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Fine population structure analysis 
method for genomes of many
Xuedong Pan1, Yi Wang1, Emily H. M. Wong2, Amalio Telenti2, J. Craig Venter2 & Li Jin3

Fine population structure can be examined through the clustering of individuals into subpopulations. 
The clustering of individuals in large sequence datasets into subpopulations makes the calculation of 
subpopulation specific allele frequency possible, which may shed light on selection of candidate variants 
for rare diseases. However, as the magnitude of the data increases, computational burden becomes 
a challenge in fine population structure analysis. To address this issue, we propose fine population 
structure analysis (FIPSA), which is an individual-based non-parametric method for dissecting fine 
population structure. FIPSA maximizes the likelihood ratio of the contingency table of the allele counts 
multiplied by the group. We demonstrated that its speed and accuracy were superior to existing non-
parametric methods when the simulated sample size was up to 5,000 individuals. When applied to real 
data, the method showed high resolution on the Human Genome Diversity Project (HGDP) East Asian 
dataset. FIPSA was independently validated on 11,257 human genomes. The group assignment given 
by FIPSA was 99.1% similar to those assigned based on supervised learning. Thus, FIPSA provides high 
resolution and is compatible with a real dataset of more than ten thousand individuals.

Analyses of genetic structure of extant populations shed light on the evolutionary history of our species and 
provide information on etiology of diseases under the interplay of genetic and environmental factors.1–7 For 
example, filtering by the highest allele frequency in any subpopulation of the ExAC dataset is a powerful approach 
in the selection of candidate protein-altering variants for rare diseases8. Recently, studies involving large number 
of genomes or exomes are emerging6,8–10. In fact, the number of whole-genome or whole-exome sequences in 
populations is expected to reach hundreds of thousands in the near future. Thus, a method for analyzing fine 
population structure with a large number of individuals is much needed.

Population structure analysis is a process of inferring individual ancestry from genotypic information11. 
Genetically similar individuals are grouped together, and the proportion of each individual’s ancestries can be 
estimated. In recent decades, the estimation of the contributing ancestries has received much attention, given pre-
vailing admixture in human evolutionary history12,13. Structure is a representative method for inferring ancestry 
proportion. After the introduction of the probabilistic model of Pritchard, Stephens and Donnelly (PSD model)14, 
several methodological improvements have been made to improve the computational efficiency15–19. The most 
recent advance, TeraStructure19, is capable of handling 1012 observed genotypes.

Though the technical advances have enabled proportional ancestry analysis on datasets of millions of individuals,19  
the resolution of the proportional ancestry models may not be as good as that of individual-based analyses, which 
has fewer parameters14.

Individual-based population structure analysis can be non-parametric or parametric. The most widely used20–22 
non-parametric method is principal component analysis (PCA). Through dimension reduction, the top principal 
components (PCs), which explain the majority of the genetic variation among the individuals, are obtained. 
However, the interpretation of the PCs is not always straightforward18. On the other hand, an example of paramet-
ric methods, fineSTRUCTURE23, which has high resolution4,11, is computationally intensive because of its O(Nind

2 ) 
complexity, where Nind is the sample size of the data.

In an effort to overcome the computational burden of fine population structure analysis when the sample 
size is relatively large, we propose a new route to explore fine population structure, which is referred to as Fine 
Population Structure Analysis (FIPSA). FIPSA provides optimized speed and resolution by linkage disequilibrium 
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(LD)-based pruning of single nucleotide variants (SNVs), and is compatible with a real dataset of more than ten 
thousand individuals.

Methods
Fine Population Structure Analysis (FIPSA) attempts to determine the best individual assignment by maximizing 
the genetic differences among the subgroups. We test the performance of the absolute value of the allele frequency 
differences between sub groups (DAF), Fst and likelihood ratio (LR) on simulated datasets (details in Results and 
Discussion) and select LR as the statistic to describe genetic differences among the subgroups. We then illustrate 
how to use likelihood ratio (LR) to describe genetic differences among subgroups. Then we describe how to find 
the best partition for all individuals by maximizing the LR. Finally, we propose an ad-hoc approach so that the 
best subpopulation count (K) is chosen.

Calculating LR.  We first consider a situation of one polymorphic site with n alleles. If we want to classify 
all individuals to K groups based on the genotype of this loci, first, an allele count table of n by K must be made 
(Table 1). Likelihood ratio is calculated following equation (1).
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The LR changes when the individual group assignment changes. By maximizing the LR, the best group assign-
ment is determined.

For multiple loci that are mutually independent, let the loci count of a dataset be S. Then, the total LR of this 
dataset (denoted as LRu) can be calculated according to equation (2).
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The existence of LD would violate the independence assumption of the LR calculation. Thus, pruning SNVs to 
reduce LD is suggested.

Finding the best group assignment.  Given the genotypes for a set of individuals, the LR corresponding 
to a certain state of individual assignment could be calculated. Let X represent the genotype, and Zbest represent 
the best individual assignment which can be estimated using equation (3).

= |Z argmax LR X Z{ ( )} (3)best

The optimal solution of Z corresponds to the absolute maximum value of the LR, which can be solved using brute 
force methods. However, in practice, the computational burden of brute force methods becomes severe even for 
datasets with 30 individuals.

To improve computational efficiency, we implemented a simulated annealing based approach in order to 
search for the maxima of the LR. Considering a Markov chain with a stationary distribution π = −( )E ke( )

E
T , and 

let = − |E LR X Z( ), as described by Kirkpatrick et al.24, the maxima of the LR(X|Z) is reached when the chain 
described in equation (4) converges to equilibrium.
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For each Zi ∈ Z in equation (4), the neighbors of Zi (denoted as ′Zi ) are a set of K elements, which differ from Zi by 
the group assignment of a randomly chosen individual r ( ′ = …z K1, 2, ,ir ). The initial grouping state of the 
Markov chain (denoted as Z0) is generated by randomly assigning each individual to K subgroups. For any state 
Zi on the Markov chain, let zij be the group assignment of individual j. We randomly choose one individual r, of 
which the group assignment is zir. According to the property of the Boltzmann distribution, it is easy to show that 

Allele 1 count Allele 2 count … Allele n count

Group 1 O11 O12 O1n

Group 2 O21 O22 O2n

…

Group K OK1 OK2 OKn

Table 1.  Calculating LR for one loci. Table of an allele cross group for one loci, assuming n alleles for the loci 
and the grouping of individuals to K clusters.
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the conditional distribution for individual r’s group assignment follows equation (5), where n is the total individ-
ual count and i is the index of discrete time.
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Thus, the probability of changing zir to ′zir follows equation (6), which defines the probability of jumping from 
the current state to its neighborhood state.
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Then the group assignment for each individual is updated using a hill-climbing process, during which the LR 
gradually increases. After a sufficient number of iterations, the maximum LR value and its corresponding group-
ing state Z is recorded, which represents the best individual assignment (Zbest).

Testing the existence of population structure.  A non-homogeneous population can be partitioned 
into at least two subpopulations (i.e. K = 2). Thus, we here propose a permutation approach for K = 2 to test the 
existence of population structure. Assuming independence for each SNV, we randomly shuffle alleles among 
all of the individuals in order to break down existing population structure. Repeating this process numerous 
times, typically twenty, results in permutated datasets without population structure. FIPSA is then run for K = 2 
on both the permutated datasets and the original dataset. If the LR for the original dataset is larger than the LR 
for the permutated datasets, it indicates that population structure exists (details in Supplementary Methods and 
Supplementary Discussion).

Choice of K.  If population structure exists, we then begin to resolve the structure. Many ideas have been 
proposed for the choice of K. As a representative non-parametric method, Eigenstrat20 implemented a TW test 
in order to determine K while the classical model-based Structure14 uses BIC (Bayesian information criteria) 
for the choice of K. Recently, Lawson et al.23 successfully incorporated K into the likelihood and chose K via the 
RJMCMC (reverse jump MCMC) technique. Despite the frequent attention given to the matter, the choice of K 
has been notoriously difficult. We strongly suggest setting the K using biological knowledge. At the same time, we 
propose an ad-hoc approach to select K. More discussion on choice of K can be found in Supplementary.

Maximum informative K (Kmax_info).  We calculate the second derivative of the LR on K (SOD(K)) as

= − − + +SOD K LR K LR K LR K( ) ( ) ( ( 1) ( 1))/2

Based on SOD(K), we define Kmax_info following equation (7). The characteristic of Kmax_info is reflected by the 
sudden drop in the fluctuation of SOD(K) over K, and can be summarized by the following two criteria:

	 1)	 globally, SOD(Kmax_info) ≫ SOD(K), when K > Kmax_info
	 2)	 locally, SOD(Kmax_info) ≫ SOD(Kmax_info+1)

These two criteria are then combined in order to get the discriminant for Kmax_info.
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Results
Choosing LR as the statistic to describe genetic differences among sub groups.  To describe 
the genetic differences among subgroups, a straightforward way is to calculate the absolute value of the allele 
frequency differences between subpopulations, which we denote as DAF (delta allele frequency). This statistic 
was tested on simulated data containing two subpopulations, and it was shown to be informative (Supplementary 
Fig. 1, simulation details are in Supplementary Discussion). However, this statistic could not be directly extended 
to situations in which there were more than two subpopulations; the ‘workhorse’5 Fst does not have this draw-
back. In addition, Fst naturally measures the divergence of subpopulations. Thus, we further tested Fst25 on the 
same simulated data. Unexpectedly, the performance of Fst was shown to be poor (Supplementary Fig. 1). Finally, 
inspired by the McDonald-Kreitman test, which assesses the significance of the likelihood ratio (LR) of a contin-
gency table in which SNV counts classified by a functional annotation cross SNV counts classified by evolutionary 
history, we chose the LR to describe the genetic differences among subpopulations. On simulated data, maximiz-
ing the LR resulted in better performance than what was shown for maximizing the two other popular statistics 
(Supplementary Fig. 1), Fst and DAF. We also discussed other statistics in the Discussion section.

Simulated data.  For comparison, we tested the ChromoPainter unlinked model and fineSTRUCTURE 
(denoted as FS-CPU), K-means (cascadeKM function in R “vegan” package26) and FIPSA in parallel (details in 
Supplementary Results) on the same simulated datasets. We simulated datasets with 500 individuals11 and 5,000 
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individuals respectively, using the demographic model described in Supplementary Fig. 2 and Supplementary 
Results. Within each scenario, the simulated datasets comprised independent SNVs. By adding more independ-
ent SNVs into the simulated datasets, the classification accuracy of the three methods improved. We stopped add-
ing SNVs when the performance of the methods plateaued. Finally, the number of SNVs in the simulated datasets 
ranged from 3,000 to 25,000. The performance of the three methods was measured by Adjusted Random Index 
(ARI), which was a value ranges from 0 to 1. A value of 1 means the inferred grouping is the same with the truth. 
A value of 0 means the inferred grouping is completely random compared with the truth.

Scenario: 500 individuals.  For each SNV count, five datasets were randomly generated in order to give the 
mean and standard deviation of accuracy (Fig. 1). The K-means method performed the worst in this situation. 
The low ARI of the K-means was a result of the choice of K. Although the Calinski criteria is shown to be the 
best criteria for K-means on simulated data, it repeatedly failed to make the right choice in the current scenario. 
FineSTRUCTURE was shown to be better than FIPSA when the information in the dataset was relatively insuf-
ficient (SNV count <10,000). Compared to the situation in which it was assumed K was known, the choice of K 
negatively affected the performance of FIPSA. However, when information in the dataset was relatively abundant 
(SNV count > = 10,000), FIPSA was shown to slightly outperform fineSTRUCTURE, indicating that the choice of 
K is relatively good when sufficient information is present.

Scenario: 5,000 individuals.  The size of each subpopulation increased from 100 to 1,000, and we applied 
the same procedure. Even with a high number of burn-in iterations and sample iterations (fineSTRUCTURE -x 
100000 –y 100000), fineSTRUCTURE failed in scenarios with a large sample sizes (Fig. 2). The chosen K for fine-
STRUCTURE was always above one hundred.

In this situation, assuming K was unknown, the performance of FIPSA was even better than what was shown 
for a small sample size, indicating that FIPSA favors scenarios with a large sample size (Fig. 3).

According to the definition of the likelihood ratio for FIPSA (equation (2)), it is evident that under certain 
degrees of freedom, the larger the sample size is, the bigger the delta of the LR of the different group assignments 
is. Thus, FIPSA gains more power as the sample size increases. Also, there is a larger standard deviation in the 
accuracy in the 500 individual scenario as compared with the 5,000 individual scenario, indicating that the choice 
of K performs better in a ten-fold sample size scenario.

Figure 1.  Three methods’ comparison on simulated dataset with 500 individuals. ARI (adjusted random index) 
against the SNV count, assuming K was unknown. Five replicates were used to calculate the standard deviation 
of ARI.

Figure 2.  Three methods’ comparison on simulated dataset with 5,000 individuals. ARI (adjusted random 
index) against SNV count, assuming K was unknown. Five replicates were used to calculate the standard 
deviation of ARI.
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In conclusion, when the sample size reaches 5,000, FIPSA performed the best on unlinked data among the 
three methods.

Speed evaluation.  We compared runtime performance of K-means, fineSTRUCTURE and FIPSA (details in 
Supplementary Results) for the 500- and 5,000-individual simulated datasets, respectively (Fig. 4). Runtime (in 
minutes) is reported based on performance on a single thread.

Figure 4 shows that the K-means is fast. However, the K-means shows poor accuracy in both scenarios (Figs 1 
and 2), mostly as a result in the choice of K. The inverse performance between fineSTRUCTURE and FIPSA on the 
different sample sizes indicates that the two methods favor different parametric spaces in terms of speed. Let Nind 
be the individual count and NSNP be the SNV count of a dataset. Comparing Fig. 4a with Fig. 4b, the runtime of 
fineSTRUCTURE increased by about 100 times as the sample size increased by 10 times, consistent with its 
O(Nind

2 ) complexity. However, its complexity is not dependent on NSNP; the SNV count only affected the speed of 
choromopainter, rather than fineSTRUCTURE. On the contrary, the runtime of FIPSA was approximately propor-
tional to Nind and NSNP both, rendering its relative speed advantage in the huge sample size scenario over the 
pairwise distance based methods. As a result, fineSTRUCTURE is faster than FIPSA in scenarios in which there is 
only a moderate sample size (several hundred individuals), and slower in scenarios in which there is a large sam-
ple size (several thousand individuals). However, the results of the evaluation of speed may be very different 
under other simulation parameters rather than the ones used here. For example, FIPSA needs more iterations to 
converge when K is big (data not shown).

In conclusion, FIPSA showed an advantage in speed compared to fineSTRUCTURE when the sample size was 
5,000, and the K was 5. The difference is expected to be increasingly significant when sample size is increased 
further.

Real data.  The HGDP27 East Asian and European datasets were used as representative datasets with known 
fine population structure for testing. As an independent validation, Human Longevity Inc. tested FIPSA on a large 
whole-genome sequencing dataset with 11,257 human genomes.

Figure 3.  Comparison of FIPSA’s performance between 500 individual scenario and 5,000 individual scenario. 
ARI (adjusted random index) against the SNV count, the 500 individual scenario compared with the 5,000 
individual scenario.

Figure 4.  Time consumption against the SNV count for the three methods. (a) 500 individual scenario; (b) 
5,000 individual scenario. Details of parameters are in Supplementary Results.
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HGDP East Asian dataset.  Lawson et al. has systematically evaluated the performance of the current rep-
resentative individual-based methods on the HGDP East Asian dataset11, the population structure of which is 
fine-scale. On this dataset, after phasing and imputing the 140 whole-genome SNV array data using shapeit228,29, 
we compared the performance of the choromopainter unlinked version plus fineSTRUCTURE (FS-CPU) with 
FIPSA in Fig. 5.

Figure 5.  Comparison of fineSTRUCTURE (FS-CPU) and FIPSA’s clustering result on the HGDP East 
Asia dataset. Left column is fineSTRUCTURE with the ChromoPainter unlinked version (FS-CPU) result, 
with K = 16; Right column is FIPSA’s result, with Kmax_info = 18. Calibration on the y axis corresponds to the 
individual count.
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The general classification of Dai, Miao, She, Tu, Naxi, Yi and Japanese were consistent between 
fineSTRUCTURE-ChromoPainter unlinked (FS-CPU) and FIPSA, with the only minor difference being that 
FIPSA showed finer population structure for Dai and Tu, while FS-CPU showed a clearer picture of She and 
Yi. Both methods separated the same Yi individual from the other Yi individual into a Han/Tujia or Han/Tujia/
Han-NChina cluster. The clustering of Han, Tujia and Han-NChina was different between the two methods, 
although both methods grouped these individuals into four clusters. The results of FS-CPU were clearer than the 
results of FIPSA for Tujia and Han-NChina, where both populations were grouped into fewer clusters than when 
using FIPSA. FIPSA grouped the Han individuals into only two clusters; in contrast, FS-CPU grouped them into 
multiple clusters. The level of consistency between the two methods depended on the degree of differentiation 
between the populations. For a relatively strong signal, like the separation of Japanese from Chinese populations, 
both methods gave comparable results. For moderately strong signals, like the clustering of Dai, Miao, She, Naxi, 
Yi, Tu, both methods gave the same clustering boundary for each population, though the classifications within the 
populations had minor differences. For the more subtle structure of Han, Tujia and Han-NChina, the clustering 
results were less consistent.

HGDP European dataset.  The same approach was applied to the HGDP European dataset, which contained 
157 individuals from 8 populations. The clustering results of FS-CPU and FIPSA is shown in Supplementary 
Fig. 3. FS-CPU was able to separate French from Italian individuals, while FIPSA was able to identify a unique 
Tuscan group.

The deep sequencing of 10,000 human genomes.  Human Longevity Inc. independently validated 
FIPSA’s performance on 162,997 SNVs’ genotypes from 11,257 individuals using ADMIXTURE as described by 
Telenti et al.10. Twenty replicates on K = 6 were performed. Each replicate was run on a single thread, and they 
took 24 to 40 hours. The best group assignment given by FIPSA had a 99.1% concordance with the assignment 
based on supervised learning: European (EUR), African (AFR), Central-South Asian (CSA), East Asian (EAS), 
Native American (AMR) and Middle Eastern (MDE). The 2,385 admixed individuals (ADMIX) identified by 
ADMIXTURE16 were not considered in calculating the concordance (Table 2). The columns of Table 2 are group 
assignments based on supervised learning using ADMIXTURE. The rows of Table 2 are group assignments given 
by FIPSA.

In conclusion, FIPSA provided high resolution on the HGDP East Asian and European datasets and was com-
putationally efficient even for a dataset with 11,257 individuals.

Discussion
FIPSA was designed to group individuals by maximizing the genetic differences among subpopulations. We used 
the likelihood ratio as the statistic to measure genetic difference, and we implemented a simulated annealing 
based algorithm to determine the best group assignment. On a representative simulated fine population struc-
ture scenario proposed by Lawson et al.11, FIPSA showed considerable power in detecting the true structure as 
compared to existing non-parametric methods. Specifically, the resolution of FIPSA increased as sample size 
increased, out-performing representative non-parametric methods on simulated data. The runtime was better 
than other non-parametric methods when the sample size was in the thousands. Unlike pairwise-distance based 
methods, in which the complexity is the square of the sample size, the performance of FIPSA is linearly pro-
portional to the sample size. Therefore, it is particularly suited for large datasets. FIPSA is also easy to use. Few 
parameters are needed, except for the restart time, which can be easily tuned. FIPSA tolerates missing values. It 
is also worth noting that theoretically, the number of allele per loci is flexible for FIPSA. Thus, in the future, it is 
possible for FIPSA to work on multi-allelic polymorphisms such as microsatellite data, which is widely used in 
forensic science.

Pritchard et al.14 proposed the PSD model, which has had numerous successes in the past 15 years5,30,31. Using 
the same model, Lawson et al. developed fineSTRUCTURE23, which has a higher resolution and relatively good 
runtime performance. However, the computational burden may still be a concern for large datasets. In order to 
reduce the computational burden for fine population structure analysis in large datasets, we tried to describe 
population structure in a simpler perspective.

We used LR to describe population structure, which capture the degree of dependency of allele counts clas-
sified by the allele type on the allele counts classified by the population subgroup. The stronger the population 

ADMIX AFR AMR CSA EAS EUR MDE

FIPSA Group 1 (EAS) 22 0 0 0 236 0 0

FIPSA Group 2 (AFR) 385 1234 0 0 0 0 0

FIPSA Group 3 (CSA) 104 0 0 280 0 0 0

FIPSA Group 4 (MDE) 777 0 0 0 0 77 265

FIPSA Group 5 (AMR) 435 0 132 0 0 0 0

FIPSA Group 6 (EUR) 662 0 0 0 0 6648 0

Table 2.  FIPSA’s individual assignment on 11,257 deeply sequenced human genomes. FIPSA’s individual 
assignment for K = 6 on 162,997 SNVs from 11,257 individuals (rows) and the group assignment based on 
super-populations described by the 1000 Genomes Project and Human Genome Diversity Project (column). 
AFR: African; AMR: American; CSA: Central-South Asian; EAS: East Asian; EUR: European; MDE: Middle 
Eastern.
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structure is, the higher the dependency of those two classifications is shown to be. However, the LR may not 
always be the perfect choice because it may have less power when working on scenarios with extremely imbal-
anced subpopulation sample sizes. Also, there could be other options, such as choosing the group assignment 
with the most significant p-value in Fisher’s exact test or the mean number of pairwise differences between pop-
ulations32. However, the excessive computational burden of the alternative methods on big data makes these 
attempts unfeasible.

To improve speed, we applied LD-based SNV pruning before running FIPSA, which implies that it may not 
perform as well as other methods that do take advantage of the LD information, such as FS-CPL (ChromoPainter 
linked and fineSTRUCTURE).

For relatively small datasets, existing methods may perform better than FIPSA; the purpose of proposing 
this method was to find a possible solution to explore fine population structure in large datasets. On HGDP East 
Asian dataset, FIPSA had relatively good resolution and was comparable to FS-CPU. At the same time, FIPSA was 
efficient on a real dataset with 162,997 genotypes from 11,257 individuals. FIPSA should also be able to work on 
datasets with 100K individuals at 100K SNVs. However, FIPSA does not take consideration of ancestral propor-
tion. Thus, it is less useful for admixture analysis. Also, FIPSA compromises resolution for speed, by LD based 
SNV pruning.

The FIPSA software is available at: https://github.com/gelu0/FIPSA.git.
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