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Liver fibrosis is a pathological process caused by persistent chronic injury of the liver.

Kupffer cells, natural killer (NK) cells, NKT cells, and dendritic cells (DCs), which are

in close contact with T and B cells, serve to bridge innate and adaptive immunity

in the liver. Meanwhile, an imbalanced inflammatory response constitutes a challenge

in liver disease. The dichotomous roles of novel immune cells, including T helper 17

(Th17), regulatory T cells (Tregs), mucosa-associated invariant T cells (MAIT), and innate

lymphoid cells (ILCs) in liver fibrosis have gradually been revealed. These cells not only

induce damage during liver fibrosis but also promote tissue repair. Hence, immune cells

have unique, and often opposing, roles during the various stages of fibrosis. Due to

this heterogeneity, the treatment, or reversal of fibrosis through the target of immune

cells have attracted much attention. Moreover, activation of hepatic stellate cells (HSCs)

constitutes the core of fibrosis. This activation is regulated by various immune mediators,

including Th17, Th22, and Th9, MAIT, ILCs, and γδ T cells, as well as their related

cytokines. Thus, liver fibrosis results from the complex interaction of these immune

mediators, thereby complicating the ability to elucidate the mechanisms of action elicited

by each cell type. Future developments in biotechnology will certainly aid in this feat to

inform the design of novel therapeutic targets. Therefore, the aim of this review was to

summarize the role of specific immune cells in liver fibrosis, as well as biomarkers and

treatment methods related to these cells.

Keywords: liver fibrosis, T helper cells, mucosa-associated invariant T cells, innate lymphoid cells, regulatory

T cells, hepatic stellate cells

INTRODUCTION

Liver fibrosis is a pathological process in which diffuse extracellular matrix (ECM) over precipitates
in the liver due to abnormal hyperplasia of connective tissue caused by various pathogenic factors.
The initiating event in liver fibrosis is the activation of hepatic stellate cells (HSCs), which promotes
the production and accumulation of ECM (1). Liver fibrosis is a common pathological outcome
of various chronic liver diseases (CLD), including chronic hepatitis B (CHB), chronic hepatitis
C (CHC), non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), autoimmune
hepatitis (AIH), and primary biliary cirrhosis (PBC). The treatment and prognosis of chronic liver
disease depends on the degree of liver fibrosis. However, currently no treatment has demonstrated
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the ability to reverse the progression of fibrosis in CLD. The
aggravation of fibrosis may lead to cirrhosis, liver failure, or
liver cancer, in which liver transplantation is performed as the
last option (2). Therefore, early detection and inhibition of
fibrosis progression is particularly important in the treatment of
liver diseases.

The liver is an immune organ that plays a major role in innate
and adaptive immunity. Its anatomical structure allows it to
function as a filter for visceral blood, thus acting as the second line
of defense for the intestinal immune system, preventing the entry
of harmful substances from the intestinal tract, and their negative
impact throughout the body (3). The high proportion of Kupffer
cells (KCs), natural killer T (NKT) cells, γδ T cells, and dendritic
cells (DCs), which are in close contact with antigen presenting
cells, T cells, and B cells, serve to connect innate and adaptive
immunity in the liver, while inducing immune tolerance, thereby
avoiding immune responses from being mounted against foreign
antigens that would otherwise cause tissue damage. These effects
maintain the stability of hepatic microcirculation and tolerance
to foreign antigens (4). Alternatively, inflammation generally
precedes fibrosis, while immune cells are important factors in the
regulation of fibrosis. Although immune cells can induce damage,
they can also promote tissue repair in liver fibrosis (5). T cells
andmacrophages constitute the core of liver fibrosis pathogenesis
with macrophage-derived transforming growth factor (TGF)-
β1 known to be the strongest activator of HSCs (6). Recently,
newly discovered immune cells, and their related cytokines,
were shown to also participate in the process of liver fibrosis
(Table 1). For instance, an imbalance in the ratio of regulatory
T cells (Tregs)/T helper 17 cells (Th17) is characteristic of liver
fibrosis progression. Indeed, some drugs function to restore
the Tregs/Th17 balance, thereby alleviated liver fibrosis (7–11).
Additionally, Th22, Th9, mucosa-associated invariant T (MAIT)
cells, innate lymphoid cells (ILCs), γδ T cells, and their related
cytokines, have been reported to regulate liver fibrosis (12–16).

The aim of this review is to provide a summary of the current
understanding regarding the roles of innate immune cells in
liver fibrosis, and the recent diagnostic and treatment outcomes
for liver fibrosis achieved through targeting newly discovered
immune cells. First, the review deals with immune cells and their
associated cytokines known to promote hepatic fibrosis. Second,
the roles of immune cells and their related cytokines playing
in anti-hepatic fibrosis are discussed. Third, the dichotomous
roles of certain immune cell types in fibrosis is discussed. Finally,
conclusions and future perspectives are provided.

IMMUNE CELLS AND RELATED
CYTOKINES IN PRO-HEPATIC FIBROSIS

T Helper 17 Cells (Th17)
Th17 cells are a subset of CD4+ T cells characterized by RORγt
expression and interleukin (IL)-17, IL-22, and IL-23 production.
In acute and chronic liver injury, the amount, and proportion,
of Th17 cells in the liver and peripheral blood increases. These
cells have clear fibrogenic properties (17–19), with high levels
of intrahepatic Th17 and IL-17 commonly observed in liver

fibrosis caused by various etiologies, such as HBV (20), HCV
(21), cholestatic liver injury (22), autoimmune hepatitis (23),
and NAFLD (24). In fact, within a bile duct ligation (BDL)
murine model, knockout of IL-17A resulted in reduced liver
damage and fibrosis, accompanied by decreased levels of tumor
necrosis factor (TNF)-α, TGF-β, and type I collagen in the
liver compared to wild-type (WT) mice (22). Moreover, in mice
with liver fibrosis induced by carbon tetrachloride (CCl4), the
concentration of collagen and TGF-β in the liver of WTmice was
significantly higher than in the liver of IL-17RA deficient mice.
Meanwhile, in vitro experiments confirmed that IL-17A activates
HSCs to produce collagen through the ERK1/2 and p38 signaling
pathways (17). Moreover, in animal models of liver fibrosis
induced by CCl4 and BDL, serum or liver IL-17 expression
was positively correlated with the degree of liver fibrosis, while
blocking IL-17 signaling weakened liver fibrosis. Furthermore,
it has been shown that IL-17A promotes the transformation of
HSCs intomyofibroblasts and the production of collagen through
the STAT3 signaling pathway (18).

However, Thomas et al. found that IL-17A does not directly
promote HSC activation nor pro-fibrotic gene (COL1A1, TIMP-I,
andACTA2) expression, but rather requires TGF-β collaboration.
Meanwhile, IL-17A upregulates and stabilizes TGF-β receptor
II (TGF-βRII) expression on the surface of HSCs through the
JNK signaling pathway and enhances SMAD2/3 phosphorylation
to promote liver fibrosis (19). These differences may have
been caused by differing experimental conditions. For instance,
although both experiments conducted by Tan et al. (17) and
Meng et al. (18), stimulated HSCs for 2–8 h, the latter study
did not observe effects at this time point and thus, chose to
further stimulate the cells for 48 h (19). Moreover, Meng et al.
sought to exclude the effect of TGF-β in fetal bovine serum
by performing the study under cell starvation conditions (19).
Nevertheless, other studies have also confirmed that IL-17A
does not induce the expression of fibrogenic genes, but rather
promotes that of chemokines and pro-inflammatory factors in
recruited macrophages, monocytes, and neutrophils (25, 26).
Thus, IL-17 may recruit other cells to affect HSCs in complex
hepatic fibrosis environments. Although advances have been
made in identifying the underlying mechanism of Th17 cells
and their cytokines in liver fibrosis, some challenges have arisen
that require further clarification. For example, in HBV or HCV
infected patients, the degree of liver fibrosis is significantly related
to the virus replication rate in vivo. Moreover, Th17 cells and
IL-17 promote viral clearance and have a certain antiviral role,
similar to that of Th1 cells (27). However, both TH17 cells and
IL-17 also aggravate inflammatory damage of the liver, leading to
chronic HBV and HCV in patients. Due to the diverse functions
of Th17 cells, determining how to exploit its anti-fibrotic effect
while avoiding its pro-fibrosis potential, will serve to accelerate
the clinical application of Th17 in the treatment of liver fibrosis.

T Helper 9 Cells (Th9) and IL-9
Th9 cells are a newly distinguished CD4+ T cell subset
characterized by the specific secretion of IL-9 and identified
by PU.1 and IRF.4 (28, 29). IL-9 was originally mistaken as a
type 2 cytokine until IL-4-induced differentiation of naïve CD4+
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TABLE 1 | The role of novel immune cells in liver fibrosis.

Cell type Species Molecules and signaling pathway Effect in fibrosis References

Th17 Mouse IL-17 Pro-fibrosis (17, 18)

Human IL-17 Pro-fibrosis (20, 23, 24)

Th9 Mouse IL-9 Pro-fibrosis (13, 34)

MAIT Mouse TNF, TCR/MR1 Pro-fibrosis (40)

Human IL-17A, TNF, TCR/MR1 Pro-fibrosis (14, 40)

Treg Mouse CD39 Anti-fibrosis (119)

Human TGF-β Anti-fibrosis (44)

IL-8, TGF-β, CTLA-4 Pro-fibrosis (45, 47)

Th22 Mouse IL-22 Pro-fibrosis (48, 62)

IL-22 Anti-fibrosis (12, 18, 61)

Human IL-22 Pro-fibrosis (62, 63)

NK Mouse IFN-γ, RAE1/NKG20, NKp46, Ly49 Anti-fibrosis (73, 77, 79, 80)

Human IFN-γ,TRAIL/NKG20, FasL/NKG20, NKp46 Anti-fibrosis (75, 76, 79)

ILC2 Mouse IL-33/IL-13 Pro-fibrosis (85)

ILC3 Mouse IL-17A, IL-22 Pro-fibrosis (16)

γδ T Mouse IL-17A, CCR6/CCL20, FasL Pro-fibrosis (95, 96, 98)

IFN-γ Anti-fibrosis (99)

Th, Helper T cell; IL, Interleukin; MAIT, Mucosa-associated invariant T cells; TCR, T cell receptor; MR1, Major histocompatibility complex MHC class I-related molecule; TGF-β,

Transforming growth factor β; NK, Natural killer cells; IFN-γ, Interferon γ; RAE, Retinoic acid early induced transcript; NKG20, natural-killer group 2, member D; TRAIL, tumor necrosis

factor-related apoptosis-inducing ligand; FasL, Fas ligand; ILC, innate lymphoid cells; CCR6, CC chemokine receptor 6; CCL20, CC chemokine ligand 20.

T cells was found to generate a group of IL-9+IL-10+Foxp3− T
cells with no immunosuppressive capacity (30). IL-9 was further
shown to be increased in the peripheral blood and liver of
mice infected with Schistosoma japonicum, while its inhibition
reduces procollagen-III (a fibrosis-related factor) expression in
infected mice (31, 32). Consistently, intraperitoneal injection
of anti-IL-9 antibody inhibits granulomatous inflammation in
the liver and collagen deposition around the eggs of infected
mice. Furthermore, direct stimulation of HSCs in vitro with IL-
9 significantly increases the production of collagen and α-SMA
(13). In addition, Th9 cells and IL-9 are increased in the blood of
patients with HBV and HBV-related cirrhosis. This elevation is
also present in the liver of mice with CCl4-induced liver fibrosis
(33). Furthermore, Guo et al. demonstrated that CXCL10-
induced IL-9 promotes liver fibrosis via the Raf/MEK/ERK
signaling pathway in CCl4-induced mice (34). Hence, Th9 has
clearly been shown to promote fibrosis. Consistent with studies
in liver fibrotic diseases, IL-9 antibody treatment alleviates
idiopathic pulmonary fibrosis and cystic fibrosis in mice (35,
36). However, Th9 cells have only been recently identified and
investigated in the context of allergic reactions and parasitic
infections. Therefore, the role andmechanism of Th9 cells in liver
fibrosis require further analysis.

Mucosa-Associated Invariant T (MAIT)
Cells
MAIT cells are a novel subset of innate-like T cells characterized
by their invariant T cell receptor α-chain and their restrictive
major histocompatibility complex related protein-1 (MR1),
which are primarily distributed in the blood, liver, and intestinal
mucosa (37). The innate functions of MAIT cells are similar
to those of innate natural killer T cells (iNKT) and can

be stimulated by IL-12 and IL-18 to secrete IFN-γ and
granzyme (38). MAIT cells have antibacterial and immunological
activities and present altered functions in chronic disease.
The role of MAIT cells in liver fibrosis has been recognized
due simply to their abundance in the liver, which accounts
for ∼30% of all CD3+ T cells present in the liver (39).
In autoimmune liver disease, MAIT cells are significantly
increased in the peripheral blood and liver; this increase is
negatively correlated with the degree of liver fibrosis. In vitro
studies further confirmed that IL-12 stimulates MAIT cells
to produce large amounts of IL-17A. HSCs are activated by
IL-17A and direct cell contact with MAIT cells, leading to
HSC proliferation, pro-fibrosis, and pro-inflammatory gene
expression (14). In animal models of alcoholic and non-
alcoholic liver injury, MAIT cells promote the production of pro-
inflammatory cytokines, such as IL-6 and IL-8 in mono-derived
macrophages. Meanwhile, co-culture results demonstrate that
MAIT cells promote fibroblast mitosis and pro-inflammatory
properties through direct cell-cell contact (40). In addition,
MR1−/− mice (MAIT-deficient) are resistant to liver fibrosis and
have lower fibroblast density (40). Given the abovementioned
results, MAIT cells play a crucial role in the process of liver
fibrosis. However, the precise associated mechanism remains to
be explored.

IMMUNE CELLS AND RELATED
CYTOKINES IN PRO/ANTI-HEPATIC
FIBROSIS

Regulatory T Cells (Tregs)
Tregs are a subset of immunosuppressive CD4+ T cells
characterized by transcription factor forkhead box P3 (Foxp3)
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expression. The role of Tregs in liver fibrosis is complex and
controversial. The number of circulating Tregs is positively
correlated with the degree of liver fibrosis and serum HBV
DNA load in HBV-infected patients (41). Meanwhile, Tregs
inhibit HSC activation and proliferation, thereby ameliorating
liver fibrosis (7, 8). However, given their immunosuppressive
function, Tregs also act as a haven for hepatitis B viruses that
are otherwise attacked by the immune system (41). Indeed,
within HCV patients, hepatic CD4+Foxp3+ T cells are negatively
correlated with liver fibrosis, whereas CD4+Foxp3+ Tregs in
the blood of chronic HCV patients are less frequent than in
healthy controls (42). Alternatively, Ward et al. observed no
difference in the abundance of Foxp3+ cells between mild and
severe fibrosis in portal tract areas from HCV patients (43).
Moreover, it remains unclear whether hepatic Tregs directly
control HSCs and immune cells in the liver, or whether Tregs in
lymph nodes or the spleen suppress the activation and migration
of effector cells before infiltrating into the liver. Notably, although
TGF-β is a recognized pro-fibrotic factor, that produced by
Tregs in HCV negatively correlates with liver inflammation and
fibrosis, suggesting that TGF-β also has anti-fibrotic properties
(44). The authors suggest that this dichotomy may be due to
the numerous cytokines, including IL-10, that are produced by
peripheral immune cells following TGF-β stimulation, thereby
effectively balancing the fibrogenic effects of TGF-β produced
by other cells in the liver. Additionally, IL-8+CD4+Foxp3+ T
cells are abundant in the liver of HCV patients and are primarily
distributed in the fibrosis and alpha-smooth muscle actin (α-
SMA)+ region. Moreover, neutralization of IL-8 can block the
activation of HSCs without affecting the immunosuppressive
function of Tregs, suggesting that IL-8+ Tregs participate in
the promotion of fibrosis (45). Hence different Treg subgroups
appear to have opposing effects.

The mystery of Tregs in liver fibrosis is also reflected
in their regulation of other immune cells. In the BDL
model, Treg depletion promotes Th17 and CD8+ T cell
infiltration in the fibrotic liver and increases the expression
of inflammatory cytokines (IL-6, TNF-α, and IL-12p70) and
chemokines (monocyte chemoattractant protein 1, macrophage
inflammatory protein-1α, and regulated on activation, normal
T-cell expressed and secreted chemokine), leading to the
aggravation of fibrosis and suggesting that Tregs inhibit fibrosis
by suppressing the formation of a pro-fibrotic niche by Th17
and CD8+ T cells (46). In contrast, Tregs are enriched in
liver fibrosis tissues and protect HSCs from NK cell killing in
HCV patients. Tregs inhibit NK cell killing of HSCs in two
ways. The first involves inhibiting NK cells by direct contact
with cytotoxic T lymphocyte associated antigen-4 (CTLA-4);
whereas the second, involves the production of IL-8 and TGF-
β to inhibit HSCs from producing major histocompatibility
complex (MHC) class I and MHC class I chain related protein
A or B (MIC-A/B), which are required for NK cell activation
(47). Additionally, in severe liver fibrosis, the number of Tregs
in the liver is higher than that in moderate fibrosis and is
positively correlated with serum ALT levels, suggesting that
Tregs may be recruited to control liver cell damage (48). In
addition, the immunosuppressive regulatory effect of Tregs is

conducive to the formation of chronic inflammation, which
maintains liver fibrosis (49). Tregs also inhibit the secretion
of matrix metalloproteinas (MMPs) by KCs through TGF-β,
thereby limiting liver fibrosis regression. Meanwhile, depletion of
Tregs with anti-CD25 antibodies accelerates fibrosis regression
in CCl4-induced liver fibrosis mice (50). Therefore, the role of
Tregs is not entirely opposed to that of Th17, and may depend on
the cause of liver injury, the stage of fibrosis, and the interaction
between different immune cells.

Recently, Tregs were identified in visceral adipose tissue
(VAT) and are now widely accepted as associated with glucose
metabolism and insulin resistance (51). In obese mice induced
by a high-fat diet, metabolic syndrome and non-alcoholic
steatohepatitis (NASH) occur accompanied by a decrease in
the proportion of Tregs in VAT (52). VAT Tregs relieve
insulin resistance and glucose metabolism disorders caused by
a high-fat diet in mice (51). Conversely, consumption of VAT
Tregs increases the expression of inflammatory cytokines, such
as TNF-α, IL-6, and C-C chemokine ligand 5 (CCL5) and
promotes insulin resistance in adipose tissues (53, 54). PPARγ,
a transcription factor that regulates adipocyte differentiation, is
specifically expressed in VAT Tregs (55). Disabling PPARγ on
Tregs results in a decrease in VAT Tregs, while Tregs in the
lymphoid organs are not affected (56). In contrast, exogenous
injection of a PPAR agonist (pioglitazone) in high-fat diet mice
increases the number of VAT Tregs, reduces local inflammation,
and improves organic metabolism. Furthermore, mice with
knocked out PPARγ expression in Tregs are less responsive to
pioglitazone treatment, demonstrating that VAT Tregs constitute
a key factor in the regulation of insulin sensitization (55).
Considering that insulin resistance promotes the development
from simple fatty liver to NASH and is a common risk factor
for NAFLD (57, 58), it is reasonable to assume that VAT Tregs
participate in the regulation of NASH development. Revealing
the mechanism whereby VAT Tregs regulate NAFLD will,
therefore, contribute to elucidating the role of VAT Tregs in
liver fibrosis.

T Helper 22 (Th22) Cells and IL-22
Th22 cells constitute a newly discovered subset of CD4+ effector
T cells that produce a high level of IL-22 rather than IL-17 or
interferon (IFN)-γ. These cells are induced by IL-6 and TNF
from naïve CD4+ T cells. The characteristic transcription factor
of Th22 cells is the aryl hydrocarbon receptor (AHR) (59).
Th22 cells participate in chronic inflammation, autoimmune
diseases, and cancers. Moreover, the IL-22 receptor (IL-22R) is
a heterodimer composed of IL-22R1 and IL-10R2. Among them,
IL-22R1 is primarily expressed on epithelial cells located in the
skin and the lumen of the digestive and respiratory tracts, thereby
determining the primary locations where IL-22 exerts its effects
(60). However, the role of Th22 cells and IL-22 in liver fibrosis
remains controversial. In CCl4-induced liver fibrosis mice, the
proportion of Th22 cells in the spleen is higher than that in
WT mice, and is accompanied by increased IL-22 levels in the
serum and liver, suggesting that the microenvironment of liver
fibrosis is conducive to the differentiation and proliferation of
Th22 cells (61). Researchers who hold the view that IL-22 has

Frontiers in Medicine | www.frontiersin.org 4 April 2021 | Volume 8 | Article 604894

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Wan et al. Immune Subsets in Liver Fibrosis

a pro-fibrotic effect have found that IL-22 relies on MAPK to
promote TGF-β signaling in HSCs and induce HSCs to produce
more α-SMA (48). In patients with hepatitis B cirrhosis, the
infiltration of IL-22 positive cells in the liver is significantly
higher than that in healthy individuals and is positively correlated
with the stage of liver fibrosis. Furthermore, in HBV transgenic
mice, increased IL-22 aggravates chronic liver inflammation and
fibrosis by secreting CCL10 and CCL20 to recruit Th17 cells (62).
Consistently, IL-22 and IL-22(+) cells are significantly increased
in the peripheral blood of HCV patients, while the number of
IL-22(+) cells in the liver is positively correlated with the liver
fibrosis score. Further, IL-22(+) cells are primarily distributed
within the fibrotic area. In vitro experiments have confirmed that
IL-22 inhibits LX-2 (HSC line) cell apoptosis, while promoting
their proliferation as well as the production of α-SMA and
collagen (63).

However, several experiments have also confirmed the anti-
fibrotic and protective effects of IL-22 in the liver. IL-22
resists fibrosis by inducing senescence of activated HSCs
through SCOS3, p53, and STAT3 (12). Additionally, in vivo
injection of IL-22 in BDL mice reduces collagen α1 (I) and
α-SMA production to alleviate liver fibrosis (18). Moreover,
administration of IL-22 inhibits HSC activation, reduces the
production of pro-inflammatory factors (IL-1β, IL-6, and TNF-
α), and ameliorates liver fibrosis in CCl4-induced liver fibrosis
(61). In the liver of HFD-fed mice, CXCL1 is overexpressed and
promotes steatosis-to-NASH progression by inducing neutrophil
infiltration, oxidative stress, and stress kinase activation.
However, IL-22 treatment blocks hepatic oxidative stress and
its associated stress kinases via induction of metallothionein.
Furthermore, although it does not target immune cells, IL-22
treatment attenuates the inflammatory functions of hepatocyte-
derived, mitochondrial DNA-enriched extracellular vesicles,
thereby suppressing liver inflammation in NASH (64). The
functional differences of IL-22 may be related to the diversity
of its sources. Indeed, various immune cells in the liver, such
as Th1, Th17, Th22, γδ T, and NKT cells can produce IL-
22 (65). However, none of the abovementioned studies has
identified the specific cellular source of IL-22, the identification
of which may provide targets for clinical therapeutic strategies.
In addition, IL-22 and IL-17 are both type 3 cytokines, which can
be produced simultaneously in chronic inflammatory diseases
(48). In the absence of IL-17, Th22 has a protective effect against
NASH. However, in the presence of IL-17, IL-22 recruits Th17 to
aggravate liver fibrosis (66). Moreover, the pro-inflammatory and
anti-inflammatory role of IL-22 has been shown to be regulated
by IL-17 in airway inflammation (67). Thus, determining the
source of IL-22 and the effect of other cytokines, such as IL-
17, on IL-22 will help us better understand the role of IL-22 in
liver fibrosis.

Innate Lymphoid Cells
ILCs are a group of heterogeneous lymphocytes involved in
innate immunity. They do not express the antigen-specific
receptors of T or B cells and are largely distributed at mucosal
barrier sites where they participate in immune surveillance and
regulation (68). ILCs are divided into three groups: Group 1

(ILC1 and NK cells, dependent on T-bet and producing IFN-γ),
Group 2 (ILC2, dependent on GATA3 and RORα and producing
type 2 cytokines, such as IL-13 and IL-5), and Group 3 (ILC3
and lymphoid tissue-inducing cells, dependent on RORγt and
producing IL-17 and IL-22). The functions of ILC1, ILC2, ILC3,
and NK cells correspond to Th1, Th2, Th17, and CD8+ cytotoxic
T cells, respectively (69). ILCs are distributed differently in
different organs. The NKP44+ ILC3 type predominates in the
gut, where it acts as a mucosal barrier by producing IL-22.
However, the NKP44− ILC3 type predominates in the liver, and
have the potential to differentiate into other ILCs. NKP44− ILC3
is the only type present in fetal liver, while other ILCs can be
detected with prolonged pregnancy (70).

The role of ILC1 in liver fibrosis, however, is yet to be
reported. Nabekura et al. demonstrate the protective role of
ILC1s in a mouse model of CCl4-mediated moderate acute liver
injury. CCl4-mediated acute liver injury results in ATP and IL-12
production fromDCs that activates ILC1s to produce IFN-γ. This
results in upregulation of Bcl-2 and Bcl-xL by hepatocytes leading
to reduced cell death and liver damage (71). Furthermore, Wang
et al. found that group 1 ILCs in adipose tissues aggravate adipose
fibrosis and promote the development of diabetes (72). However,
since NK cells and ILC1 were not studied separately, the role of
ILC1 in fibrosis could not be clearly defined.

As for NK cells in liver fibrosis, activated NK cells kill
HSCs by producing IFN-γ (73–75). In addition, NK cells induce
apoptosis of HSCs by direct cell contact, which involves Fas
ligand (FasL), tumor necrosis factor-related apoptosis-inducing
ligand (TRAIL), and natural killer group 2, member D (NKG2D)
(76). Early activated HSCs produce large amounts of retinoic
acid, leading to increased expression of RAE-1 (retinoic acid early
inducible 1), a ligand that activates NK cell receptor NKG2D.
RAE-1 and MICA synergically trigger NK cells to kill HSCs
(77, 78). Additionally, Chamutal et al. reported that primary
human and mouse HSCs express unknown ligands for human
NKp46 and mouse NCR1 receptors, respectively, to mediate the
killing of HSCs by NK cells (79). In addition to the activation-
related receptors on NK cells, inhibitory receptors Ly-49 are also
reportedly involved in NK cell killing of HSCs mediated by MHC
I molecules (80, 81). Notably, NK cells preferentially help to
eliminate senescent HSCs and contribute to the regression of liver
fibrosis (78). Besides, other immune cells can also regulate the
interaction between NK cells and HSCs. In immune stimulatory
conditions, such as viral liver disease or Toll-like receptor
stimulation, KCs and DCs promote NK cell activation (82–84).
Meanwhile, Tregs can inhibit NK cell activation to protect HSCs
(47). Although the molecular mechanism underlying the NK cell
anti-liver fibrosis phenomena has been extensively studied, it
remains unclear whether liver resident or non-resident NK cells
limit fibrosis. Moreover, the details of the interaction between
NK cells and HSCs muse be further revealed before NK cells can
become an immune target for anti-fibrosis strategies.

It is widely accepted that ILC2 promotes liver fibrosis. ILC2
increases at the site of hepatic fibrosis and is positively correlated
with the degree of hepatic fibrosis (15). In the CCl4-induced
liver fibrosis model, collagen deposition is significantly reduced
following ILC2 cell depletion (85). The fibrogenic effect of ILC2

Frontiers in Medicine | www.frontiersin.org 5 April 2021 | Volume 8 | Article 604894

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Wan et al. Immune Subsets in Liver Fibrosis

is dependent on the IL-33/IL-13 signaling pathway. Meanwhile,
during chronic liver injury, increased release of IL-33 leads
to the accumulation and activation of ILC2 cells in the liver
through ST2 receptors on the surface of ILC2. Activated ILC2
cells then produce IL-13, which in turn activates HSCs in an IL-
4Rα- and STAT6-dependent manner to aggravate liver fibrosis
(85). Meanwhile, liver fibrosis is alleviated in mice lacking ST2
or IL-13, however, transfusion of ILC2 restores fibrosis (85).
In addition to IL-33, thymic stromal lymphopoietin (TSLP)
and IL-25 are major cytokines that drive type 2 immunity.
Moreover, the activation of ILCs by the above three cytokines
has been reported to lead to fibrosis in the lung and skin (86–
89). Consistent with the results in other organs, simultaneously
blocking IL-33, IL-25, and TSLP can improve liver and lung
fibrosis and reduce IL-13 production by ILC2 in mice injected
with Schistosoma mansoni eggs. However, other studies have
found that the proportion of CD4+IL-13+ T cells increases
following infection with Schistosoma mansoni eggs, which is
accompanied by decreased ILC2 activity, suggesting that adaptive
immunity may gradually replace IL-33, IL-25, and TSLP-ILC2 to
maintain liver fibrosis progression (86). Although the IL-33/IL13
axis clearly promotes liver fibrosis, the specific contribution of
ILC2 and type 2 immune cells remains to be investigated.

The role of ILC3 in fibrosis has only recently been discovered.
In HBV patients, ILC3 is increased in peripheral blood
and is positively correlated with the degree of fibrosis and
inflammation. Moreover, co-culturing ILC3 with LX-2 cells
demonstrated that ILC3 cells activate HSCs by producing IL-
17A and IL-22. Furthermore, transferring ILC3 from normal
mice to CCl4-induced Rag-1−/− mice leads to HSC activation,
ECM accumulation, and aggravation of hepatic fibrosis (16).
Additionally, RORγt+ ILCs exert a partial protective role in the
hepatic immune response induced by CCl4 (90). However, the
study does not distinguish between ILC3 and lymphoid tissue-
inducing cells (LTi).

LTi cells are essential for peripheral lymphoid organ and tissue
development (91). These cells secrete IL-17 and IL-22 in groups,
both during embryo development and after birth. Activated LTi
cells also produce a large number of cytokines and chemokines
during induction of peripheral lymphoid organ/tissue formation,
leading to lymphocyte and DC cell aggregation (92). Therefore,
LTi cells have pro-inflammatory properties and are likely to
participate in the inflammatory processes associated with most
diseases, including liver fibrosis. However, the specific molecular
mechanisms remain to be investigated.

γδ T Cells
γδ T cells make up 3–5% of total lymphocytes and 15–25% of
T cells in the liver (93). These cells represent a double-edged
sword in liver fibrosis. Wang et al. demonstrate that macrophages
increase the number of IL-17A-producing γδT cells through
the HMGB1-TLR4-IL-23 signaling pathway, recruit neutrophils
to infiltrate the liver, and aggravate liver inflammation (94).
Furthermore, in mice infected with Schistosoma japonicum,
Vγ2 γδ T cells recruit neutrophils to granuloma and the liver
by producing IL-17A, thereby aggravating liver fibrosis (95).
However, γδ T cells do not only interact with immune cells to

affect the fibrosis process but are also regulated by HSCs. In
CCl4-induced acute liver injury and early stage liver fibrosis,
exosomes released by hepatocytes bind to TLR3 and activate
HSCs to produce IL-17A, which promotes the production of
IL-17A by hepatic γδ T cells to aggravate liver fibrosis (96).
However, it has also been argued that exosomes directly promote
the production of IL-17 by γδ T cells (97). In addition to
promoting fibrosis, γδ T cells have also been found to ameliorate
liver inflammation and fibrosis. In two chronic liver injury
mouse models (CCl4 and methionine-choline-deficient diet),
γδ T cells are recruited to the liver through the activation of
the CCR6/CCL20 signaling pathway and directly promote HSC
apoptosis in a FasL-dependent manner to limit liver fibrosis (98).
Liu et al. found that γδ T cells (particularly IFN-γ-producing
subsets) protect the liver from fibrosis by killing activated HSCs
directly or indirectly by enhancing NK cell-mediated cytotoxicity
(99). Collectively, inducing the cytotoxicity of γδ T cells against
HSCs can display an anti-fibrosis role, while promoting the
production of IL-17 by γδ T cells aggravates fibrosis.

MICROBIOTA AND LIVER FIBROSIS

The liver is exposed to gut-derived bacterial metabolites and
their products through the portal vein (100). Normally, the
liver maintains a delicate balance between inflammatory and
regulatory immune responses. However, when gut microbiota
becomes altered, microbial stimuli affect the function of immune
cells in the liver and ultimately lead to the development
of liver disease (101). Liver inflammation reshapes intestinal
microbiota through an unknown mechanism, leading to
increased Lactobacillus (especially L. johnsonii) abundance in the
gut. During the recovery stage of acute liver injury induced by
concanavalin A, Lactobacillus was found to activate intestinal
ILC3 cells to produce IL-22, which repairs the intestinal mucosal
barrier and blocks further metastasis of gut microbiota to the
liver. Moreover, IL-22 can induce the production of IL-10 and
TGF-β by recruiting regulatory DC cells to the liver to maintain
immune tolerance (102). Additionally, Hendrikx et al. report
that the gut microbiota regulate ILC3 cells to reduce progression
of ALD. In chronic-binge ethanol feeding mice, intestinal
microbiota derived AHR ligand indole-3-acetic acid are reduced,
resulting in decreased IL-22 production by ILC3s. IL-22 can
also regulate the expression of intestinal REG3G, which protects
mice against ethanol-induced liver disease by reducing bacterial
translocation. In fact, supplementation with Lactobacillus to
produce IL-22 effectively reduces liver damage and bacterial
translocation to the liver (103). Hence, considering that systemic
injections of IL-22 increase the risk of hepatocellular carcinoma
in patients with CLD (104–106), altering the gut microbiota to
regulate the immune cells that produce IL-22 may offer a more
viable option for liver injury therapeutic interventions.

In addition to ILC3, MAIT cells are also influenced by gut
microbiota in ALD. Fecal extracts from patients with ALD
have reduced blood MAIT cells that are hyperactivated and
exhibit defective antibacterial cytokine/cytotoxic responses (37).
Moreover, in an intrahepatic cholangitis model, gut L gasseri
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are enriched and translocate to the liver, where they amplify IL-
17+ γδ T cells to promote liver fibrosis and inflammation (107).
Microbial-derived lipids are presented to γδ T cell receptors
through CD1d on hepatocytes, which activates γδ T cells to
express IL-17A, thereby aggravating NAFLD. Notably, this is
unique to hepatic γδ T cells, and cannot be applied to circulating
γδ T cells (108). Overall, these studies suggest that gut microbiota
helps to shape the liver immune response. Although evidence
does not directly suggest that an altered gut microbiota affects the
role of novel immune cells in liver fibrosis, intestinal microbiota
represents the core of the gut-liver axis that has been shown to
drive many liver diseases to different stages. Therefore, it has
important value and far-reaching significance for research in
this field.

CHRONIC INFLAMMATION IN LIVER
FIBROSIS

Inflammation is present in all the stages of liver fibrosis, cirrhosis,
and hepatocellular carcinoma. Meanwhile, persistent activation
of inflammatory responses contributes to the expansion of
liver fibrosis (109). Degeneration and necrosis of hepatic
parenchyma cells caused by various factors leads to the release
of the inflammasome, which recruits and activates inflammatory
cells. Activated inflammatory cells (particularly KCs) secrete
TGF-β1, TNF-α, PDGF, and other factors, which promote
the transformation of HSCs, or other fibrogenic cells, into
myofibroblasts. Myofibroblasts continue to secrete and deposit
extracellular matrix, and ultimately form hepatic fibrosis (110).
Intrinsic cells and immune cells in the liver and HSCs
together establish a complex regulatory system. These novel
immune cells and their related cytokines do not only directly
regulate HSCs and fibrogenesis, but also indirectly affect liver
fibrosis by influencing the inflammatory microenvironment. For
instance, IL-17 stimulates STAT3-mediated human endothelial
cell activation and production of GRO-α, GM-CSF and IL-8,
which regulate neutrophil recruitment to the liver (111). IL-17
can also induce HepG2 to produce IL-6 through activation of
MAPK. Consequently, IL-6 stimulates Th17 cells and forms a
positive feedback loop in AIH (23). Meanwhile, IL-17 recruits
other inflammatory cells and promotes the synthesis of pro-
inflammatory cytokines to exacerbate the inflammatory process,
which triggers and maintains the differentiation of profibrogenic
cells into myofibroblasts to amplify fibrosis. In addition to IL-
17, TNF signaling controls NLRP3 inflammasome activation
in myeloid derived cells to initiate liver inflammation, via
recruitment of neutrophils and pro-inflammatory macrophages,
leading to subsequent activation of fibrogenic pathways (112).
Furthermore, the inhibitory regulation of Tregs favors the
formation of chronic inflammation and contributes to the
persistence of liver fibrosis. Specifically, Tregs suppress NK
cells, M1 KCs, and CD8+ T cells to maintain chronic liver
inflammation and fibrosis (49). Hence, application of drugs
capable of regulating the liver immune microenvironment while
inducing the related cells to support the reversal of liver fibrosis
may represent a new strategy for treating liver fibrosis.

CLINICAL RELEVANCE

The novel immune cells discussed in this review are important
players in the pathogenesis of liver fibrosis. Hence, regulating
their functions may represent a therapeutic strategy for the
treatment of liver fibrosis. Currently, studies have shown that
abrogating Th17/IL-17 signaling alleviates liver fibrosis. For
instance, in Schistosoma japonicum-infected mice, a selective
RhoA-Rho-associated kinase (ROCK) inhibitor (fasudil) limited
liver fibrosis by inhibiting Th17 differentiation and IL-17
production, and upregulating Tregs (113). Moreover, abrogating
inducible co-stimulator (ICOS) signaling reportedly inhibits
Th17 cells, and their related cytokines, thereby reducing
granulomatous inflammation and liver fibrosis around the eggs
in a Schistosoma japonicum infection model (114). Mesenchymal
stem cells have also been reported to restrict liver fibrosis by
inhibiting Th17 cells (115, 116). In addition, miR-29a/miR-652,
1, 25(OH)2D3, as well as certain drugs, such as rapamycin
and tofacitinib, have been shown to attenuate liver fibrosis by
regulating Th17 cells (10, 11, 117, 118). Meanwhile, low dose
IL-2 specifically expands and activates Treg cell populations
thereby controlling autoimmune diseases and inflammation.
Additionally, IL-2 and IL-2 immune complexes promote the
expression of CD39 on hepatic Tregs, which inhibits the
proliferation of CD8+ T cells and reduces the expression of
osteopontin and TNF-α to diminish biliary fibrosis in murine
sclerosing cholangitis (119). Cumulatively, these results provides
a theoretical basis for the treatment of fibrosing cholangiopathies
with low dose IL-2. In addition to limiting liver fibrosis by
targeting the novel immune cells, as described above, they may
also be applied for disease prediction. In fact, γδ T cells gene
signature can predict the overall and recurrence free survival of
patients with HCC. Tumor microenvironments recruit γδ T cells
from peripheral or peritumor regions into tumors to elicit anti-
tumor effects (120). Chronic liver inflammation and fibrosis are
necessary processes in the development of HCC. Therefore, if
we can effectively monitor these novel immune cells, and their
related molecules, as non-invasive diagnostic markers, it will be
of great benefit to patients with chronic liver disease.

CONCLUSIONS

The cellular and molecular mechanisms of liver fibrosis are
currently under intense investigation. Although the reversibility
of liver fibrosis provides an effective early opportunity for
treatment, no ideal anti-fibrotic drug is currently available for
clinical practice. The activation of HSCs constitutes the core
of fibrosis and is regulated by various immune mediators.
Recently, novel immune cells have been discovered whose role
in liver fibrosis has also been gradually recognized (Figure 1).
Additionally, the proportion of regulatory B cells (Bregs) in
peripheral blood has been positively correlated with the stage
of liver fibrosis in HBV patients. Bregs inhibit effector T
cells, however, enhance the function of Tregs to regulate
immune tolerance in HBV-infected patients (121). In addition
to regulating fibrosis by acting on HSCs, other cells also affect
fibrosis controlled by the novel immune subsets and cytokines.
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FIGURE 1 | Novel immune cells and related cytokines regulate liver fibrosis. During the process of liver fibrosis, Th17 (IL-17A and IL-22), MAIT cells (IL-17A), ILC2

(IL-13), ILC3 (IL-17A, IL-22), and γδ T cells (IL-17A) promote fibrosis. MAIT cells can induce myofibroblasts and macrophages to produce IL-6 and IL-8. Tregs inhibit

NK cells directly or indirectly by HSCs. Tregs also suppress KC to produce MMPs by TGF-β. Th22 cells recruits Th17 to the liver through IL-22, CCL6, and CCL20. NK

cells, ILC1 and γδ T cells produce IFN-γ, which limits fibrosis. NK cells also suppress liver fibrosis by inhibiting HSCs. The source of IL-9 and IL-22 have not been

identified. HSCs, hepatic stellate cells; Th, T helper cells; MAIT cells, mucosa-associated invariant T cells; ILC, innate lymphoid cell; NK cells, natural killer cells; KC,

Kupffer cells; IL, interleukin; IFN-γ, Interferon γ; TGF-β, Transforming growth factor β; MMPs, matrix metalloproteinas; RAE-1, Retinoic acid early induced transcript 1;

NKG20, natural killer group 2, member D; TRAIL, tumor necrosis factor-related apoptosis-inducing ligand; FasL, Fas ligand; CCL, CC chemokine ligand; TNF, tumor

necrosis factor; CTLA-4, cytotoxic T lymphocyte antigen 4; MHC A/B, major histocompatibility complex A/B.

For instance, in collaboration with TNF-α, IL-17 promotes
HepG2 cells to produce more periostin, which induces fibroblasts
to synthesize additional type I collagen and aggravate liver
fibrosis (122). IL-17A induces intrahepatic biliary epithelial
cells to undergo epithelial to mesenchymal transition, during
which cells obtain fibroblast-related characteristics to promote
fibrosis in PBC (123). Due to the complex microenvironment
of liver fibrosis, the role of one single cell type cannot

be discussed while ignoring others. For example, changes
in Tregs and Th17 tend to occur simultaneously and are
accompanied by Th1/Th2 shifts in the initial stages of liver
fibrosis. In addition, each type of immune cell produces many
different cytokines, which leads to the diversity of immune
cell function. Fortunately, the application of single-cell RNA
sequencing technology (scRNA-seq) in liver disease enables
us to identify some subsets of cells that are historically
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difficult to isolate (124). In fact, scRNA-seq has identified a
specific subset of macrophages (TREM2+CD9+MNDA+ scar-
associated macrophages) in human fibrotic liver that is primarily
distributed in scarring regions. This subset promotes the
production of collagen and proliferation of HSCs (125). Thus,
these technologies allow us to capture information about key
cell populations and discover new therapeutic targets. The
development of biotechnology will facilitate the identification
of new cell populations involved in liver fibrosis as well as to
elucidate the mechanisms underlying liver fibrosis.
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