm2; voxel size = 0.7 mm isotropic; and number of slices = 256].
T2-weighted data were obtained with a T2-SPACE sequence
(TR = 3200 ms; TE = 565 ms; flip angle = variable; FOV = 224 � 224
mm2; voxel size = 0.7 mm isotropic; and number of slices = 256).
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The rs-fMRI data were collected using a gradient-echo echo-planar
imaging sequence (TR = 720 ms; TE = 33.1 ms; flip angle = 52�;
FOV = 208 � 180 mm2; voxel size = 2 mm isotropic; number of
slices = 72; and number of volumes = 1200 per time series). During
the rs-fMRI scan, participants were instructed to keep their eyes
open, looking at a fixation cross. Two sessions of rs-fMRI data
were acquired; each contained data of left-to-right and right-to-
left phase-encoded directions, providing up to four time series per
participant. HCP data underwent minimal preprocessing pipelines
using FSL, FreeSurfer and Workbench,55–57 briefly summarized in
Supplementary material and Supplementary Fig. 1.

MICs data

Data were acquired on a Siemens Prisma 3T scanner. Acquisition
parameters were similar to the HCP dataset (T1-weighted:
TR = 2300 ms; TE = 3.14 ms; TI = 900 ms; flip angle = 9�;
FOV = 256 � 180 mm2; voxel size = 0.8 mm isotropic; and number
of slices = 320; quantitative T1: same as T1-weighted except for
TR = 5000 ms and TE = 2.9 ms; TI = 940 ms; flip angle 1 = 4�; flip
angle 2 = 5�; rs-fMRI: TR = 600 ms; TE = 30 ms; flip angle = 52�;
FOV = 240 � 240 mm2; voxel size = 3 mm isotropic; number of
slices = 48; and number of volumes = 700). MICs data were prepro-
cessed using micapipe (https://github.com/MICA-MNI/micapipe;
last accessed February 5, 2022), which integrates AFNI, FSL,
FreeSurfer, ANTs and Workbench.55–59 Details are described in
Supplementary material and Supplementary Fig. 1.

Atypical inter-hemispheric cortical asymmetry and
regional atrophy

We calculated inter-hemispheric asymmetry of cortical thickness
using the following formula: AI = (ipsi – contra) / j(ipsi + contra)/
2j,19,60,61 where AI is asymmetry index and ipsi and contra are the
cortical thickness of ipsilateral and contralateral areas, respective-
ly. The asymmetry index was z-normalized relative to site-
matched pooled controls and sorted into ipsilateral/contralateral
to the focus.62 It was then harmonized across different sites by
adjusting for age, sex and intracranial volume using ComBat, a
batch-effect correction tool that uses a Bayesian framework to im-
prove the stability of the parameter estimates.63,64 We compared
the harmonized asymmetry index between individuals with TLE
and controls using a general linear model implemented in
SurfStat.65 Multiple comparisons across brain regions were cor-
rected using the FDR procedure.66 In addition to parcel-wise ana-
lysis, we stratified asymmetry measures according to seven
intrinsic functional communities (visual, somatomotor, dorsal at-
tention, ventral attention, limbic, frontoparietal and default
mode)67 and lobes (frontal, parietal, temporal, occipital, cingulate

and insular cortex). In addition to the atypical asymmetry index,
we assessed cortical atrophy in TLE patients relative to controls.
Cortical thickness measures were z-normalized, flipped hemi-
spheres of right TLE and harmonized as for the asymmetry index.
We compared the harmonized cortical thickness between the
groups and the findings were multiple-comparison corrected using
FDR66 as well as stratified according to functional communities
and lobes.

Association to gradients of cortical microstructure
and function

We assessed topographic underpinnings of TLE-related asym-
metry and atrophy through spatial correlation analysis with
microstructural and functional gradients, the principal eigenvec-
tors explaining spatial shifts in microstructural similarity and
functional connectivity.39,41 Gradients were defined using two al-
ternative datasets, either based on both the HCP (i.e. healthy con-
trols) or based on the MICs (i.e. healthy controls and TLE patients),
using BrainSpace (https://github.com/MICA-MNI/BrainSpace; last
accessed 5 February 2022).51 Specifically, we calculated a parcel-to-
parcel affinity matrix for each feature using a normalized angle
kernel considering the top 10% entries for each parcel. As in prior
work,39,45,51,68–74 we opted for diffusion map embedding,75 a non-
linear technique that is robust to noise and computationally effi-
cient.76,77 It is controlled by two parameters, a and t, where a con-
trols the influence of the density of sampling points on the
manifold (a = 0, maximal influence; a = 1, no influence) and t scales
eigenvalues of the diffusion operator. The parameters were set as

in the embedded space, following prior applications.39,41,45,51,69,78

We examined associations of the estimated gradients with cortical
asymmetry in a single hemisphere and atrophy patterns in both
hemispheres via linear correlations, where significance was deter-
mined using 1000 non-parametric spin tests that account for spa-
tial autocorrelation79 implemented in the ENIGMA Toolbox.80

Consistency mapping across sites and individuals

We assessed the robustness of our findings within a probabilistic
framework at the single site and subject level. The consistency
across sites was measured by calculating linear correlations be-
tween epilepsy-related asymmetry and atrophy findings and gra-
dients for each site. For individual-level consistency, we counted
how many participants are comprised within a specific threshold
(i.e. z5 –2). The counts were divided by the number of participants
to obtain a probability map. Thus, the consistency probability indi-
cates that the top N% patients showed extreme asymmetry or cor-
tical atrophy measures in a given region. The consistency

Table 1 Demographic information of individuals with TLE and site-matched controls

Information ENIGMA-Epilepsy HCP (HC) MICs

TLE HC TLE HC

n 732 1418 207 23 53
Age, years 38.56 ±10.61 33.76 ± 10.54 28.73± 3.73 37.29 ±11.96 30.84± 7.59
Sex, male: female 329:403 643:775 83:124 11:12 33:20
Age at onset, years 16.07 ±12.27 N/A N/A 21.59 ±11.65 N/A
Side of focus, left/right 391/341 N/A N/A 15/7 (1 bilateral) N/A
Duration of illness, years 22.74± 14.06a N/A N/A 15.82 ±12.45 N/A

Means and SDs are reported. HC = healthy control; N/A = not available.
aInformation available in 695 TLE patients.
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probability was correlated with microstructural and functional
gradients, with 1000 non-parametric spin tests.79,80

Associations with clinical variables

We associated clinical variables of duration and onset of epilepsy
with atypical asymmetry index and cortical atrophy using super-
vised machine learning. We utilized 5-fold nested cross-valid-
ation76,81–83 with least absolute shrinkage and selection operator
(LASSO) regression.84 We split the dataset into training (4/5) and
test (1/5) partitions, and each training partition was further split
into inner training and testing folds using another 5-fold cross-val-
idation. Within the inner fold, LASSO finds a set of non-redundant
features (i.e. atypical asymmetry index or cortical atrophy of brain
regions) that could explain the dependent variable (i.e. disease
duration or onset age). Using a linear regression, we predicted the
clinical variables of inner fold test data using the features of the
selected brain regions. The model with best accuracy (i.e. min-
imum mean absolute error, MAE) across the inner folds was
applied to the test partition of the outer fold and the clinical varia-
bles of outer fold test data were predicted. We repeated this pro-
cedure 100 times with different training and test partitions to
avoid subject selection bias. We assessed the prediction accuracy
by calculating linear correlations between the actual and predicted
clinical variables with their 95% confidence interval across 100 rep-
etitions, as well as MAE. The significance of the correlation be-
tween actual and predicted values was assessed using 1000
permutation tests by randomly shuffling participant indices. A
null distribution was constructed, and it was deemed significant if
the real correlation value did not belong to 95% of the distribution
(two-tailed P5 0.05). We compared our model with the baseline

assessed using Meng’s z-test.85 To assess whether the frequency of
the selected brain regions derived from LASSO regression across
cross-validations and repetitions is related to microstructural and
functional gradients, we calculated spatial correlations between
cortex-wide probability distributions and each of the gradients.
Significance was assessed using 1000 spin tests.79,80 As a post-hoc
analysis, we correlated the cortical features of the highly probable
regions (selected probability4 0.5) and clinical variables, and the
significance was calculated based on 1000 permutation tests by
randomly shuffling participant indices.

Sensitivity analysis
Left and right TLE

To assess whether left and right TLE show consistent results, we
repeated assessing atypical cortical asymmetry and atrophy and
correlating the effects with gradients for separate left and right
TLE subgroups. We furthermore assessed cortical atrophy in indi-
viduals with left and right TLE for each hemisphere. We conducted
paired t-tests to compare cortical atrophy between hemispheres
within left or right TLE, and two-sample t-tests between left and
right TLE. Multiple comparisons were corrected using FDR.66

Different density of connectivity matrix

In our main analysis, we estimated microstructural and functional
gradients using connectivity matrices with 10% density. We
repeated generating the gradients from connectivity matrices with
different densities (20%, 30%, 40%, 50%) and correlated with atyp-
ical cortical asymmetry and atrophy patterns.

Gradients generated using local dataset

We generated microstructural and functional gradients using a
combined dataset of healthy individuals and patients with TLE, to
assess consistency of the topographic relationships between TLE-
related asymmetry/atrophy and cortical gradients.

Volumetric analysis

We additionally assessed atypical inter-hemispheric asymmetry
and regional atrophy patterns of six subcortical regions (amygdala,
caudate, nucleus accumbens, pallidum, putamen, thalamus), as
well as the hippocampus, defined using the Desikan–Killiany
atlas.86 We estimated the volume of each region, calculated asym-
metry index,19,60,61 z-normalized both asymmetry index and vol-
ume of TLE patients relative to controls, flipped hemispheres in
right TLE patients and harmonized data across different sites by
adjusting for age, sex and intracranial volume using ComBat.63,64

We compared asymmetry and regional volume between individu-
als with TLE and controls using a general linear model.65 Next, we
assessed the robustness of atypical asymmetry and atrophy by cal-
culating consistency probability. Lastly, we performed the predic-
tion analysis by considering both cortical thickness and
subcortical/hippocampal volume measures using LASSO regres-
sion 84 with five fold nested cross-validation.76,81–83 The prediction
procedure was repeated 100 times with different training and test
datasets and the performance was measured using linear correla-
tions between the actual and predicted clinical variables with their
95% confidence interval, as well as MAE. We compared our model
with the baseline model, and assessed improvement of the predic-
tion performance using Meng’s z-test.85

Data availability

The data that support the findings of this study are available on re-
quest from the corresponding author. The data are not all publicly
available in a repository as they contain information that could
compromise the privacy of research participants.

Although there are data-sharing restrictions imposed by (i) eth-
ical review boards of the participating sites, and consent docu-
ments; (ii) national and trans-national data sharing law, such as
General Data Protection Regulation (GDPR); and (iii) institutional
processes, some of which require a signed Material Transfer
Agreements (MTA) for limited and predefined data use, we wel-
come sharing data with researchers, requiring only that they sub-
mit an analysis plan for a secondary project to the leading team of
the Working Group (http://enigma.ini.usc.edu; last accessed 5
February 2022). Once this analysis plan is approved, access to the
relevant data will be provided contingent on data availability and
local PI approval and compliance with all supervening regulations.
If applicable, distribution of analysis protocols to sites will be
facilitated.

Results
Atypical inter-hemispheric asymmetry patterns
differ from regional cortical atrophy in TLE

We found significant deviations in inter-hemispheric asymmetry
in TLE relative to controls, especially in lateral and medial tem-
poral cortex, as well as precuneus, with ipsilateral regions being
atypically smaller than contralateral regions (PFDR5 0.05; Fig. 1A).
Stratifying effects according to intrinsic functional communities,67

highest deviations in asymmetry were observed in the limbic net-
work followed by default mode and somatomotor networks
(Fig. 1B). Lobar analysis identified most marked degrees of atypical

B.-y. Park et al.1290 | BRAIN 2022: 145; 1285–1298

model [i.e. predicted clinical variable = mean(training set clinical
variable)] and improved prediction performance of our model was

http://enigma.ini.usc.edu
http://enigma.ini.usc.edu


asymmetry in the temporal lobes. Asymmetry patterns of TLE
were markedly different from regional differences in bilateral cor-
tical thickness. Indeed, comparing cortical thickness between TLE
and healthy controls showed widespread and bilateral cortical
thickness reductions in TLE, with strongest effects in precentral,
paracentral and superior temporal regions (PFDR50.05; Fig. 1A).
Findings were distributed across somatomotor, dorsal attention
and visual networks (Fig. 1B). Similarly, lobar stratification pointed
to multilobar effects, most marked in frontal, parietal and occipital
lobes in both hemispheres. Notably, spatial correlations between
atypical asymmetry and atrophy patterns in a single hemisphere
were very low and did not surpass null models with similar auto-
correlation (r = 0.05, P = 0.27).79

A diverging topographic landscape of TLE-related
atypical asymmetry and atrophy

Next, we assessed spatial associations of epilepsy-related findings
with microstructural and functional gradients. The microstructur-
al gradient depicted a continuous differentiation of cortical fea-
tures between sensory and limbic areas, and was negatively

correlated with atypical asymmetry index (r = –0.13, PFDR = 0.03),
reflecting elevated atypical asymmetry in temporo-limbic cortices
in TLE (Fig. 1C). On the other hand, it was positively and markedly
correlated with regional atrophy in TLE (r = 0.72; PFDR5 0.001;
Fig. 1C). The difference between these two correlations was signifi-
cant (P50.001; Meng’s z-test),85 indicating a dissociation of atyp-
ical asymmetry and atrophy patterns with respect to the primary
microstructural gradient. The functional gradient differentiated
primary sensory from transmodal regions, and did not show a sig-
nificant association with atypical inter-hemispheric asymmetry in
TLE (r = –0.10, PFDR = 0.12), but a low-to-moderate positive associ-
ation with regional atrophy (r = 0.31, PFDR5 0.001; Fig. 1D).

Consistency across sites and individuals

We confirmed the above topographic divergence across individual
sites (Fig. 2A) by correlating microstructural and functional gra-
dients with atypical asymmetry and regional atrophy in TLE for
each site separately (Fig. 2B). These follow-up analyses confirmed
our main findings (Fig. 1C and D) that showed dissociation be-
tween atypical asymmetry and atrophy patterns. Multisite analy-
ses were expanded by assessing consistency at the level of

Figure 1 Topography of atypical cortical asymmetry and atrophy patterns in TLE. (A) Atypical inter-hemispheric asymmetry of cortical thickness and
regional cortical atrophy between individuals with TLE relative to controls, calculated using ENIGMA-Epilepsy dataset. Blue regions indicate signifi-
cant ipsilateral versus contralateral cortical thickness asymmetry/atrophy in TLE relative to controls. Patient hemispheres are sorted into ipsilateral/
contralateral to the seizure focus. (B) Effects (i.e. asymmetry index and cortical thickness) are stratified according to seven intrinsic functional com-
munities67 and major lobes. (C) Associations between epilepsy-related findings and microstructural/functional gradients calculated using HCP data-
set. Cortex-wide microstructural profile similarity matrix and scree plot describing connectome variance after identification of principal eigenvectors
are shown. The first principal eigenvector (microstructural gradient) is shown on the cortical surface. Spatial correlations between the principal
microstructural gradient and TLE-related effects (i.e. atypical cortical asymmetry and atrophy) are reported with scatter plots. (D) Identical analysis
to C but based on functional gradients. Cing = cingulate; DAN = dorsal attention network; DMN = default mode network; FPN = frontoparietal control
network; Front = frontal; Ins = insular; LBN = limbic network; Occ = occipital; Par = parietal; SMN = somatomotor network; Temp = temporal; VAN =
ventral attention network; VN = visual network.
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individual patients (Fig. 2C). Prevalent atypical asymmetry was
confirmed in somatomotor and limbic regions (Fig. 2D) and spatial
patterns revealed significant associations only with the micro-
structural gradient (r = 0.13/–0.02, PFDR = 0.04/0.42 for microstruc-
tural/functional gradients; Fig. 2E). The consistency probability of
regional cortical atrophy showed higher consistency in sensory,
precuneus and temporal regions, and it showed significant nega-
tive correlations with both gradients (r = –0.29/–0.30, PFDR50.001/
50.001), supporting patient-level consistency.

Associations with clinical variables

Utilizing supervised machine learning, we probed associations of
both atypical inter-hemispheric asymmetry and regional atrophy
with disease duration and age at seizure onset. While cortical atro-
phy significantly predicted the clinical variables outperforming
the baseline model (disease duration: mean ±SD r = 0.26 ± 0.02,
MAE = 11.38 ± 0.10, Meng’s z-test P50.001; age at seizure onset:
r = 0.17 ± 0.02, MAE = 9.91 ±0.08, Meng’s z-test P = 0.01), atypical
asymmetry did not (disease duration: Meng’s z-test P = 0.27; age at
seizure onset: Meng’s z-test P = 0.20; Fig. 3A,D). Considering cor-
tical atrophy, sensorimotor, medial/lateral temporal, and precu-
neus were frequently selected across cross-validations as salient
features for the prediction for disease duration (Fig. 3A), and

sensorimotor and limbic regions for age at seizure onset (Fig. 3D).
As in the main analyses, we observed significant associations of
the selected probability with connectome gradients (disease dur-
ation: r = –0.27/–0.34 PFDR = 0.002/50.001 for microstructural/func-
tional gradients; age at seizure onset: r = –0.25/0.03 PFDR5 0.001/
0.35; Fig. 3B and E). Associations in highly probable regions
(selected probability40.5) were negative, i.e. disease duration/age
at seizure onset associated with cortical thickness reductions
(r = –0.30/–0.21, permutation test P5 0.001/50.001; Fig. 3C and F).

Sensitivity analyses

Several analyses supported robustness of our main findings.

Left and right TLE

We repeated the above analyses in left and right TLE separately.
While the degree of asymmetry was stronger in left than right TLE,
findings were overall consistent (Supplementary Fig. 2). In the
temporal lobe, while both left and right TLE patients showed more
pronounced ipsilateral cortical atrophy, ipsilateral atrophy in left
TLE was more marked than in right TLE, while contralateral atro-
phy was stronger in the latter subgroup (Supplementary Fig. 2E
and F).

Figure 2 Consistency of atypical cortical asymmetry and atrophy. (A) World map of data acquisition sites. (B) Spatial correlations between topograph-
ic gradients and atypical cortical asymmetry/atrophy patterns of all sites. (C) Schema describing the computation of patient-wise consistency prob-
ability. The number of patients with large deviations of cortical features (i.e. atypical inter-hemispheric asymmetry or regional cortical atrophy) was
counted. (D) Consistency probability of atypical cortical asymmetry and atrophy. (E) Spatial correlations between consistency probability and topo-
graphic gradients.
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Different density of connectivity matrix

We repeated our analyses by varying the thresholds of microstruc-
tural and functional connectivity matrices across different den-
sities (20%, 30%, 40%, 50%). Gradients and their associations with
inter-hemispheric asymmetry, as well as regional atrophy,
remained consistent (Supplementary Fig. 3).

Gradients generated using local dataset

We also repeated the analysis after building gradients using a dif-
ferent dataset comprising both healthy individuals and patients
with TLE. Microstructural and functional gradients were highly
similar to those from the HCP dataset, and topographic associa-
tions between TLE-related asymmetry/atrophy and cortical gra-
dients remained consistent when using gradients based on a
combined dataset of healthy individuals and patients with TLE
(Supplementary Fig. 4).

Volumetry of subcortical regions and the hippocampus

We also studied the volume of subcortical structures as well as the
hippocampus. While atypical asymmetry and atrophy patterns
both supported marked ipsilateral hippocampal effects
(PFDR50.05; Supplementary Fig. 5A), spatial correlations between
atypical inter-hemispheric asymmetry and regional atrophy were
moderate and not significant (r = 0.51, P = 0.06). As for the cortical
thickness-based results, these findings were consistent across in-
dividual subjects (Supplementary Fig. 5B). When we considered
both cortical thickness and subcortical/hippocampal volume, we
were able to confirm our initial results in that atrophy but not
atypical asymmetry related to age at seizure onset, while disease
duration was significantly associated with both measures, outper-
forming the baseline model (atypical asymmetry: P = 0.004 for dis-
ease duration, P = 0.14 for age at seizure onset; atrophy: P50.001
for both disease duration and age at seizure onset; Meng’s z-test;
Supplementary Fig. 5C).

Discussion
Together with the multisite ENIGMA-Epilepsy initiative,34,36,52,87

we investigated patterns of atypical inter-hemispheric asymmetry
of cortical thickness and cross-sectional regional atrophy in a large
sample of TLE patients and healthy controls. In particular, we
studied whether (i) the spatial distribution of atypical inter-hemi-
spheric asymmetry differed from patterns of regional atrophy in
TLE relative to controls; (ii) these patterns follow different topo-
graphic principles of cortical organization, particularly with re-
spect to microstructural and functional gradients; and (iii) these
effects showed a differential association to effects of epilepsy dur-
ation and age of onset. We found that atypical inter-hemispheric
asymmetry analysis and regional atrophy mapping provide com-
plementary insights into the pathology of TLE in vivo, with atypical
asymmetry showing an ipsilateral limbic signature, while cross-
sectional cortical thickness mapping indicated widespread and bi-
lateral atrophy in TLE. Atypical asymmetry and atrophy patterns
of the cortex were also differentially associated with microstruc-
tural and functional gradients representing core axes of cortical or-
ganization,39–41,44,88 supporting a topographic divergence of these
two characterizations of TLE-related pathology. Findings were con-
sistent across different sites and participants, corroborating gener-
alizability. While cortical atrophy was correlated with disease
duration and age at seizure onset, atypical asymmetry did not
show an association to these variables. Collectively, our study
underscores complementarity of atypical asymmetry and atrophy

mapping for in vivo pathology mapping, which will be relevant for
future imaging biomarker discovery and validation efforts.

In managing TLE patients, preoperative lateralization of tem-
poral lobe pathology is key to define the surgical target and often
relies on the qualitative visual assessment of inter-hemispheric
asymmetry. Quantitative imaging analyses in clinical and research
settings can be geared towards the identification of asymmetry,
and several prior studies have systematically investigated be-
tween-hemisphere differences in grey matter morphological
measures in TLE. Most of these studies have focused on the asym-
metry of the hippocampus and adjacent mesiotemporal struc-
tures, suggesting marked limbic structural asymmetry in
TLE.19,21,37,89 Asymmetry analysis has several benefits, including
the ability to use a given patient as their own baseline while con-
trolling for corresponding measures in controls. However, the field
lacks systematic analyses of asymmetry, particularly outside the
mesiotemporal region. There have been no quantitative compari-
sons of atypical inter-hemispheric asymmetry with maps of cross-
sectional regional atrophy mapping, in which measures in patients
with TLE are compared to groups of healthy controls. When carried
out in structures of the limbic system, atrophy mapping also
reveals structural compromise in TLE compared to healthy con-
trols, with variable degrees of asymmetry ranging from relatively
ipsilateral to rather bilateral depending on the TLE sub-
groups.10,15,19 The advent of automated morphometric analysis
has resulted in a predominance of studies focusing on cross-sec-
tional regional thickness comparisons, and relatively few large-
scale analyses have assessed the topography of atypical cortical
thickness asymmetry patterns in TLE.31–35,38 Notably, although
atypical asymmetry and atrophy are sometimes used interchange-
ably in the neuroimaging literature of TLE as in vivo indices of
pathology, our findings pointed to differences in the topography of
atypical cortical asymmetry and regional patterns of cross-section-
al atrophy in TLE. Spatial correlation analysis confirmed this, fail-
ing to identify an association between these spatial patterns after
accounting for spatial autocorrelations. Atypical asymmetry in
TLE followed a more specific paralimbic topography with maximal
effects in the mesiotemporal lobe, in line with the classical con-
ceptualizations of TLE as a limbic network disorder.1–3,90 On the
other hand, in line with prior single site analyses28–31 and recent
ENIGMA-Epilepsy studies,34,36,52 regional cortical atrophy mapping
confirmed ipsilateral mesiotemporal atrophy in TLE, as well as
widespread and bilateral effects outside paralimbic cortical areas.
Findings were consistent in both left and right TLE patients. Thus,
and despite both left and right TLE groups potentially showing dif-
ferent structural compromise,21,34,62,91–94 findings overall suggest a
similar divergence of atrophy and asymmetry patterns irrespective
of seizure focus lateralization.

Our findings were further contextualized by quantifying the
alignment of asymmetry and atrophy patterns along microstruc-
tural and functional gradients.39–41 Cortical microstructural gra-
dients place sensorimotor cortices with strong laminar
differentiation and high myelin content at one end and paralimbic
regions with subtle myelination, low laminar differentiation and
increased synaptic densities at the other end.41,72 Microstructural
gradients, preserved across species,41,72,95 follow canonical models
of sensory–fugal cortical hierarchies88 and capture inter-regional
variations in heritability and plasticity.96 While also starting at
sensorimotor systems, the principal functional gradient radiates
towards transmodal networks, such as the default mode and fron-
toparietal systems, and not the paralimbic cortices.39 This diver-
gence between microstructural and functional gradients may
relate to less tethering of phylogenetically more recent association
networks, such as the default mode network, from underlying sig-
nalling molecules97 and may more closely reflect macroscale
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functional organization.67 Spatial correlation analyses supported
the dissociation of atypical cortical asymmetry and atrophy pat-
terns with respect to microstructural gradients, where we
observed increasing degrees of asymmetry towards the temporo-
limbic anchor of the microstructural gradient, while atrophy pat-
terns increased towards primary sensorimotor and unimodal asso-
ciation areas. While confirming stronger effects towards
sensorimotor anchors in the case of atrophy patterns, functional
gradient associations were less conclusive about atypical asym-
metry, indirectly underscoring the paralimbic pattern of the latter.

Furthermore, these findings may indicate that cortical morpho-
logical changes are better captured by microstructural than by
functional hierarchies, a finding echoing prior associations be-
tween intracortical cellular-synaptic factors and measures of cor-
tical thickness.98–101 Both cortical thickness and microstructural
gradients were derived from structural MRI and thickness and
intracortical myelin are largely related to cortical cytoarchitec-
ture,45,102 which could indeed explain a strong correlation between
atrophy and the microstructural gradient. It is, nevertheless, im-
portant to point out that cortical thickness and intracortical

Figure 3 Associations between cortical features and clinical variables. (A) Probability of regions being selected across 5-fold nested cross-validation
and 100 repetitions for predicting duration of epilepsy using atypical asymmetry index (left) and regional atrophy (right). Correlations between actual
and predicted values of epilepsy duration are reported in the scatter plots. Black lines indicate the mean correlation and grey lines represent the 95%
CI for 100 iterations with different training/test datasets. (B) Linear correlations between gradients and selected probability. (C) Spatial correlations
between duration of epilepsy and atypical asymmetry index (left), as well as cortical atrophy (right) in highly probable (selected probability4 0.5)
regions. (D–F) Identical analysis to A–C, but with respect to age at seizure onset. MAE = mean absolute error.
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microstructural measures were calculated using different
approaches: (i) cortical thickness was measured as the distance be-
tween pial and white matter cortical interfaces from T1-weighted
data, tapping into overall cortical morphology; while (ii) the micro-
structural gradient was derived from depth-dependent intracorti-
cal intensity profiles based on the ratio of T1- and T2-weighted
data from the HCP dataset (and from quantitative T1 relaxometry
data in the case of the local MICs dataset). Prior research has fur-
thermore shown that cortical morphology as indexed by cortical
thickness measures as well as internal cortical microstructure
reflects likely complementary aspects of healthy and diseased
brain organization. For example, age-related effects on cortical
thinning and myelination do not occur in parallel, but rather in a
different spatial distribution during typical development45,102 as
well as lifespan.103–106 In TLE, it has been shown that changes in
intracortical microstructure based on quantitative T1 relaxometry
occur above and beyond changes in MRI-based cortical thickness,
suggesting that potentially different biological and pathological
processes drive changes in morphology and microstructure in the
condition.107

Big data initiatives such as ENIGMA-Epilepsy offer increased
sensitivity to identify disease-related patterns of structural com-
promise. Extending from initial meta-analysis efforts,34 it is fur-
thermore possible to assess consistency of findings at the single
site and individual patient levels. Here, we observed that the dis-
sociation between atypical cortical asymmetry and atrophy
remained consistent when we considered individual sites separ-
ately, and to some degree also at the level of individual partici-
pants. Using machine learning, we associated cortex-wide
morphological data with clinical variables and showed inter-indi-
vidual differences in cortical atrophy associated with disease dur-
ation and age at seizure onset. Associations were primarily driven
by primary regions in sensorimotor cortex, together with temporal
cortices and the precuneus. Unlike cortical thickness, atypical
asymmetry patterns were not significantly associated with these
clinical variables. These divergent clinical associations suggest
that atypical inter-hemispheric asymmetry and regional cortical
atrophy potentially reflect different TLE pathological processes,
with asymmetry being more specifically related to an initial insult
of the limbic circuitry. Alternatively, patterns of TLE-related atro-
phy in widespread and bilateral cortical territories had apparent
progressive effects. The latter finding is consistent with prior
cross-sectional, longitudinal and meta-analytic findings assessing
disease progression effects in TLE.29,32,91,108–111 This effect may re-
late to ongoing seizures, as supported by prior data showing asso-
ciations to seizure frequency,91,110,111 as well as from anti-epileptic
drug treatment.112,113 Moreover, drug-resistant patients are at
increased risk for mood disorders and psychosocial challenges,114

which may furthermore adversely impact brain health.
We found that measures of atypical asymmetry and atrophy

provide complementary windows into structural compromise in
TLE, a finding also supported by the differential relationships to
cortical topographic gradients and diverging associations to clinic-
al parameters. Our findings advance our understanding of large-
scale pathology in TLE and may direct future discovery and valid-
ation of clinically useful neuroimaging biomarkers.
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