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Spin structures of the ground 
states of four body bound systems 
with spin 3 cold atoms
Y. M. Liu1 & C. G. Bao2*

We consider the case that four spin-3 atoms are confined in an optical trap. The temperature is so low 
that the spatial degrees of freedom have been frozen. Exact numerical and analytical solutions for the 
spin-states have been both obtained. Two kinds of phase-diagrams for the ground states (g.s.) have 
been plotted. In general, the eigen-states with the total-spin S (a good quantum number) can be 
expanded in terms of a few basis-states fS,i . Let P�

f
S,i

 be the probability of a pair of spins coupled to 
� = 0, 2, 4 , and 6 in the fS,i state. Obviously, when the strength g� of the �-channel is more negative, 
the basis-state with the largest P�

f
S,i

 would be more preferred by the g.s.. When two strengths are more 
negative, the two basis-states with the two largest probabilities would be more important 
components. Thus, based on the probabilities, the spin-structures (described via the basis-states) can 
be understood. Furthermore, all the details in the phase-diagrams, say, the critical points of 
transition, can also be explained. Note that, for fS,i , P�

f
S,i

 is completely determined by symmetry. Thus, 
symmetry plays a very important role in determining the spin-structure of the g.s..

It is recalled that, due to the realization of optical trapping about 20 years ago, the field of Bose–Einstein con-
densates has been greatly extended and the spin-degrees of freedom begin to play their roles. On the other 
hand, a notable progress in recent years is the technique in the trapping and manipulation of a few cold atoms 
(molecules)1. This technique could also extend the field greatly from traditional many-body systems to cold 
few-body systems. In the theoretical aspect, the former can only be solved approximately, while the latter can 
be solved exactly and detailed analysis on the spin-structures can be made. Thus the knowledge extracted from 
few-body systems would be a complement to those from many-body systems. Furthermore, for cold atoms, the 
temperature can be tuned so low (say, T < 10−10 K) that the spatial degrees of freedom are nearly frozen. This 
leads to a kind of cold few-body systems having only spin-degrees of freedom. Note that all few-body systems 
are strongly constrained by symmetry so that the quantum states are governed by a few quantum numbers. 
Obviously, due to the difference in degrees of freedom, the effects of symmetry constraint imposing on usual 
and cold few-body systems are different (as shown in a previous  paper2). Thus, the field of the study of few-body 
systems could also be thereby extended and rich physics would be involved. Therefore, the study of cold few-body 
systems, they are scarcely studied before, is meaningful.

For many-body systems, there are a number of literatures dedicated to the study of spin-13–11 and spin-2 cold 
 atoms10,12–19. Those for spin-3 condensates are fewer, where the spin-structures appear to be  complicated20–26. 
This paper, as a continuation  of2, is dedicated to four-body systems with spin-3 cold atoms. The purpose is to 
find out the spin-structures of the ground states (g.s.). Note that the interaction contains four parameters {g�} 
(where � is the coupled spin of two atoms). A negative g� would push a pair of atoms to form a [ �]-pair ( � = 0 , 
2, 4, and 6). We believe that, when g� is sufficiently negative, the [ �]-pairs would be important constituents. 
When two or more g� are negative, there is competition among them. We will see how the competition would 
be under the constraint from symmetry.

Spin-dependent Hamiltonian and the eigen-states
Let N spin-3 atoms (say, Cr, Mo, Sn, Pu) be confined in an optical trap. It is assumed that the temperature is 
so low and the binding is so strong that all the particles have condensed to a spatial state φ(r) which is most 
favorable for binding. While all the spatial degrees of freedom are frozen, the spin-degrees of freedom remain 
free, therefore various spin-structures can be formed. These structures depend essentially on the spin-dependent 
Hamiltonian, which can be written as
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where i (j) denotes a particle. � = 0 , 2, 4, and 6 is the coupled spin of a pair, Pij
�
 is the projector to the � -channel. 

g� is the weighted strength which is a product of the strength and the integral 
∫

φ4dr . The latter embodies the 
effect of spatial profile. The dipole–dipole (d–d) coupling between a pair of atoms is relatively weak (for 52 Cr as 
an example, the strength of the d–d coupling cdd = 0.004g6 ), therefore is neglected. In fact, the calculation  in21 
demonstrates that the g.s. of 52 Cr does not seem to depend on the d–d coupling. An important feature of Hspin 
is the conservation of the total spin S and its Z-component M . Thus the eigen-energies and eigen-states of Hspin 
are denoted as ESM and ψSM (the subscript M might be neglected).

We introduce the Fock-states |α� ≡ |N3α ,N2α , . . .N−3,α� , where α represents a set of seven numbers 
{Nµα} ( −3 ≤ µ ≤ 3 ), Nµα is the number of particles in µ magnetic component. Obviously, �µNµα = N  and 
�µµNµα = M . The Fock-states are adopted as basis-states for diagonalizing Hspin . The matrix element is

where |α′� ≡ |N ′
3α , · · ·� , δµν = 1 or 0 (if µ = ν or  = ν ), 

_
δµν = 1− δµν , δ[β];[α] = 1 (if all the seven numbers in [β] 

are one-to-one identical to those in [α] ) or 0 (otherwise), the Clebsch–Gordan coefficients have been introduced. 
Carrying out the diagonalization, ESM together with

can be obtained. The total number of Fock-states is bound by N and M. Since no magnetic field is applied, S 
of an eigen-state can be known by its degeneracy. In particular, the lowest eigen-state (g.s.) is denoted as �S(gs) 
which we will focus on.

Spin-structures based on the pairs
After the diagonalization of Hspin , the parameter space can be divided into zones according to S, and the phase 
diagram thereby can be plotted. To reduce the complexity, we use three 2-dimensional subspaces to replace the 
4-dimensional parameter space as shown in Fig. 1. In each of these subspaces g4 and g6 are variable, while g0 and 
g2 are fixed. There are three possible cases (1) g0 < g2 , (2) g0 ≃ g2 , and (3) g0 > g2 . Note that the spin-structures 
will neither be changed when all the {g�} are shifted with the same value, nor when the unit for {g�} is changed. For 
case (1), let the set {g�} be shifted so that (g0 + g2)/2 = 0 , then a unit is adopted so that g0 = −0.5 and g2 = 0.5 
(Fig. 1a). For case (2), as an approximation, we assume g0 = g2 . Then, {g�} is shifted so that g0 = g2 = 0 (Fig. 1b). 
For case (3), similarly, we have g0 = 0.5 and g2 = −0.5 (Fig. 1c). For all the three cases, the ranges of g4 and g6 
are from −1 to +1 . In the qualitative sense, the feature of a 4-dimensional diagram can be roughly illustrated via 
these three 2-dimensional diagrams.

To understand better the underlying physics, in addition to numerical solutions, we look for analytical solu-
tions. Let

be a basis-state,where S is an operator for symmetrization and normalization, χ(i) is the spin-state of the i-th 
particle, particles 1 and 2 (3 and 4) are coupled to �a ( �b ), �a and �b should be even and coupled to S. Note 
thatϕS;�a�b has not yet been symmetrized, but ˜ϕ(λaλb)S

 is. When S is fixed while �a and �b are variable, the set 

{ ˜
ϕ(λaλb)S} can also be used as (non-orthogonal) basis-states for ψSM . It turns out that, for N = 4, the multiplic-

ity of every ψSM is very small ( ≤ 3 ). Thus Hspin can be analytically diagonalized. Examples are given below.
By recoupling the spins, we have

where

Hspin =
∑

i<j

Vij ,

Vij =
∑

�

g�P
ij
�
,

�α′|Hspin|α� =
1

2
�

µ′ν′µν
δµ′+ν′ ,µ+ν

∑

�

g�C
�,µ′+ν′

3µ′;3ν′ C
�,µ+ν
3µ;3ν

·
(_
δµ′ν′

_
δµν

√

N ′
µ′N ′

ν′NµNνδ[α′]µ′ν′ ;[α]µν

+
_
δµ′ν′δµν

√

N ′
µ′N ′

ν′Nµ(Nµ − 1)δ[α′]µ′ν′ ;[α]µµ

+δµ′ν′
_
δµν

√

N ′
µ′(N ′

µ′ − 1)NµNνδ[α′]µ′µ′ ;[α]µν

+δµ′ν′δµν

√

N ′
µ′(N ′

µ′ − 1)Nµ(Nµ − 1)δ[α′]µ′µ′ ;[α]µµ

)

ψSM =
∑

α

DS
α |α�

˜
ϕ(λaλb)S = S[(χ(1)χ(2))λa(χ(3)χ(4))λb

]S ≡ SϕS;λaλb

˜
ϕ(λaλb)S = Σλaλb

CS;λaλb;λaλb
ϕS;λaλb
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where γ is a coefficient for normalization, the quantity with {} is a 9-j symbol, and 
__

�a ≡
√
2�a + 1 , etc.

CS;�a�b;�′a�′b = γ

(

δ�a�′aδ�b�′b
+ (−1)Sδ�a�′b

δ�b�′a + 4
__

�a

__

�b

__

�
′
a

__

�
′
b

{

3 3 �a

3 3 �b

�
′
a �

′
b S

})

Figure 1.  Phase diagrams of the g.s. of N = 4 systems against g4 and g6 , while g0 and g2 are fixed and marked in 
the panels. S is marked on the associated zone.
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The multiplicity of S = 0 states is two. Therefore, among the four basis-states { ˜
ϕ(λ,λ)0}, it is sufficient to 

choose ˜ϕ(4,4)0
 and ˜ϕ(6,6)0

 for the expansion of ψSM . Other ˜ϕ(λ,λ)0
 state is simply a linear combination of them. 

Note that these two basis-states are not exact ly orthogonal to each other.  Instead, 
O4,6 = ΣλC0;44;λλC0;66;λλ = 0.0933

˜
ϕ(4,4)0 |

˜
ϕ(6,6)0 , where C0;��;�′�′ is given in the table.For S = 0 

states, the associated matrix elements are

where the set {C0;�′�′;��} are listed in the table:
The eigen-energy E0 is the root of a two-dimensional homogeneous linear equation,

Making use of Table 1, the eigen-energy of the lower S = 0 states is

where

The normalized spin-state of the lower S = 0 state is

where
a4 = 1/

√

1+ x2 + 2xO4,6 , x = (H4,4 − E0(−))/(O4,6E0(−) −H4,6) , and a6 = xa4.
The weight of ˜ϕ(4,4)0

 in ψ0(−) is 
˜
ϕ(4,4)0 |ψ0(−)

2 = (a4 + a6O4,6)2. Similarly, the weight of ˜ϕ(6,6)0
 is 

equal to (a6 + a4O4,6)
2 . If other ˜ϕ(λλ)0

 are chosen to replace ˜ϕ(4,4)0
 and/or ˜ϕ(6,6)0

 , the resultant E0(−) and 
ψ0(−) are not changed.

For S = 2 and 8 (both have multiplicity two), ES(−) and ψS(−) can be similarly obtained. For S = 4 and 6 (both 
have multiplicity three), the analytical solutions are more complicated.

Whereas for S = 3 , 5, 7, 9, 10 and 12 states, all of them have multiplicity one, thus the eigen-state is just 
˜
ϕ(λaλb)S

, where �a and �b are arbitrary even numbers adapted to S. For example, when S = 7 we choose �a = 6 
and �b = 4 , then we have

where C7;6,4;2,6 = .6362 ,  C7;6,4;4,6 = .3086 ,  C7;6,4;6,2 = −C7;6,4;2,6 ,  C7;6,4;6,4 = −C7;6,4;4,6 ,  other wise 
C7;6,4;�′a�′b = 0 . The eigen-energy

The eigen-energies of other S-states with multiplicity can be similarly obtained.It is emphasized that, when other 
�a and �b are chosen, both ψ7M and ES=7 remain the same. These states are strictly determined by symmetry. 

H4,4
˜
ϕ(4,4)0 |Hspin|

˜
ϕ(4,4)0 = 6ΣλC

2
0:44;λλgλ,

H6,6
˜
ϕ(6,6)0 |Hspin|

˜
ϕ(6,6)0 = 6ΣλC

2
0;66;λλgλ,

H4,6 = H6,4
˜
ϕ(4,4)0 |Hspin|

˜
ϕ(6,6)0 = 6ΣλC0;44;λλC0;66;λλgλ

(

E0 −H4,4

)(

E0 −H6,6

)

−
(

E0O4,6 −H4,6

)(

E0O4,6 −H4,6

)

= 0

E0(−) =
6

1.9826

(

B−
√

B2 − 3.9652D
)

B = 0.4248g0 + 0.4799g2 + 0.7467g4 + 0.3312g6

D = 0.1607g0g2 + 0.2391g0g4 + 0.0250g0g6 + 0.2603g2g4 + 0.0589g2g6 + 0.2473g4g6

ψ0(−) = a4
˜
ϕ(4,4)0 + a6

˜
ϕ(6,6)0

ψ7M =
˜
ϕ(6,4)7 = Σλaλb

C7;6,4;λaλb
[(χ(1)χ(2))λa

(χ(3)χ(4))λb
]7

ES=7 = 6
[

C2
7;6,4;2,6g2 + C2

7;6,4;4,6g4 +
(

C2
7;6,4;2,6 + C2

7;6,4;4,6
)

g6
]

Table 1.  The coefficients in the expansion of ψSM when S = 0

� 0 2 4 6

C0;00;�� 0.6547 0.3253 0.4364 0.5245

C0;22;�� 0.3061 0.6958 −0.4591 0.4598

C0;44;�� 0.3292 −0.3681 0.8679 0.0540

C0;66;�� 0.5941 0.5535 0.0810 0.5780
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In particular, when S = 3N , we have ES=3N = N(N−1)
2 g6 . With the help of the analytical solutions, the physics 

inherent in Fig. 1 can be better understood, we found 

(1) When g4 < 0 and g6 > 0 (up-left quadrant in Fig. 1) only S = 0 state is found.
  Note that, when a g� is more negative than the others, two spins in the g.s. will prefer to be coupled to � 

and form a [ �]-pair. Let �(�a�b)S|gs� be a shortened label for the overlap 
˜
ϕ(λaλb)S |ΨS(gs) . We found 

that, at the point A (where g4 = −1 and g6 = 1 ) marked in Fig. 1a–c, �(4, 4)0|gs� = 0.9883 , 0.9996, and 
0.9794, respectively. It implies that the g.s. is essentially composed of two [4]-pairs (due to the very negative 
g4 ), and they are further coupled to zero, namely, they are lying opposite to each other (due to the very 
positive g6 ). Besides, at C, B and A marked in Fig.1c (where g6 = 0 , 0.5, and 1), �(4, 4)0|gs� =0.9703, 0.9765, 
and 0.9883, respectively. It implies that, when g6 increases from 0, the structure (4,4)0 will be more domi-
nant.

(2) When g4 and g6 are both negative (down-left quadrant), S = 0 , 8, and 12 states are found.
  For Fig. 1c as an example, when g4 = −1 and g6 = 0 (point C), −0.75 (point D), and −1.1 , we found 

�(4, 4)0|gs� =0.9703, �(4, 4)8|gs� = 0.966 , and �(6, 6)12|gs� = 1 , respectively. Thus S undergoes a transition 
as 0 →8→12. It implies that the decrease of g6 causes first a change of the relative orientation of the two 
[4]-pairs (from being anti-parallel to parallel), then a succeeded breakdown of the [4]-pairs and leading 
to a full polarization. The transition of S takes place when either E0(gs) = E8(gs) or E8(gs) = E12(gs) . Since the 
analytical expressions of the energies have been given, the critical points of transition can be analytically 
obtained.

(3) In up-right quadrant with g4 > 0 and g6 > 0 , if g0 ≤ 0 (Fig. 1a,b), we found the [0]-pairs. For example,s 
at the point B, C and E in Fig. 1a, we have �(0, 0)0|gs� = 0.982 , 0.970, and 0.993, respectively. Whereas if 
g2 ≤ 0 (1c) we found the [2]-pairs. For examples, at the point F2, E and F1, we have �(2, 2)2|gs� = 1.000 , 
�(2, 2)2|gs� = 0.993 , and �(2, 2)4|gs� = 0.974, respectively. In these examples we see once more how the 
relative orientation of the two [ �]-pairs is adjusted by g6.

(4) When g4 > 0 and g6 < 0 (down-right quadrant), the g.s. mostly has S = 12 and the g.s. is fully polarized.
(5) Making use of the analytical solutions, all the boundaries in the phase diagrams can be analytically described 

via the equation ES(gs) = ES′(gs) . For an example, in Fig. 1c, the boundary separating the zones with S = 12 
and S′ = 7 satisfies g6 = 0.1904, g4 = 0.4048 . This explains why this boundary is a straight line up-rising 
slowly with g4.

Competition in the formation of pairs
From the above section we know that, when a g� is more negative than the others, the [ �]-pairs will be impor-
tant. The relative orientation of the spins of pairs depends on g6 and will be changed from being anti-parallel to 
parallel. It is expected that, when g� and g�′ are both more negative, there would be a competition between the 
[ � ]- and [ �′]-pairs. To clarify, we introduce another kind of phase diagrams as shown in Fig. 2.

In Fig. 2a both g4 and g2 are negative, thus there is a competition between the [4]- and [2]-pairs
When g6 = −1 (horizontal black line), due to the strong attraction caused by g6 , no [ �]-pairs ( �  = 6 ) would 

emerge. Instead, all the spins are aligned and the g.s. is fully polarized.
When g6 = −0.5 (dash), both [4]-, [2]-, and [6]-pairs might emerge. When g4 < g2 , the g.s. is domi-

nated by (4,4)8 (say, when g4 = −0.75 , �(4, 4)8|gs�g4=−0.75 = 0.966 ). There is a critical point p 8→4 located at 
g4 = g2 = −0.5 , at which S transits from 8 to 4. Afterward, when g4 (g2) increases (decreases) further so that 
g2 < g4 , the g.s. is dominated by (2,2)4 (say, �(2, 2)4|gs�g4=−0.25 = 0.967 ). Thus the negative g6 = −0.5 is not suf-
ficient to form the [6]-pairs, but sufficient to bring the spins of the two [4]-pairs or the two [2]-pairs to be parallel.

When g6 = 0 (dash–dot). Due to the vanish of the attraction from g6 , the two [4]- or [2]-pairs are 
no more parallel. There is a critical point p 0→2 (where g4 = −0.333 ) and a point of balance B 1 (where 
g4 = −0.391 ). When g4 < p 0→2 , the g.s. is composed of (4,4)0 and (2,2)0 . The pair (4,4)0 would be more 
important if g4 < B 1 , whereas (2,2)0 would be if g4 > B 1 , and they would arrive at a balance at B 1 , i.e., 
�(4, 4)0|gs�g4=−0.391 = �(2, 2)0|gs�g4=−0.391 = 0.874 (note: �(4, 4)0|(2, 2)0� �= 0 ). The point p 0→2 marks the 
transition of S from 0 to 2. When g4 > p 0−2 , the g.s. is essentially (2,2)2 (say, �(2, 2)2|gs�g4=−0.32 = 0.986 , 
�(2, 2)2|gs�g4=−0.1 = 1.000).

The case with g6 = 0.5 (solid line in orange) is similar to the case with g6 = 0 , except p 0→2 = −0.163 , and 
the balance point B 2 = −0.274 . Thus, both p 0→2 and B 2 shift to the right.

When g6 = 1 (dot), the case is also similar to the above case, however the critical point shifts to the right and 
beyond the range −1<g4 ≤ 0 (therefore it can not be seen). The repulsion caused by g6 is sufficiently strong so 
that the pairs kept to be anti-parallel, and therefore the g.s. is composed of (4, 4)0 and (2, 2)0 with the balance 
point B 3 at g4 = −0.157 . Say, �(4, 4)0|gs�g4=−1 = 1.000 , �(4, 4)0|gs�g4=−0.157 = �(2, 2)0|gs�g4=−0.157 = 0.874 , and 
�(2, 2)0|gs�g4=0 = 0.942.

We found B 1 < B 2 < B 3 . Note that, when g6 is positive, the formation of [6]-pairs is unfavorable to the 
energy. Let the probability of two spins coupled to � in a state � be P�� . Then, P6(��)0 = (C0;��;6,6)

2 = (0.4598)2 
(if � = 2 ) and = (0.0540)2 (if � = 4 ). Thus the appearance of the [6]-pairs in (4,4)0 is much less probable than 
in (2,2)0 . Therefore, the structure (4,4)0 would be more favorable than (2,2)0 when g6 becomes more positive. 
This explains the reason that the balance point shifts to the right.

Furthermore, when g6 increases, the critical point also shifts to the right. This is due to a similar reason that 
the appearance of the [6]-pairs in (2,2)0 is less probable than in (2,2)2.

In Fig. 2b both g0 and g4 are negative.
Figure 2b is comparable with Fig. 2a, but the following distinctions are noticeable. 
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(1) In this case the [0]-pairs and [4]-pairs are competing. Accordingly, when g6 ≥ 0 , the two important and 
competing component are (4,4)0 and (0,0)0 (rather than (2,2)0).

(2) When g6 ≥ 0 , g0 and g4 are both negative. Thus, both the [4]-pair and [2]-pair are important and they are 
competing. Meanwhile, g6 is sufficiently positive to keep the two [ �]-pairs anti-parallel so that S is kept to 
be zero and the transition of S from 0 to 2 does not appear.

(3) When g6 becomes negative, there is competition among the [6], [4], and [0]-pairs. Say, when g6 = −0.5 and 
−0.51 < g4 < −0.29 , the [6]-pairs emerge in the middle segment of the dash-line. They will be changed to 
the [4]-pairs if g4 becomes more negative, or to the [0]-pairs if g0 becomes more negative. For the dash-line, 

Figure 2.  The dominant component(s) in the spin-structure of the g.s. The label of the component (�a, �b)S is 
marked above the horizontal lines, each is for a given g6 marked at the left end of the line. For 2a, g0 = 0 , the 
abscissa is for g4 , and g2 = −1− g4 . For 2b, g2 = 0 , the abscissa is also for g4 , and g0 = −1− g4 . For 2c, g4 = 0 , 
the abscissa is for g2 , and g0 = −1− g2.
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due to the negative g6 , either the two [4]-pairs or the two [6]-pairs are parallel to each other. This leads to 
the transition of S as 8 → 12 → 0 when g4 increases ( g0 decreases).

(4) The shift of the balance point to the right appears again (i.e., B 1< B 2 < B 3 ). Note that C0;0,0;6,6 = 0.5245 . 
Thus the appearance of the [6]-pairs in (4,4)0 is also much less probable than in (0,0)0 . This causes the shift 
as before.

In Fig. 2c both g0 and g2 are negative.
When g6 = −1 , the g.s. is fully polarized as before. Otherwise, the g.s. is essentially composed of (2, 2)�b and 

(0, 0)0 (where �b = 4 , 2, and 0). When g6 = −0.5 we see a chain of transitions: S=4 → 2 → 0 → 12 → 0.When 
g0 , g2 and g6 are all close to −0.5 , there is a small segment in bold black line where (6,6)12 emerges (similar to the 
case in Fig. 2b). When g6 = 0, 0.5, and 0.8 (dotted line), we see the transition of S = 2 → 0 . Where the critical 
point shifts to the left when g6 increases. It implies that the appearance of the [6]-pairs in (2,2)0 is less probable 
than in (2,2)2 . Whereas the balance point shifts to the right when g6 increases. It implies that the appearance of 
the [6]-pairs in (2,2)0 is less probable than in (0,0)0.

Final remarks
The spin-structures of N = 4 condensates have been studied, both numerical and analytical solutions have been 
obtained. Thereby two kinds of phase-diagrams for the g.s. have been plotted and explained. From dynamical 
aspect, the [ �]-pairs would be important constituents when g� is more negative. However, the probability of the 
appearance of a [ �]-pair in a particular component (�a�b)S is determined by symmetry. Thus the structure of the 
g.s. depends not only on the strengths but also on the symmetry constraint. We have calculated the probabilities 
P�(�a�b)S for finding out the important components. The importance is further confirmed by the calculation of 
the amplitudes �(�a�b)S|�S(gs)� . Obviously, for cold few-body systems, the very small multiplicity of a state is a 
remarkable feature, thereby the states are tightly (or even completely) constrained by symmetry.

When two or more g� are negative and close to each other, there is competition between various [ �]-pairs and 
the most important pair is thereby determined. Note that the magnitude of S depends on the relative orientation 
of the pair-spins �a and �b (if they are nonzero), while the orientation is determined by the strengths. In particu-
lar, the sign of g6 is crucial which determines whether the two pair-spins are parallel or anti-parallel. Thus the 
variation of {g�} will cause the change of the most important pair and the relative orientation of the pair-spins. 
This leads to the shift of the balance point and the critical point. The chain of transitions is thereby explained.

The approach of this paper can be generalized to systems with a larger N. When N is larger, if g� is more nega-
tive, the [ �]-pairs would also be more important in the g.s. There would also be competitions among various [ �
]-pairs. The study of the probability P�� where � is an assumed basis-state would also be helpful for finding out 
the important component(s) and their alternation. In particular, some very stable spin-structures found in few-
body systems could be building blocks for large N systems. This is a point to be clarified.
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