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Abstract

Sequence database searches require accurate estimation of the statistical significance of scores. Optimal local sequence
alignment scores follow Gumbel distributions, but determining an important parameter of the distribution (l) requires time-
consuming computational simulation. Moreover, optimal alignment scores are less powerful than probabilistic scores that
integrate over alignment uncertainty (‘‘Forward’’ scores), but the expected distribution of Forward scores remains unknown.
Here, I conjecture that both expected score distributions have simple, predictable forms when full probabilistic modeling
methods are used. For a probabilistic model of local sequence alignment, optimal alignment bit scores (‘‘Viterbi’’ scores) are
Gumbel-distributed with constant l = log 2, and the high scoring tail of Forward scores is exponential with the same
constant l. Simulation studies support these conjectures over a wide range of profile/sequence comparisons, using 9,318
profile-hidden Markov models from the Pfam database. This enables efficient and accurate determination of expectation
values (E-values) for both Viterbi and Forward scores for probabilistic local alignments.
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Introduction

Sequence similarity searching was advanced by the introduction

of probabilistic modeling methods, such as profile hidden Markov

models (profile HMMs) and pair-HMMs [1]. When parameters

are probabilities rather than arbitrary scores, they are more readily

optimized by objective mathematical criteria. This enables

building more complex, biologically realistic models with large

numbers of parameters. For example, profile HMMs use position-

specific insertion/deletion probabilities in place of the arbitrary,

position-invariant gap costs of more traditional approaches such as

BLAST or PSI-BLAST [2], and this allows profile HMMs to

model the fact that indels occur more frequently in some parts of a

protein more than others (e.g., in surface loops as opposed to

buried core) [3].

More sophisticated scoring models are desirable but not

sufficient. It is also necessary to be able to determine the statistical

significance of a score efficiently and accurately [4,5]. One reason

that the BLAST suite of programs [2,6] is so useful is that BLAST

introduced a robust theory for evaluating the statistical significance

of local alignment scores, widely known as Karlin/Altschul

statistics [7–9]. Although the scoring technology in HMM-based

profile search and profile/profile search methods is generally an

improvement over BLAST and PSI-BLAST [10,11], some

problems in determining statistical significance of homology

search scores have impeded the development and adoption of

these or other more complex models and methods [12]. There are

two main problems.

The first problem is that Karlin/Altschul statistics only

rigorously apply to scores of optimal ungapped alignments using

simple position-independent scoring systems. In this case,

alignment scores follow a Gumbel distribution with slope

parameter l and location parameter K [7], and both parameters

are readily calculated for any given scoring system [7,13]. In the

more relevant case of optimal gapped local alignments, although

scores empirically still follow a Gumbel distribution for a useful

range of gap costs [14], the key Gumbel l parameter must be

estimated by expensive computational simulation for each new

scoring system [9]. Much effort aims to find better ways of

determining l [15–24]. For traditional pairwise comparison

methods (e.g. BLAST), using computational simulations to

determine l is not a major limitation. BLAST precalculates

Karlin/Altschul parameters K and l for the small number of

general scoring systems in common use [2]. However, for position-

specific profile scoring models like PSI-BLAST or profile HMMs,

each query specifies a customized scoring system, requiring its own

K and l. PSI-BLAST avoids using simulations to determine l by

restricting its profiles to fixed position-invariant gap costs, and

assuming (backed by empirical results) that the l of a PSI-BLAST

profile is equal to the l of the pairwise scoring system with the

same gap costs and the most similar relative entropy (average

score) per aligned residue pair [2]. For models with position-

specific gap penalties, though, such as the HMMER profile

HMMs used by protein domain databases like Pfam [25] and

SMART [26], each model still requires a relatively expensive

‘‘calibration’’ by simulation before accurate E-values can be

obtained. This lack of computational efficiency particularly

hampers the use of profile HMMs in iterative database searches,

where each iteration produces another model that needs

calibration.

The second problem is that in terms of probabilistic inference,

an optimal alignment score is not the score we should be
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calculating in a homology search. The quantity we want to

calculate is the total log likelihood ratio for the target sequence(s)

given an evolutionary model and a null hypothesis, independent of

any particular alignment. The alignment is uncertain, a so-called

‘‘nuisance variable’’ in the inference that one wants to marginalize

(integrate out). In closely related sequences, when the alignment is

well determined, the optimal alignment score will approximate the

total log likelihood ratio, but the more uncertain the alignment,

the more the optimal alignment score and the total log-likelihood

ratio differ, so remote homology detection (where alignments are

most uncertain) is most affected by the approximation. Bench-

marks of profile HMM sensitivity and specificity have shown that

‘‘Viterbi’’ scores (optimal alignment) are significantly outper-

formed by ‘‘Forward’’ scores (total log likelihood ratios, summed

over all alignments) [27]. However, Karlin/Altschul statistics do

not apply to Forward scores, and are not expected to [28]. The

distribution that Forward scores follow had been unknown

[28,29]. Forward score distributions have been empirically fitted

to various fat-tailed distributions [29], but with unsatisfactory

accuracy.

Here I test two conjectures about the expected distributions of

scores for full probabilistic models: that optimal gapped alignment

scores (Viterbi scores) follow Gumbel distributions with a constant

l (just as in the ungapped alignment case) and that the expected

distribution of total log likelihood ratio scores (Forward scores)

asymptotes to an exponential tail with the same constant l. I use

simulations to show that these conjectures hold for all the models

in the current Pfam database (9318 profile HMMs). In achieving

these results, I modified the architecture and parameterization of

profile HMMs used by HMMER [30].

Results

This work was done as part of a reimplementation of the

HMMER profile HMM software package [30] in what will

become version 3 (HMMER3). For concreteness, most of the

results are described in HMMER’s specific context of profile

HMM/sequence comparison, though I expect the same conjec-

tures to apply more broadly (see Discussion).

Homology Search As a Statistical Inference Problem
Let us start with a definition of Viterbi and Forward scores in

terms of probabilistic inference. We have a query (either a single

sequence or a multiple alignment), and we want to ask if a target
sequence x is homologous to our query or not. To set up a

hypothesis test, we specify ‘‘homology to the query’’ as a

hypothesis (call it H) to be compared to (at least) one alternative

hypothesis, that x is an unrelated sequence (call this hypothesis R,

random). To apply probabilistic inference, both hypotheses are

specified as full probabilistic models, which means that they

describe probability distributions P(x|H) and P(x|R), such thatP
x

P xjHð Þ~1 and
P
x

P xjRð Þ~1 over all possible target sequences

x = x1…xL of length L = 1…‘. H and R would typically be generative

stochastic models such as hidden Markov models (HMMs) or

stochastic context-free grammars (SCFGs) [1]. (Note that this does

explicitly define a homology search, not merely a similarity search [31].)

Typically, model H will generate target residues aligned to

(homologous to) residues in the query, along with deletions and

insertions relative to the query, so its scoring model depends on an

alignment of the query to the target. That is, model H directly

expresses a joint probability distribution P(x,p|H), where p
represents a particular alignment. To obtain the probability

P(x|H), we marginalize the unknown nuisance variable p; that is,

we sum over all possible alignments, P xjHð Þ~
P
p

P x,p Hjð Þ.
A model might require the complete query and target sequences

to be aligned and homologous – a global alignment model.

Because biological sequences often only share homologous

domains, it is more useful for H to permit any subsequence i…j

of the query to align to any subsequence k…l of the target, while

treating the remainders of the sequences as nonhomologous – this

defines a local sequence alignment model.

The simplest random model R is a one-state HMM that

generates sequences with each residue drawn from a background

frequency distribution. This is the usual independent, identically

distributed background model used when calculating standard log-

odds scoring matrices, plus a geometric length distribution. In this

case, there is only one possible alignment to the target sequence,

and P(x|R) is obtained directly.

The likelihoods of H and R can be used to define at least two

different log likelihood ratio scores for a target sequence x. The

Viterbi score V is the score of the optimal alignment p̄:

V~logz

P x,�pp Hjð Þ
P x Rjð Þ ~logz

maxpP x,p Hjð Þ
P x Rjð Þ :

The Forward score F is obtained from the total likelihood of

model H, a sum over all possible alignments:

F~logz

P x Hjð Þ
P x Rjð Þ~logz

P
p P x,p Hjð Þ
P x Rjð Þ :

The logarithms may be taken to any base z. By convention,

HMMER reports scores in units of bits, log base z = 2. Because

both scores are log likelihood ratios, I will be careful to refer to

Viterbi versus Forward scores, or to optimal alignment scores

versus ‘‘total log likelihood ratio’’ scores.

Author Summary

Sequence database searches are a fundamental tool of
molecular biology, enabling researchers to identify related
sequences in other organisms, which often provides
invaluable clues to the function and evolutionary history
of genes. The power of database searches to detect more
and more remote evolutionary relationships – essentially,
to look back deeper in time – has improved steadily, with
the adoption of more complex and realistic models.
However, database searches require not just a realistic
scoring model, but also the ability to distinguish good
scores from bad ones – the ability to calculate the
statistical significance of scores. For many models and
scoring schemes, accurate statistical significance calcula-
tions have either involved expensive computational
simulations, or not been feasible at all. Here, I introduce
a probabilistic model of local sequence alignment that has
readily predictable score statistics for position-specific
profile scoring systems, and not just for traditional optimal
alignment scores, but also for more powerful log-
likelihood ratio scores derived in a full probabilistic
inference framework. These results remove one of the
main obstacles that have impeded the use of more
powerful and biologically realistic statistical inference
methods in sequence homology searches.

Probabilistic Local Alignment
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The names Viterbi and Forward refer to the standard dynamic

programming algorithms used to calculate these scores in the

specific case of HMMs [1]. Other probabilistic models have

differently named algorithms (CYK and Inside for stochastic

context-free grammars for RNA analysis, for example [1,32]), but

here I will use the shorthand V and F to represent optimal

alignment scores and total log likelihood ratio scores in general.

Traditional search algorithms report optimal alignment scores,

so the Viterbi score is the probabilistic analog of traditional

methods. However, from a probabilistic inference standpoint, the

Forward score is what we want, because we are after the

probability that sequence x is a homologue of the query – that is,

the posterior probability of model H given data x, P(H|x) [33,34].

The posterior is a sigmoid function of F:

P Hjxð Þ~ eFzr

1zeFzr

where r is a constant offset, the prior log odds ratio logz
P Hð Þ
P Rð Þ.

Forward scores are not generally used in traditional sequence

comparison, because they only make sense if individual alignments

have probabilities P(x,p|H) that can be meaningfully summed.

Forward scores cannot be calculated directly for arbitrary

(nonprobabilistic) scoring systems, except by using approaches

based on renormalization and partition functions, where the

arbitrary scores are assumed to be unnormalized log probabilities

[28,35–38]).

Local optimal alignment scores of random sequences (V scores)

are expected to follow Karlin/Altschul statistics [7,14], a special

case of a Gumbel distribution (a type I extreme value distribution)

[39]:

P V§tð Þ~1{exp {e{l t{mð Þ
h i

,

where m and l are location and scale parameters. Karlin/Altschul

statistics give a specific dependence of m on query and target

sequence lengths N and L, m~ log KNL
l , with parameter K essentially

representing the fraction of the NL residue alignment lattice that is

available for initiating independent local alignments. I will use the

more general Gumbel notation (in terms of m, l) as opposed to the

more usual Karlin/Altschul notation (in terms of KNL, l) for

reasons that will become clear when I consider how score

distributions depend on target sequence length.

In contrast to optimal alignment scores, the distribution of

Forward scores is unknown. It has appeared ‘‘fat-tailed’’ relative to

the high-scoring exponential tail of the Gumbel distribution of

Viterbi scores [28,29].

Expected Distributions Conjectured for Local Viterbi and
Forward Scores

I made the following two conjectures about V and F scores, in

the case of full probabilistic models of local sequence alignment:

N The Gumbel distribution of Viterbi scores has a fixed l = log z,

where z is the base of the logarithm of the log-odds scoring

system.

N The high-scoring tail of Forward scores is exponentially

distributed with the same l = log z.

These conjectures are based on three main lines of argument,

two of which depend heavily on the work of Bundschuh and his

collaborators.

First, for Viterbi scores, Bundschuh’s ‘‘central conjecture’’ about

the distribution of optimal gapped local alignment scores states

that l for the Gumbel distribution is the unique positive solution of

SelV T~1 in the limit of infinite length comparisons [22,23].

There is a strong analogy to the case of ungapped local alignments

with additive pairwise residue scores sab, where l is the unique

positive solution of SelsabT~
P

a,b fafbelsab~1 [13]. When the

residue scores sab are explicitly probabilistic log-odds scores

(sab~logz
pab

fafb
in some arbitrary logarithm base z) then simple

algebra shows that l for ungapped alignment scores is log z.

Likewise Bundschuh’s central conjecture would be satisfied by

l = log z for full probabilistic models of local alignment, when

indels are included as part of the probability model rather than

scored with arbitrary penalties.

Second, for Forward scores, Milosavljević proved in his

‘‘algorithmic significance’’ method that an upper bound for the

distribution P(F.t) of log likelihood ratios F for full probabilistic

models is an exponential e2t log z [40,41]. Although this is not a

tight bound, it suggests the high-scoring tail cannot be fatter than

exponential, and that if it were exponential, it must have l$log z.

Third, for Forward scores, Yu, Bundschuh, and Hwa argued by

a different approach that the high-scoring tail P(F.t) for scores for

probabilistic sequence alignment is likely to be approximated by

e2t log z, i.e. again, an exponential tail with l = log z [42].

However, they only used this result as an intermediate in a

derivation showing that the scores of a new ‘‘hybrid’’ scoring

system for local alignment would probably be Gumbel-distributed

with l = log z. They stated their approximation in the context of a

full probabilistic model of global alignment, not local, and then

used that result to derive a further approximation for the expected

distributions of scores for a nonprobabilistic model of local

alignment. However, I believe their approximation only relies on

the model being fully probabilistic, not whether it is of global or

local alignment.

Additionally, one expects the high-scoring tail of Forward scores

to approximate the high-scoring tail of Viterbi scores (so Gumbel-

distributed Viterbi scores and exponential-tailed Forward scores

would have the same l), because for the highest scoring sequences,

the optimal alignment should contain most of the probability mass.

In practice, however, the simulation-calibrated l values for bit

scores of Gumbel distributions fitted to Viterbi scores of

HMMER2 multihit local alignment models for 9318 Pfam 22.0

models have a mean of 0.6677, with a standard deviation of 0.051

(68%), and a range of 0.517 to 1.337. Though the mean is

suggestively close to the conjectured log2 = 0.6931, the variation is

unacceptably broad, well outside traditional tolerance for useful l
estimates (which is typically considered to be #3% error [20]).

Similarly, another popular profile HMM software package, SAM

[3,43], has used l = log z in the past, but switched to simulated-

calibrated l values because they gave better statistical significance

estimates [29]. Either something is wrong with the conjectures, or

something is not quite right with profile HMMs of local alignment.

A Generative Probabilistic Model of Local Sequence
Alignment

I modified HMMER’s profile HMM architecture in several

details, with the main goal of achieving a uniform query entry/exit

distribution in local alignments. A uniform query entry/exit

distribution means that for a query profile of N positions 1…N,

each choice of local alignment to a core model subsequence i…j

(leaving query prefix 1…i21 and suffix j+1…N unaligned) has the

same probability: 2
N Nz1ð Þ, since there are

N Nz1ð Þ
2

possible choices

of i…j. This assumption is implicit in the traditional Smith/

Waterman alignment scoring system [44], which scores identically

Probabilistic Local Alignment
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(zero) for any choice of entry i and exit j, therefore corresponding

to an implicit assumption of a uniform query fragment distribution

(albeit unnormalized). HMMER’s previous entry/exit distribution,

in contrast, was ad hoc and non-uniform, causing scores to be

biased by the local alignment’s position in the query model. I

guessed that a uniform entry/exit distribution might result in

simpler, more statistically homogeneous expected score distribu-

tions that might asymptotically approach conjectured predictions

faster than for nonuniform entry/exit distributions.

Besides HMMER’s previous model, several other probabilistic

local alignment models in the literature also imply nonuniform

entry/exit distributions. For example, simple pair-HMMs for

pairwise local sequence alignment imply a non-uniform (geomet-

ric) distribution over local alignment length, because they use a

single residue alignment state with a self-loop and an exit

probability [1]. In standard profile HMMs, I see no way to

specify a uniform entry/exit distribution when delete states are

present, at least not while maintaining a fully probabilistic model.

The generative probabilistic model of local alignment that I

intend to use in HMMER3 is illustrated in Figure 1.

Figure 1A shows the core model, which is a standard profile

HMM essentially following the original formulation of Krogh et al.

[3]. This is a model of global alignment to the original query (a

multiple alignment or single sequence). The parameters in the core

model (M and I residue emissions, and M, D, and I state

transitions) are estimated from counts of residues and indels in the

query. Details of model construction and parameter estimation in

the core model follow previous work on profile HMMs, and are

not particularly relevant to the results reported here except as

noted.

Figure 1B shows the search profile, which adds extra states

and state transitions to the core model to describe various kinds of

alignment modes, including local versus glocal and unihit versus

multihit. For locality with respect to a query segment, there are

transitions from the begin state to any match state, and exits from

any match or delete state to the end. For locality with respect to a

target sequence segment, the search profile generates flanking

unannotated segments of the target using N and C states. For a

‘‘multihit’’ mode, to generate multiple consistent alignments to the

same query in one target sequence (either multiple domains of the

same type, or separate pieces of one alignment), the model may

cycle from E to the J state, generate an unannotated segment in J,

and cycle back to B. The N, C, and J states are all assumed to emit

residues with the same background frequencies as in null model R,

so their log-odds emission scores are zero. This is essentially the

same as the HMMER2 ‘‘Plan 7’’ profile architecture, but as it

cannot be parameterized to achieve a uniform entry/exit

distribution, the following step was taken.

Figure 1C shows the implicit probabilistic model. To

achieve a uniform entry/exit distribution, we imagine replicating

all N(N+1)/2 possible chunks i…j of the model, and assigning an

entry probability of 2/N(N+1) and exit probability of 1.0 to each of

these fragments. Except for these entry/exit probabilities, all other

emission and transition probabilities are the same as in the search

profile. Now we have a probabilistic model with a uniform entry/

exit distribution, but the model is enormous. Dynamic program-

ming on the implicit probabilistic model would be costly. A key

observation is that dynamic programming on the search profile

with entry probabilities set to 2/N(N+1) and exits to 1.0 is provably

equivalent to doing dynamic programming on the implicit

probabilistic model. Two conditions are sufficient to make this

so: first, that there is a one-to-one correspondence between the sets

of possible state paths in the two models, and second, that any

given state path is assigned identical probability by either model.

(The state transition schemes in the search profile and the implicit

probabilistic model were carefully designed to fulfill these

conditions.) Therefore dynamic programming on one model to

find either the optimal state path or the sum over all state paths

must give the same answer as the other model would. This holds so

long as the probability of entering at i is independent of exit point

j, which is true for a uniform entry distribution.

Therefore, the search profile is not probabilistic per se. It is a

dynamic programming construct that calculates correct probabil-

ities for the implicit probabilistic model. It uses entry probabilities

of 2/N(N+1) and exit probabilities of 1.0 that are properly

normalized with respect to the state diagram for the implicit

probabilistic model, not the state diagram for the search profile.

The N, C, J state transitions, plus the self-loop transition in the

null hypothesis HMM R, comprise the target length model, so-

called because this parameterization largely controls the expected

length of the target sequence. For simplicity, the target length

model is expressed in terms of three parameters p, q, and r. p is the

self-loop transition probability for N, C, and J, so it controls the

length of unannotated segments; parameterizing these states

identically corresponds to an assumption that prefixes, suffixes,

and intervening unannotated regions have identical length

distributions. q is the ERJ transition probability of looping around

for another pass through the core model, controlling the expected

number of homologous domains per target sequence (q = 0 puts

the model in a unihit mode, and q.0 is a multihit mode; I will only

use q = 0.5 here). r is the self-loop transition for null model R’s

single HMM state, controlling the length distribution generated by

R.

How should the three target length model parameters be set? I

will discuss the rationale in more detail in a later section, in the

context of illustrative simulation results. For now I will just state

that p~ L
Lz2

, q = 0, and r~ L
Lz1

in unihit modes, and p~ L
Lz3

,

q = 0.5, and r~ L
Lz1

in multihit modes. That is, these model

parameters are recalculated for each target, according to its

length L: both H and R are conditional on L. With these choices,

models H and R will both generate approximately the same

mean target sequence length L. Previously HMMER2 used

p~r~ 350
351

(and the same q = 0 or q = 0.5 choice of unihit versus

multihit mode), independent of target sequence length. Recal-

culating part of the scoring system based on each target

sequence’s length is an unusual step, but the reason to condition

the hypothesis test (both models H and R) on target length L will

become apparent.

Alignment ‘‘Modes’’
Traditional sequence similarity search methods distinguish

local, global, and glocal alignments, applying different alignment

algorithms, while using the same scoring system. (A glocal
alignment, also known as a semi-global alignment [45], is global

with respect to the query 1…N, and local with respect to a

subsequence k…m of the target; glocal alignment is useful, for

example, when a profile HMM models a protein structural

domain that may occur one or more times somewhere in a longer,

multidomain protein sequence.) Additionally, local and glocal

algorithms may allow only one aligned region per target sequence

(a unihit alignment), or they may allow a combination of one or

more aligned regions (a multihit alignment). The Smith/

Waterman alignment algorithm [44] is a unihit algorithm, for

example, whereas BLAST is multihit, implementing ‘‘sum

statistics’’ to allow multiple consistent hits to contribute to a

target’s score [8].

In a probabilistic inference framework, these distinctions are not

in the algorithm, but in the parameterization and architecture of

Probabilistic Local Alignment
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the model H. A full (generative) probabilistic model H must always

explicitly model the complete target sequence x1…xL, not just part(s)

of it. This is why the HMMER model includes additional states

and transitions that account for unannotated residues in the target

sequence, and transitions allowing a model to loop back and

generate one or more consistent alignments to the core model in

the same target. Thus, an alignment p to a probabilistic model is

always complete (and in some sense ‘‘global’’) in that every residue

xi in the target is assigned to a state in the model. The HMM

algorithms used to score and align target sequences (Viterbi and

Forward) are always the same, regardless of the configuration of

the model. In HMMER, searches can be configured in any choice

of local, glocal, or global combined with a choice of unihit or

multihit, a total of six different standard alignment modes, by

reparameterizing the entry/exit distribution and the target length

distribution. I only explore local alignment modes in this paper,

and I generally concentrate on multihit rather than unihit mode

because multihit mode is more powerful.
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Figure 1. A generative probabilistic model of local alignment. (A) an example of a core model with five consensus positions. Each consensus
position of the query is modeled by a node containing three states: a match state (M) that emits the consensus position (squares), a mute delete state
(D) that emits nothing and deletes the consensus position (circles), and an insert state (I) that emits one or more residues after the consensus position
(diamonds). For clarity, the emission probability distributions on match and insert states have been omitted in the figure. Nodes are numbered 1…N
for a query of length N consensus positions. The three states in each node have seven transition probabilities (arrows), implementing a probabilistic
model of traditional sequence alignment with affine gap penalties: the MRD and MRI probabilities correspond to gap-open costs, and DRD and
IRI probabilities correspond to gap-extend costs. The core model starts and ends with mute begin (B) and end (E) states (circles). Bold arrows
indicate the consensus (all match) path through the model. Blue states and transitions are either modified or removed in a configured search profile.
(B) The search profile, with extra states and state transitions (magenta) enabling a model of local or glocal alignment, and unihit versus multihit
alignment, as described in the text. States N, C, and J emit on transition (indicated by x’s on their transition arrows), in order to be able to generate
$0 residues rather than $1. (C) A partial view of the implicit probabilistic model, showing three of the possible 15 i…j query segments (1…5, 2…4,
and 3) for an N = 5-node model, with uniform entry probabilities of 2

N Nz1ð Þ and exit probabilities of 1.0. The presence of the remaining 12 query
fragments in the model is indicated by dashed entry/exit transitions and vertical ellipses.
doi:10.1371/journal.pcbi.1000069.g001
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Local Viterbi Scores Follow Gumbel Distributions with
Constant l

Viterbi bit scores are predicted to be Gumbel distributed with

parametric l = log 2. To test this prediction on many different

profile HMMs, I estimated l̂(l̂ represents a maximum likelihood

estimate fitted to a finite sample of scores, as distinguished from

the parametric true l) for 9,318 different profile HMMs built from

Pfam 22.0 seed alignments, by collecting multihit local Viterbi

score distributions for n = 105 i.i.d. random sequences of length

400 generated with the same residue frequencies as the null model

R. Figure 2 shows the results of maximum likelihood fitting these

scores to Gumbel distributions. The 9,318 l̂ estimates are tightly

clustered with mean 0.6928, consistent with the conjecture that

l = log 2 = 0.6931.

As examples, the top right of Figure 2 shows the score

distributions for two typical Pfam models, for deep simulations

with a 1000-fold larger sample size (108 random sequences). As

‘‘typical’’ models, I chose RRM_1 and Caudal_act from Pfam

22.0. The RRM_1 model is the RNA recognition motif, a ,72

residue domain, chosen because it is one of the Pfam domains I am

most familiar with. The Caudal_act domain is the activation

domain of the Caudal-like homeobox transcription factors, chosen

because it is literally typical for Pfam, being closest to the median

of Pfam seed alignments in three different characteristics: number

of seed sequences (Pfam 22.0 median = 9; Caudal_act = 9), model

length (Pfam median = 147; Caudal_act = 147), and average

pairwise identity (Pfam median 36%, Caudal_act = 37%). Both

observed distributions show good agreement to the predicted

Gumbel of l = log 2.

I examined outliers in l̂ to look for models for which the

conjectured l = log 2 fails. If the 9318 trials were all truly Gumbel

distributed with l = log 2, l
l̂l

ratios (parametric over maximum

likelihood estimate) should be normally distributed around a mean

of 1.0 with standard deviation 0.0025 (0:78ffiffi
n
p , [46]), so in 9318 trials,

l̂ values should range from about 0.687 to 0.700 (63.7 s.d.). The

observed log2

l̂l
ratios do show a mean close to 1.0 (1.0008), but an

s.d. of 0.0167 (six-fold higher than expected), and the l̂’s range

from 0.5828 to 0.8368. This suggests source(s) of variation beyond

expected noise of fitting finite samples, and that both low and high

outliers are more frequent than expected. The bottom right of

Figure 2 shows multihit local Viterbi score distributions for the

most extreme high and low outliers, Sulfakinin and DUF851, for

deep simulations (108 random L = 400 sequences). In both cases, a

similar l̂ is reproduced in the second (and deeper) simulation,

more evidence that these outlying values are not the result of

expected statistical variation in estimation.

The low outlier DUF851 (and all other low outliers I examined)

actually fits better visually to the conjectured l = log 2 than to the

maximum likelihood fitted l̂. Low outliers are invariably models

where the sequences in the seed alignment are highly identical.

This discretizes the model’s alignment scores (emission probabil-

ities all converge to 1.0 for all consensus residues, regardless of

residue type or model position) leading to a non-smooth score

distribution (a stairstep-like effect is often seen, corresponding to

local alignments of increasing discrete lengths 1, 2, 3…), and this

stairstep gets misfit by maximum likelihood estimation. Low

information content models (parameterized by entropy weighting,

described later) do not show such outliers (not shown). Thus, for

low outliers, the error is attributed to artifacts of maximum

likelihood fitting.

The high outlier Sulfakinin (and all other high outliers I

examined) does show a higher l (steeper slope) than the

conjectured log 2. A distinctive feature of Sulfakinin compared

to other Pfam models is that it is tiny, just N = 9 consensus

positions long. All other high outliers examined were short models.

Finite-length sequence comparisons are expected to show an

‘‘edge effect’’ that increases the apparent l relative to an

asymptotic theoretical prediction, and finite-length artifacts are
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Figure 2. Viterbi scores follow Gumbel distributions with constant l. (A) A histogram showing the distribution of l̂ estimates determined by
maximum likelihood Gumbel fits to multihit local Viterbi scores of n = 105 i.i.d random sequences of length L = 400, for 9318 profile HMMs built from
Pfam 22.0 seed alignments. The sharp black peak is from prototype HMMER3, with mean 0.6928 and standard deviation 0.0114, and extreme outliers
indicated by arrows. The broader grey histogram is from old HMMER2, for comparison. The conjectured l = log 2 is shown as a vertical dotted red line.
(B,C) log survival plots (P(V.t) on a log scale, versus score threshold t) showing observed versus expected distributions for multihit local Viterbi scores
for two typical Pfam models, RRM_1 and Caudal_act, for n = 108 i.i.d. random sequences of length L = 400. On a log survival plot, the high-scoring tail
of a Gumbel distribution is a straight line with slope 2l. Black circles show the observed data. The black lines show maximum likelihood fitted
Gumbel distributions, with l̂ estimates as indicated. The red lines show the conjectured l = log 2 Gumbel distributions, with m fitted by maximum
likelihood. (D,E) log survival plots for the extreme outliers DUF851 and Sulfakinin, as described in the text.
doi:10.1371/journal.pcbi.1000069.g002
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maximal for the shortest query models [20]. A method for

compensating for ‘‘edge effect’’ is discussed later in the paper.

Local Forward Scores Follow Exponential Tails with
Constant l

The Forward score distribution is predicted to converge to an

exponential with l = log 2, with the approximation holding above

some score threshold t:

P Fwtð Þ!me{l t{tð Þ:

Figure 3 shows the results of maximum likelihood fitted l̂ for

exponential tails, for multihit local Forward scores of n = 500,000

i.i.d. random sequences of length 400, as a function of fitted tail

mass, for 9,318 Pfam 22.0 models. We expect a tradeoff between

fitted tail mass and l̂ accuracy. Convergence to l = log 2 is

expected to occur as fitted tail mass decreases (e.g. as threshold t
increases), but as t increases, the number of fitted samples

decreases, so the accuracy of fitting l̂ decreases. This tradeoff is

seen in the data, with mean l̂ estimates closely approaching log 2

for tail masses of #0.001 or so. A tail mass of 0.001 was chosen as

a reasonable tail mass for further characterization of Forward

exponential tails.

The top right of Figure 3 shows score distributions and expected

l = log 2 exponential distribution of the 0.001 tail for deep

(n = 108) simulations for the ‘‘typical’’ RRM_1 and Caudal_act

Pfam models, showing that these fits are visually satisfactory.

In this case, the survey of 9,318 models has limited power to

detect significant outliers. Even with n = 500,000 scores, the 0.001

tail contains only 500 points, so l̂ estimates will exhibit substantial

stochastic variation. l
l̂l

is expected to be normally distributed with

mean 1.0 and standard deviation 0.045 ( 1ffiffi
n
p , [46]), and the absolute

l̂ values are expected to range from about 0.590 to 0.840 (63.7

s.d.). At the chosen tail mass of 0.001, observed log2

l̂l
ratios have

mean 0.9935 and s.d. 0.0473, with absolute l̂ values ranging from

0.5949 to 1.0116. The variance of the l̂ estimates is consistent with

expected estimation error on the low side, but there appears to be

a higher than expected frequency of large l̂ values.

The lower right of Figure 3 shows score distributions of deep

simulations for the most extreme low and high outliers,

Ribosomal_L12 and XYPPX, and their expected exponential

tails. In both cases (and in other cases examined), deeper

simulations change the l̂ estimates, bringing them closer to log

2, suggesting expected statistical estimation error is responsible

some of the discrepancies. However, for some models, including

these two, l̂ still remain significantly different from log2;

Ribosomal_L12 remains 211 s.d. and XYPPX +25 s.d. away

from the expected 1.0 for log2

l̂l
ratios for exponential tails containing

105 scores.

Some low outliers exhibit the same high-identity, discretized-

scores, stairstepping-distribution artifact observed with the Viterbi

low outliers (DUF851 for example; not shown), but this

explanation does not seem reasonable for Ribosomal_L12, where

the observed score distribution appears smooth. The Riboso-

mal_L12 discrepancy (l̂ = 0.6688 differs from log 2 by 3.5%) is

small and can be neglected in practice, but it is worth noting

theoretically, because the Milosavljević result suggests that l,log

2 should not occur. The most obvious thing that is unusual about

the Ribosomal_L12 seed alignment is that it has strongly biased

residue composition.

The high outlier XYPPX (and some other high outliers

examined) remains a high l̂ estimate in the deeper simulation

(the observed 0.7519 is lower than the 0.8413 estimated in the

smaller survey, but still +25 s.d. of expected given 105 scores in the

fitted tail probability mass
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Figure 3. Forward scores follow exponential tails with constant l. (A) a graph showing how l̂ estimates for exponential distributions
asymptote towards the conjectured log 2 as the fitted tail mass decreases. Each open circle is the mean of 9,318 l̂ estimates, one for each Pfam 22.0
model, fitted by maximum likelihood to the high-scoring tail of multihit local Forward scores for n = 105 i.i.d random sequences of length L = 400, with
varying tail mass from 1.0 to 0.0001. Variation in l̂ is represented by plotting quartiles (black bars) and most extreme outliers (grey triangles) in
addition to the means. l̂ approaches the conjectured log 2 as fitted tail mass decreases, but beyond a certain point, variance increases. A tail mass of
0.001 was chosen as an appropriate tradeoff, and the mean (0.6993), standard deviation (0.0338), and outliers at that choice are annotated. (B,C) log
survival plots showing observed (black circles) and expected (red lines) P(F.t) distributions versus score t for multihit local Forward scores for the
‘‘typical’’ RRM_1 and Caudal_act models, for n = 108 i.i.d. random sequences of length L = 400. On a log survival plot, an exponential tail is a straight
line of slope 2l. Black circles show the observed data. The black lines show maximum likelihood exponentials fitted to the 0.001 high-scoring tail,
with l̂ estimates as indicated. The red lines show the conjectured l = log 2 exponential tails. (D,E) log survival plots for the extreme outliers
Ribosomal_L12 and XYPPX.
doi:10.1371/journal.pcbi.1000069.g003
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deeper tail). As with the Viterbi scores, XYPPX and these other

high outliers are unusually small models (XYPPX is N = 5

consensus residues), and likely to be attributable to finite-length

edge effect.

The Target Length Model: Achieving Distributions
Independent of L

So far, all target sequences have been a typical length of L = 400

residues. However, proteins range in length from a few residues to

tens of thousands. One must be able to predict how the expected

score distribution depends on target sequence length. For expected

Gumbel distributions of traditional optimal local alignment scores,

Karlin-Altschul statistics predicts that the location parameter m
scales as m~ log KNL

l with query length N and target length L, and

that the l parameter (aside from finite-length edge effects) is

independent of target length. That is, for each two-fold increase in

target sequence length, the expected score distribution shifts by

one bit.

For the old target length model parameterization in HMMER2

(p~r~ 350
351

in the target length model, such that all unannotated

residues assigned to N, C, J states score zero, an explicit model of

Smith/Waterman’s implicit assumptions), the Gumbel distribu-

tions for multihit local Viterbi scores follow the specific target

length dependence predicted by Karlin-Altschul statistics, as

shown in the top left of Figure 4 for two typical models. Over a

range of target sequence lengths from 25 to 25,600 residues in

steps of two-fold, observed score distributions are spaced in steps of

one bit.

However, from a probabilistic inference standpoint, seeing the

expected score increase with increasing target sequence length

raises a red flag. The posterior probability P(H|x) should not

increase as the length of a random target sequence increases. If

anything, it should decrease. The more data are available (the

longer the target), inference should become more accurate, and

the more certain we should be that a random sequence was

generated by hypothesis R, not hypothesis H.

This concern becomes a practical issue when multihit local

Forward score distributions are examined for models using the

HMMER2 target length model, as shown in the top right of

Figure 4. These score distributions shift unpredictably, and by

more than one bit per target length doubling. In absence of theory

describing this length dependence, one would have to empirically

determine a different exponential tail location parameter t for a

range of different target lengths in order to assign accurate E-

values to multihit local Forward scores. Although I show later that

t is not hard to estimate, this is not desirable. (Unihit local

Forward scores do scale by one bit per target length doubling; data

not shown.)

A simple argument about the target length model appears to

suffice to explain this behavior. Consider the length distribution

generated by models H and R, given the length model parameters

p, q, and r. The probability that model R generates a target

sequence of length L is a geometric density:

P LjRð Þ~rL 1{rð Þ,

and the expected length generated by model R is:

SL Rj T~
r

1{r
:

If we assume the length distribution of H is dominated by the N,

C, J states and the target length model, and that the core model

contributes negligible length (an assumption that will be most true

for local alignment modes and long L), then the probability that

model H generates a sequence of length L is a sum of Pascal

distributions:
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Figure 4. Target length modeling makes distributions length-independent. Log survival plots for multihit local Viterbi scores (left; [A,B,E,F])
and multihit local Forward scores (right; [C,D,G,H]) for the two ‘‘typical’’ models RRM_1 and Caudal_act, for n = 106 i.i.d. random sequences of various
lengths, for either old HMMER2 scoring (top; [A–D]) or the new target length model in prototype HMMER3 (bottom; [E–H]). Eleven target sequence
lengths are used, ranging from 25 to 25,600 in steps of two-fold, with L = 25 shown in red, L = 400 shown in black, L = 25,600 shown in cyan, and other
lengths shown in grey. Each line is the observed log survival plot, collected in 0.1 bit intervals. The grey inset in the HMMER2 Viterbi scores (A,B)
shows the length dependence predicted by Karlin/Altschul statistics, with location increasing by one bit for each doubling in target sequence length.
The HMMER3 results (bottom; [E–H]) show that both Viterbi and Forward scores are essentially independent of target sequence length in the new
parameterization of the target length model, even for the previously problematic multihit Forward scores.
doi:10.1371/journal.pcbi.1000069.g004
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P L Hjð Þ~
X?
j~0

pL 1{pð Þjz2
qj 1{qð Þ

Lzjz1

jz1

� �
,

where the index j counts over the number of times we start a J

segment. The expected length generated by model H can be

derived from this, using the expectations for Pascal and binomial

distributions:

SL Hj T~
q

1{q
z2

� �
p

1{p
:

Intuitively, this follows from the fact that the expected number

of times that we include a J segment is q
1{q

. Thus, counting the two

segments emitted by the N and C states, the total number of

unannotated segments is q
1{q

z2, each of which follows an

independent geometric distribution with expected length
p

1{p
.

We can then approximate the component of the log-odds

Forward score that is attributable to target length modeling alone:

log
P L Hjð Þ
P L Rjð Þ~log

P?
j~0

Lzjz1

jz1

� �
pL 1{pð Þjz2

qj 1{qð Þ

rL 1{rð Þ : ð1Þ

In the case of unihit modes (q = 0), this becomes:

log
P L Hjð Þ
P L Rjð Þ~log

Lz1ð ÞpL 1{pð Þ2

rL 1{rð Þ : ð2Þ

So, when p = r (HMMER2’s old parameterization), for unihit

Forward scores, Equation 2 predicts that the target length model’s

score contribution will increase as log(L+1), essentially the same

scaling for unihit local Forward scores that Karlin/Altschul

statistics predicts for Viterbi (optimal alignment) scores. However,

with p = r, for multihit local Forward scores, Equation 1 predicts

that the length model’s score contribution will scale as log(L+1) at

small L, but will increase more rapidly at larger L. Qualitatively,

this appears to be the behavior observed in Figure 4 (upper right).

Intuitively, the problem is that under a target length model with

p = r, model H favors longer sequences than model R, because

there are at least two states (N,C) generating unannotated

segments (plus additional contribution from J states in multihit

mode). The longer the target sequence, the more H is favored,

simply because it generates longer sequences with higher

probability than R.

One way to ‘‘fix’’ this behavior would be to set p such that

model H generates the same expected target length as model R.

For example, in a unihit model, we might set p~ 350
352

, so that the N

and C states each generate a mean length of 175, adding up to the

same ‘‘typical protein’’ mean length 350 that R generates. But

setting any constant p and r still has problems, because the length

model then becomes informative - target sequences of length

,350 get higher scores than shorter or longer sequences - and this

creates a nonlinear dependence of scores on log L. In general we

probably want target length modeling to be uninformative, because

target sequence lengths are unpredictable. For example, the target

sequence may be a fragment, or a huge multidomain protein.

How can we set an uninformative target length model? One

way to do this is to make the parameterization of models H and R

conditional on the length of the target sequence L. That is, as each

new target sequence is examined, model M and R are set on the fly

to generate sequences of mean length L:

p~
L

Lz2z q
1{q

r~
L

Lz1
:

Under this scheme, according to Equation 1, the length model

is predicted to contribute a nearly constant score, independent of

target sequence length L. Empirically, using this scheme, expected

score distributions indeed do become essentially target length

independent (Figure 4, bottom) over a wide range of lengths L,

both for Viterbi and for Forward scoring, and whether the model

is configured for unihit or multihit alignment modes.

Target length independence is an important result. It not only

means that single choices of location parameters m and t work for

all lengths L; it also means that simulations that determine m and t
can be done for a small L, further decreasing computational cost.

Fast Determination of Location t for Forward Tails
For the expected Gumbel distribution of local Viterbi scores, the

location parameter m can be determined by a maximum likelihood

Gumbel fit [46] to a small simulation. When l is known, n = 200

Viterbi scores of random sequences of L = 100 suffices to

determine m with a standard deviation of 0.1 bits. This estimation

error is within tolerance. We would accept estimated E-values

within about two-fold error, corresponding to an accuracy of m of

61 bit; so if we want less than one estimate in 10,000 to deviate by

that much, we want a standard deviation of ,0.25 or so. The time

required for this simulation is essentially negligible for most

purposes. For n = 200 sequences of length L = 100 and the

‘‘typical’’ Pfam model Caudal_act, it takes about 40 milliseconds

to estimate m.

It is more difficult to efficiently determine the location

parameter t, the base of the exponential tail of expected Forward

scores. Few samples fall in the small probability mass of the tail. To

obtain 200 high-scoring samples in a 0.1% exponential tail, we

would still need to score 200,000 simulated random sequences,

largely obviating any advantage of knowing l.

After unsuccessfully exploring several alternative approaches, I

adopted the following ad hoc method. A Gumbel distribution of

unknown l is fitted to n = 200 Forward scores of random sequences;

the Gumbel m and l from this simulation are used to predict the

score threshold t at which P(F.t) = 0.04 (the 4% tail); this t is then

taken to be t for the location of the base of the high-scoring 4%

Forward score tail. 4% was carefully chosen. Because Forward

scores are not Gumbel distributed, and appear fat-tailed with

respect to a maximum likelihood fitted Gumbel of unknown l, the

true tail mass P(F.t) is systematically underestimated by a Gumbel

fit. On the other hand, because the Forward survival curve

approaches its exponential asymptote of l = log z from above, if

we did accurately estimate P(F.t) at low score thresholds and used

that to locate the base of our exponential tail, that exponential tail

would overestimate (be above) the tail probability mass at higher

scores. The choice of 4% was optimized by trial and error as a

point at which these opposing systematic errors are well balanced;

the fitted exponential tail deliberately underestimates P(F.t) at

lower scores where the Forward distribution still appears fat-tailed,

in order to become accurate in the highest-scoring tail

Probabilistic Local Alignment
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(P(F.t),0.001 or so) where the Forward distribution has

converged to an exponential.

Using n = 200 Forward scores of random sequences of L = 100

suffices to determine t with a standard deviation of 0.2 bits, and

costs 330 msec for the ‘‘typical’’ Caudal_act model.

Finite-Length ‘‘Edge Effect’’ on l
For Karlin/Altschul statistics, the apparent l for finite-length

comparisons is known to increase for smaller sequences and

weaker (lower relative entropy) scoring systems. Intuitively, finite

length edge effect arises because the number of places that an

alignment can start while still achieving a given length is less than

NL, and achieving the highest scores requires the longest

alignments (so the higher scoring alignments have fewer start

points available), and weaker average scores per position require

longer alignments to reach a given total score; thus higher-scoring

alignments ‘‘see’’ a smaller search space than lower-scoring

alignments, so the probability of higher-scoring alignments is

lower – the tail of the distribution falls off faster – than the

asymptotic l predicts. Edge effect has significant impact on

BLAST’s statistics and substantial effort has been made to correct

for it [20].

In most of the results in Figures 2–4, edge effect is not

particularly apparent. However, these models have high relative

entropy per position (about 1.8 bits per match state emission

distribution, compared to about 0.7 bits per aligned residue pair

for BLAST’s default BLOSUM62 substitution scores). High

relative entropy per position results from the standard multinomial

estimation procedures used for parameterizing the core profile

HMM [3,47], but has been shown to compromise the sensitivity of

profile HMMs [27,43]. We have confirmed previous observations

that even an ad hoc method to reduce the relative entropy per

position (‘‘entropy-weighting’’; [43]) greatly improves search

sensitivity in HMMER [27], although, puzzlingly, the same effect

was not seen by PSI-BLAST’s authors [48]. Empirically, on a

benchmark of structural homologs [49], an optimal target relative

entropy using entropy-weighting is about 0.6 bits per match state

[27]. When entropy-weighted HMMER models are used, the

apparent l’s for both Viterbi and Forward scores deviate slightly

upwards from the conjectured l = log z. Consistent with an edge

effect interpretation [20], the magnitude of this deviation is

inversely proportional both to the length of the query N and to the

average relative entropy per match state emission distribution; on

the other hand, the effect does not appear to depend as strongly on

the target length L (data not shown).

Two different approaches have been developed for correcting

for edge effect. One approach is to use corrected query and target

sequence lengths N9 = N2,, L9 = L2,, where , is the expected

length of an alignment [9]. Another approach is to apply a small

correction to l, using l̂l~lza 1
N

z 1
L

� �
, where l is the true

(asymptotic) value, and a is empirically determined but clearly

related to the inverse of the relative entropy per position [20].

I experimented with setting an edge-corrected target length

model such that the flanking nonhomology states generate

L9 = L2, residues for various schemes of determining an

appropriate average local alignment length ,, but without

satisfactory results. The expected alignment length length , has

a complicated dependence on the model, the alignment score, and

the query and target lengths. In particular, my schemes tended to

break down severely in the small target sequence length regime

L.,.

Applying a correction to l proved more successful. I estimate

l̂l~log2z 1:44
hN

, where h is the average relative entropy per match

state emission distribution, and the 1.44 factor was empirically

determined from slopes of lines fitted to l versus 1
N

plots for models

of varying h. Thus for typical Pfam models (N,140) parameterized

with standard profile HMM multinomial/Dirichlet maximum a

posteriori estimation (h,1.8) the correction is small

(0.6931+0.0057), but for short and/or entropy-weighted models

the edge effect correction has non-negligible effect.

This is only an empirically derived correction. It appears to

suffice in practice, but there is clearly more going on here. A more

satisfying and theoretically grounded accounting for edge effects in

probabilistic local alignment is needed.

Accuracy of E-Value Determination for Profile HMMs
In summary, the overall procedure for estimating the expected

score distributions is to assume l = log2, determine an edge-

corrected effective lambda l̂l~log2z 1:44
hN

for a query model of

length N and relative entropy per match state emission h, and run

two small simulations (L = 100, n = 200) to determine location

parameters m and t for the Viterbi score Gumbel distribution and

the Forward score exponential tail. Because I added ad hoc steps

(the edge effect correction and the methods for determining m and

t) on top of the conjectures about l, one now wants to know, when

the complete procedure is put together, how accurate are the

resulting E-values for profile HMM searches?

Figure 5 shows the results of searching 9,318 Pfam 22.0 models

(either parameterized by the standard approach, or using entropy-

weighting to yield lower information content models), against three

different databases of 105 random sequences, of lengths L = 100,

400, and 1600, collecting multihit local Viterbi and Forward

scores, and plotting predicted E-value for the top 1000 scoring hits

versus rank. If E-value estimation were perfect, we expect these

points to disperse around a straight line of slope 1 (the E-value of

the top hit should be 1, the E-value of the 10th ranked hit should

be 10, and so on). As expected, the mean predicted E-values are

indeed tightly dispersed around a straight line of slope 1. Each

mean is derived from 9,318 trials, so we expect the outlying

minimum E-value for the top-ranking score to be on the order of

1/9318, or about 161024. The minimum predicted E-values for

each of the six searches (Forward vs. Viterbi, three choices of

length) range from 2.261024 down to 3.761026, basically within

expectation (the 3.761026 is significantly low, but just barely so;

P = 0.03 to occur by chance in 9,318 trials). Some small systematic

deviations from expectation can be seen on close examination, the

most significant of which is in the Viterbi scores of entropy-

weighted models for long (L = 400 and L = 1600) target sequences:

this is where the apparent ‘‘edge effect’’ of low information content

models is having its greatest impact.

Though statistically significant errors in E-value accuracy

remain, for practical purposes they are tolerably small. Moreover,

they are almost invariably in the conservative direction. That is,

we would rather slightly underestimate l than overestimate it. If

we underestimate l, we overestimate E-values and miss some true

positive homologs without compromising our false positive rate. A

design goal of HMMER is to accurately estimate and control false

positive rates in large-scale automated analyses.

Discussion

The most immediate benefits from this work are that for profile

HMM searches, the statistical significance of both Viterbi and

Forward scores can be calculated efficiently without expensive

simulation. This enables substantial accelerations in the use of

Viterbi scores, and more importantly, it opens the way to a

broader use of more powerful Forward scores.
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Although I have done the simulations in the specific context of

HMMER, the local alignment model is not specific to HMMER.

It is a generalized probabilistic local alignment model with a

uniform entry/exit distribution. Because position-independent

substitution matrix scores and gap costs are just a special case of

position-specific profile scores, the same model can be used to

parameterize standard Smith/Waterman local alignments [44]

probabilistically. From a computational standpoint, optimal

(Viterbi) local alignment for profile HMMs is essentially identical

to Smith/Waterman alignment, with the same O(NL) computa-

tional complexity, and the Forward algorithm is a minor

modification of Viterbi (replacing max operations with sums).

Existing profile HMM implementations are two orders of

magnitude slower than BLAST, but this is only because they are

still using full dynamic programming (so running times are

comparable to other unaccelerated Smith/Waterman implemen-

tations). There is no reason why the same heuristics that BLAST

uses to accelerate Smith/Waterman cannot be applied to

accelerate profile HMM searches. Similarly, existing nonprob-

abilistic sequence alignment methods, including BLAST, can be

modified (with the addition of a few transition parameters) to

accomodate the probabilistic parameterization described here.

The same conjectures are also expected to hold for local

alignment scores for probability models of more than just linear

sequence alignment. For example, our preliminary results indicate

that local alignment scores for profile stochastic-context free

grammars (SCFGs; models of RNA structure and sequence) obey

the same conjectures for both CYK and Inside scores (analogous

to local Viterbi and Forward scores) (DL Kolbe and SRE,

unpublished results), which should help in efficiently and

accurately calculating E-values for profile SCFG searches for

structural RNAs [32,50].

However, at least three important points limit any conclusions I

can try to draw about how widely the conjectures might hold.

First, the same conjectures ought to hold for glocal and global

alignment models. Nothing in the conjectures’ rationale required

the probabilistic models H and R to be configured in any

particular way. However, based on previous work on glocal and

global alignment scores, it is unlikely that these score distributions

are going to exhibit a l = log z simple exponential tail for

biologically relevant model and sequence lengths [45,51]. Indeed,

in preliminary experiments I have observed glocal score

distributions converging to l = log z Gumbels for Viterbi scores

and e2t log z exponential tails for Forward scores only for the

smallest HMMs, the largest target sequences, and the most

extreme tails E,,1. This may suggest that the conjectures hold

only asymptotically, with glocal or global alignment score

distributions converging slower than local score distributions.

Second, if any probabilistic local alignment model H should

work, why would the prototype HMMER3 profile HMM

architecture and parameterization be necessary to obtain these

results, compared to HMMER2’s local alignment scores? This

again indicates that score distributions are more sensitive to details

of model parameterization than the conjectures’ generality would

suggest. I believe the uniform local entry/exit distribution to be the

important difference, again possibly because this makes score

distributions reach asymptotic behaviors more quickly. However, I

have not dissected the two implementations and tested specific

differences one at a time, because it is not feasible to emulate

HMMER2 in HMMER3’s implementation (and vice versa).
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Figure 5. Accuracy of E-value determination. Plots of predicted E-value versus actual rank, for multihit local Viterbi scores (A,C) and multihit
local Forward scores (B,D), using models with either the standard profile HMM multinomial parameterization used in the rest of the paper (A,B) or
‘‘entropy-weighted’’ models of reduced information content (C,D). Each plotted point (open circles) is the mean of 9,318 profile HMM searches of
n = 105 target sequences of three different target lengths: L = 100 (red), L = 400 (black), and L = 1,600 (cyan). The extreme outliers for each point are
shown by squares and dotted vertical lines. (Interquartile ranges are smaller than the circles plotted for the means.) The expected result, of E-value
equal to observed rank, is shown as a black line. Displayed text shows means and standard deviations for predicted E-values of the top-ranked score
in each search, which should be (and is) about 1.0.
doi:10.1371/journal.pcbi.1000069.g005
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Moreover, perhaps inconsistent with my thinking, the other popular

profile HMM software package, SAM, uses a nonprobabilistic

strategy of scoring zero for local entry/exit by analogy to Smith/

Waterman, which ought to produce an implicit uniform entry/exit

distribution, but the SAM implementors have gone away from

assuming a fixed l (using Milosavljević’s algorithmic significance

test) and now use simulation-calibrated E-values instead [29].

Third, it is trivial to produce an example of a probabilistic

model H that gives expected score distributions deviating strongly

from the conjectures: set H = R, and all log odds ratio scores

become zero (and thus l = ‘). The conjectures must break down

as the relative entropy between H and R approaches zero.

These issues show the main limitation of the simulation-based

approach I have taken. Proper understanding of the regimes in

which the conjectures break down requires a mathematical

analysis, not simulations limited to a particular problem domain.

Such analysis would be desirable, and it could lead in fruitful new

directions. For example, the fact that HMMER3 glocal score

distributions do appear to asymptote towards the conjectures

(albeit not for a practical range of tail probability mass nor query

and target lengths) seems promising. A general approach for

estimating statistical significance of global or glocal gapped

alignment scores, under traditional (arbitrary) scoring systems,

largely remains elusive, despite significant effort and progress

[45,51]. Perhaps – though this is only a guess – such problems

could become more amenable to mathematical analysis under the

simplifying constraints imposed by a fully probabilistic scoring

system. For example, the troublesome ‘‘log-linear transition’’ of

traditional alignment scores [52] never occurs; the expected score

of extending a full probabilistic alignment by an additional residue

is always nonpositive.

Another problem that will need more attention is finite length

effects. The finite length edge effect described for BLAST scores

[20] is not the only finite length effect that can impact score

distributions. Another is that there is a maximum score threshold

(i.e., the score of a global, ungapped, 100% identical alignment)

beyond which the probability of a higher score is just zero, so

expected distributions will deviate down as they approach this

maximum score threshold. In typical sequence alignments, where

both the query and the target are on the order of hundreds of

residues, this effect is negligible. In profile HMMs, however, where

some Pfam models are quite short (as small as N = 5), a maximum

score effect appears to be in play, especially for unihit mode

models with low information content (entropy-weighted) param-

eters. Fortunately, any such errors will be in the conservative

direction, compromising sensitivity instead of specificity (HMMER

would overestimate E-values for such models).

This work was partly inspired by the work of Yu and Hwa, who

described a ‘‘hybrid’’ (or ‘‘semi-probabilistic’’) scoring method that

gives Gumbel-distributed scores with l = log z [28,53]. Hybrid

scoring essentially amounts to taking the maximum score of the cells

in the Forward dynamic programming matrix. In HMMER3, I also

observe Gumbel-distributed hybrid scores with l = log z (data not

shown). The three scoring systems appear to differ in their

susceptibility to finite length effects that increase in low information

content models. The distribution of Forward scores seems more

robust than Viterbi scores (this is seen in Figures 4 and 5), and in

preliminary experiments, hybrid scores appear to be even more

robust (data not shown). This might account for why they turned

to hybrid scores rather than standard Viterbi or Forward scores

to achieve what they dubbed ‘‘universal statistics’’ (meaning

constant l).

I have taken care to distinguish Viterbi from Forward scores,

and local from glocal or global alignment modes, all of which are

just choices in the same full probabilistic modeling framework.

Some prior work has conflated probabilistic modeling and

Forward scoring, referring to Forward scores as ‘‘probabilistic

alignment scores’’ and arguing that probabilistic alignment scores

do not follow Gumbel distributions as opposed to traditional

alignment scores [28], but Viterbi scores are also probabilistic.

Other prior work has argued that HMMER scores do not follow

expected Gumbel statistics [49], but HMMER2’s default mode is

multihit glocal, not local (local alignment requires a command line

option). As it happens, HMMER2 does fit a left-censored Gumbel

as a best-effort approximation of the glocal score distribution, and

because this is known to be inaccurate, it attempts to focus the fit

to achieve highest accuracy at the critical E,1 region where

accurate significance estimation is important; this means that

HMMER2 multihit glocal (default) mode E-values are overesti-

mated for E,,1, underestimated for E..1, and most accurate

in the E,1 region, which others have observed empirically [45].

Although most homology search methods are based on local

alignment, our previous internal HMMER2 benchmarks and

benchmarks of other methods [45] have suggested that glocal

alignment is more sensitive and specific when conserved protein

domains can be defined a priori (as in protein domain databases like

Pfam, SMART, and CDD [25,26,54]). On the other hand, even

with predefined domain boundaries, occasional cases of conserved

subdomains and truncated database sequences make it unwise to

rely solely on glocal searches. For these reasons, HMMER2 has

defaulted to glocal mode, and Pfam search servers report an ad hoc

merge of glocal and local search results. We have wanted to find a

way around the need to run two searches to trade off the better

statistics and robustness to unusual cases of local mode versus the

better average sensitivity of glocal mode. Following results of

Karplus and coworkers [43], we have recently observed that much

of our previously observed difference between local and glocal

mode power results from local alignments being much more

sensitive to the information content of the query. When we

introduce parameterization methods for controlling the model’s

average information content per position (such as ‘‘entropy

weighting’’ [43]), sensitivity benchmarks of HMMER local and

glocal modes become comparable [27]. I am not so concerned any

more that local alignment mode will be sacrificing significant

search power relative to glocal mode, and I am currently planning

for HMMER3 to default to local. Whether HMMER3 will

implement glocal alignment mode and glocal E-value statistics

remains undecided.

It is important to distinguish generative probabilistic models of

local alignment from other ‘‘probabilistic’’ local alignment

methods that apply renormalization and partition functions to

interpret traditional arbitrary scores as unnormalized log-odds

probabilities [28,35–38]. In a generative model, l is explicitly log

z, where z is the base of the log used to convert probability

parameters to log odds scores. In renormalization-based ap-

proaches, the original arbitrary scores and their distribution are

unchanged, so determining distribution parameters like l is no

simpler than in BLAST or Smith/Waterman – essentially, in a

renormalization approach, one must still determine the unknown

implicit probabilistic basis of the arbitrary scoring system, which

means determining l [13].

A limitation of this work is that I have only examined scores of

independent, identically distributed (i.i.d.) random sequences with

a single typical amino acid composition. Real sequences often have

biased residue composition, repetitive regions, and other hetero-

geneities that can produce spurious high-scoring aligments,

requiring additional methods to compensate [29,48,55]. It will

be necessary to confirm previous observations that the same sorts
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of methods apply to Forward scores, not just to optimal alignment

scores [29]. Additionally, the probabilistic inference framework

admits an interesting alternative, which is to develop better explicit

probabilistic models of nonhomologs (hypothesis R), not just of

homologs (hypothesis H).

From a purist Bayesian perspective [33,34,56], one might

question why we need E-values and classical statistical significance

tests at all. Shouldn’t a posterior probability be sufficient? It would

be, if model H were an accurate model of the sequence space of

remote homologs we want to detect. However, query sequence(s)

are rarely an unbiased sample from the desired space of homologs.

Our model H usually represents a narrow clade of known query

sequences, not the broader space of homologs we want to detect.

Presented with a remote homolog, the model may correctly assign

it a low posterior probability (it doesn’t look like it belongs to the

same sequence space as our query sequences), but nonetheless, it

may have a higher score than one expected by chance. A purist

would say that this just shows that our model is inaccurately

parameterized for our problem. This is certainly true, but better

parameterization requires evolutionary models that can extrapo-

late what remote homologs will look like, and this has proven to be

a difficult problem. Most current probabilistic evolutionary models

neglect important inhomogeneities in the evolutionary process, like

heterotachy (rate variation between branches), and have so far

proven in our hands to be insufficient in schemes for increasing

profile HMM sensitivity (Alex Coventry and SRE, unpublished

results). E-values and classical statistical significance testing are of

immediate utility, while development of more useful probabilistic

evolutionary models remains a focus for the future.

Methods

The HMMER3 prototype source code (together with Easel, a

code library that HMMER depends on) is freely available at

http://selab.janelia.org/publications/#Eddy08 under the terms

of the open source GNU General Public License. This source

tarball includes a 00README file with detailed command-line

scripts for reproducing the results in the figures. The Pfam

database is freely available at http://pfam.janelia.org. The

simulation results are generated by the hmmsim program, which

takes a profile HMM as input, generates and scores n random i.i.d.

sequences, and outputs scores, statistics, and input files for the

freely available GRACE graph plotting program (http://plasma-

gate.weizmann.ac.il/Grace/). Maximum likelihood fitting of

Gumbel and exponential distributions is implemented in the

gumbel and exponential modules of Easel, respectively, following

methods in [46].

In HMMER3’s implementation, the local entry/exit distribu-

tion is in fact not completely uniform, for the following reason.

Imagine (as an extreme illustration) a profile HMM with a

‘‘consensus’’ match state Mk that is never reached, because the

(M,D)k21RMk transition probabilities are zero, and imagine that

this ‘‘dead’’ match state generates a residue that is for some reason

never seen in homologs. If the local alignment model imposed a

uniform entry/exit distribution, allowing an entry transition

straight into the dead Mk state, then local alignments can contain

the impossible residue. To avoid this, HMMER ad hoc weights the

local entry probabilities into states Mk by the probability that each

Mk is used in sequences generated from the model. Because by

default HMMER assigns consensus match states to alignment

columns that contain $50% residues as opposed to gap

characters, the usage of each match state is generally similar and

high, so the effect of this weighting is normally small (less than two-

fold difference between any pair of entry positions k).

It was necessary to implement HMMER3 dynamic program-

ming routines as floating point calculations. In the target length

model, a ratio like L
Lz2

approaches 1.0 for large L, and roundoff/

truncation error becomes an issue. The precision of HMMER2’s

internal scaled integer log-odds scores (in units of 0.001 bits)

proved insufficient.

All computational times mentioned in the paper are measured

for a single execution thread on a 3.2 GHz Intel Xeon (Dempsey)

CPU, using prototype HMMER3 code compiled with the GNU C

compiler (gcc) version 3.4.5 with a -O2 optimization level, running

a Red Hat Enterprise Linux AS release 4 operating system.
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