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Summary

Several age-related traits are associated with shorter

telomeres, the structures that cap the end of linear chro-

mosomes. A common polymorphism near the telomere

maintenance gene TERT has been associated with sev-

eral cancers, but relationships with other aging traits

such as physical capability have not been reported. As

part of the Healthy Ageing across the Life Course (HAL-

Cyon) collaborative research programme, men and

women aged between 44 and 90 years from nine UK

cohorts were genotyped for the single-nucleotide poly-

morphism (SNP) rs401681. We then investigated relation-

ships between the SNP and 30 age-related phenotypes,

including cognitive and physical capability, blood lipid

levels and lung function, pooling within-study genotypic

effects in meta-analyses. No significant associations

were found between the SNP and any of the cognitive

performance tests (e.g. pooled beta per T allele for word

recall z-score = 0.02, 95% CI: )0.01 to 0.04, P-value =

0.12, n = 18 737), physical performance tests (e.g. pooled

beta for grip strength = )0.02, 95% CI: )0.045 to 0.006,

P-value = 0.14, n = 11 711), blood pressure, lung function

or blood test measures. Similarly, no differences in

observations were found when considering follow-up

measures of cognitive or physical performance after

adjusting for its measure at an earlier assessment. The

lack of associations between SNP rs401681 and a wide

range of age-related phenotypes investigated in this large

multicohort study suggests that while this SNP may be

associated with cancer, it is not an important contributor

to other markers of aging.

Key words: aging; cognition; middle-aged; physical;

telomere.

Introduction

Aging is caused by the accumulation of molecular and cellular

damage over time resulting in frailty and disease (Kirkwood,

2008). One likely source is from damage to DNA reflected in

telomere shortening (Chan & Blackburn, 2004; Kirkwood,

2008). Telomeres are formed from a repetitive DNA sequence

(TTAGGG 5¢ to 3¢) and a variety of proteins, and are located on

the end of linear chromosomes. They protect against the loss of

genetic material during cell division (Calado & Young, 2009).
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Human telomerase is an enzyme composed of two protein com-

ponents: telomerase reverse transcriptase (encoded by the TERT

gene) and dyskerin (encoded by DKC1), and a RNA component

(encoded by TERC) that elongates telomeres by adding the

telomeric repeats to the chromosome ends (Blasco, 2005; Co-

hen et al., 2007; Calado & Young, 2009). However, owing to

low telomerase activity in most normal human somatic cells

(Blasco, 2005), telomeres undergo attrition with losses in the

range of 20–70 bp per year estimated in adults (Benetos et al.,

2001; Canela et al., 2007; Codd et al., 2010). Shorter telomere

length has been associated with several age-related conditions

(Aviv, 2006), such as hypertension (Huda et al., 2007), coronary

heart disease (Brouilette et al., 2007), dementia (Martin-Ruiz

et al., 2006), premature aging syndromes (Blasco, 2005) and

mortality (Bakaysa et al., 2007). Although it remains unclear

whether telomere shortening is a cause or simply a consequence

of aging (Calado & Young, 2009), these associations have led to

the widespread notion that telomere shortening represents a

mechanism for aging in general.

While it has been suggested that oxidative stress and inflamma-

tion are contributors to telomere loss (von Zglinicki, 2002; Valdes

et al., 2005; Ornish et al., 2008; Starr et al., 2008), telomere

length is highly heritable with family studies providing estimates

between 35% and 80% (Slagboom et al., 1994; Bischoff et al.,

2005; Vasa-Nicotera et al., 2005; Bakaysa et al., 2007). As a

putative polygenic trait, several loci have been implicated (Vasa-

Nicotera et al., 2005; Andrew et al., 2006; Mangino et al., 2008,

2009; Starr et al., 2008; Levy et al., 2010), with some including

genes known to be directly involved in telomere maintenance in

humans (Codd et al., 2010). In addition to telomerase activity

(Ludlow et al., 2008) and telomere length (Matsubara et al.,

2006a,b), single-nucleotide polymorphisms (SNPs) located in the

TERT-CLPTM1L locus have been associated with exceptional lon-

gevity (Atzmon et al., 2010), coronary artery disease (Matsubara

et al., 2006a), idiopathic pulmonary fibrosis (Mushiroda et al.,

2008), glioma (Shete et al., 2009), red blood cell count (Kamatani

et al., 2010), survival in patients with lung cancer (Catarino et al.,

2010) and several cancers (Ruiz-Llorente et al., 2007; McKay

et al., 2008; Andrew et al., 2009; Broderick et al., 2009; Choi

et al., 2009; Hosgood et al., 2009; Landi et al., 2009; Van Dyke

et al., 2009; Zienolddiny et al., 2009; Hsiung et al., 2010; John-

atty et al., 2010; Prescott et al., 2010; Shen et al., 2010; Turnbull

et al., 2010; Wang et al., 2010). Specifically, relationships have

been reported between the C allele of a common, intronic poly-

morphism in CLPTM1L (rs401681) and shorter telomere length in

elderly females (Rafnar et al., 2009), increased PSA levels

(Gudmundsson et al., 2010), increased basal cell carcinoma (Raf-

nar et al., 2009; Stacey et al., 2009), prostate (Rafnar et al.,

2009), cervical (Rafnar et al., 2009), bladder (Rothman et al.,

2010) and lung (Wang et al., 2008; Rafnar et al., 2009; Kohno

et al., 2010; Miki et al., 2010) cancer risk and a reduced risk of

melanoma (Stacey et al., 2009) and pancreatic (Petersen et al.,

2010) cancer, although there is a lack of association with breast

cancer (Rafnar et al., 2009; Pooley et al., 2010). Over-expression

of CLPTM1L (cisplatinum resistance related protein) has been

associated with apoptosis (Yamamoto et al., 2001). It should be

noted that cancer incidence increases steeply with age (Nordling,

1953; DePinho, 2000; Cancer Research UK, 2010).

We therefore hypothesized that polymorphisms in the TERT-

CLPTM1L locus could be related to other age-related pheno-

types, such as lower physical and cognitive capability, traits that

are known to have a genetic component (McClearn et al., 1997;

Tiainen et al., 2004; Volk et al., 2006; Matteini et al., 2010). To

investigate this, we analysed data from 25 774 participants

aged between 44 and 90 from nine UK cohorts as part of the

Healthy Ageing across the Life Course (HALCyon; http://

www.halcyon.ac.uk/) collaborative research programme. The

HALCyon programme aims to understand three components of

healthy aging: (i) physical and cognitive capability; (ii) psycholog-

ical and social wellbeing; and (iii) the underlying biology. The

well-established cohorts are all appropriate for investigating our

hypothesis, as all studies measured markers of physical or cogni-

tive capability or biological functioning in older adults. In this

exploratory study, we genotyped participants for the SNP

rs401681 and conducted analyses within the cohorts as well as

meta-analyses to assess associations between genotype and 30

Table 1 Summary of sex, age and genotype frequencies by cohort

Cohort Male (%) Age* in years, median (range)

C ⁄ C
n (%)

C ⁄ T
n (%)

T ⁄ T
n (%) Total (n)

Boyd Orr 46 70 (64 to 82) 227 (32.7) 341 (49.1) 127 (18.3) 695

CaPS 100 57 (47 to 67) 414 (29.9) 698 (50.5) 271 (19.6) 1383

ELSA 46 65 (52 to 90+) 1672 (30.7) 2709 (49.7) 1067 (19.6) 5448

HAS 61 67 (63 to 73) 159 (30.2) 267 (50.7) 101 (19.2) 527

HCS 53 66 (59 to 73) 905 (32.3) 1400 (49.9) 501 (17.9) 2806

LBC1921 42 79 (77 to 80) 178 (34.4) 249 (48.2) 90 (17.4) 517

NCDS 51 44 (44 to 45) 2317 (31.6) 3587 (49.0) 1417 (19.4) 7321

NSHD 50 53 780 (30.3) 1277 (49.6) 519 (20.1) 2576

Whitehall II 76 59 (50 to 73) 1467 (32.6) 2200 (48.9) 834 (18.5) 4501

Total 57 56 (44 to 90+) 8119 (31.5) 12 728 (49.4) 4927 (19.1) 25 774

CaPS, Caerphilly Prospective Study; ELSA, English Longitudinal Study of Ageing; HAS, Hertfordshire Ageing Study; HCS, Hertfordshire Cohort Study; NCDS,

National Child Development Study; NSHD, National Survey of Health and Development.

*Age at phase from which the majority of variables are taken, i.e. Boyd Orr: III; CaPS: II; ELSA: II; HAS: I; HCS: I; LBC1921: I; NCDS: Biomedical Survey

(2002); NSHD: 1999 Collection; Whitehall II: VII.
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age-related phenotypes including word recall score, grip

strength, lung function and cardiometabolic biomarkers. We

believe this to be the first report of an investigation between a

SNP in this locus and such traits.

Results

Cohort summaries and genotyping quality

Successful genotyping for SNP rs401681 and relevant pheno-

types were available for a total of 25 774 adults aged between

44 and 90 years old (Table 1). The quality of the genotyping

was good and consistent across all nine studies, with similar fre-

quencies, call rates exceeding 97% and the HWE condition

being met (P-value ‡0.3).

Associations between genotype and phenotypes

Minor allele frequencies (MAF) were tabulated by sex, 5-year

age bands (Table S1 in Supporting Information), cigarette smok-

ing status and physical activity (data not shown) to identify pos-

sible confounders of genotype effect on the outcome variables;

no associations were observed with the MAF so such variables

were not included in the regression models.

Table 2 shows there was no evidence of any associations

between the genotype and any of the cognitive test scores in

the meta-analyses (all P-values >0.1). Results for the genotypic

associations were similar in the within-study analyses investigat-

ing cognition scores in later phases adjusting for score at an ear-

lier phase (data not shown). Significant heterogeneity between

subgroups was only observed for AH4 analysed by sex (Fig. S2b

in Supporting Information), which was mainly driven by White-

hall II (interaction P-value = 0.0027), although this observation

was not seen for any other phenotype.

No genotypic associations were observed for any of the physical

capability measures in the meta-analyses (Table 3) (all P-values

>0.1). In addition, there was no evidence of associations with grip

strength in the follow-up phases adjusting for its measure at a pre-

vious phase.

Table 4 and Table S2 (Supporting Information) show no asso-

ciations with BMI, waist–hip ratio (WHR) or the measures of bio-

logical function on the pooled analyses (all P-values >0.06).

There were no associations between genotype and MI,

angina, diabetes or stroke on the pooled data (Table 5) (all P-val-

ues >0.1). There was some evidence of an association between

the T allele and lower MI risk in Whitehall II (P-value = 0.005),

although this was not seen in the other studies.

There was no evidence in English Longitudinal Study of Age-

ing (ELSA) that the effects of genotype differed in individuals

aged below 70 years compared with those aged at least

70 years (data not shown), except for glucose (interaction P-

value = 0.038), although the association was not significant in

either age group.

In only a small number of tests did the full genotype model

represent a significantly better fit than the per allele model: AH4

score in Hertfordshire Ageing Study (HAS), grip strength in

LBC1921, chair rises in ELSA, BMI in HAS and Hertfordshire

Cohort Study (HCS), SBP and triglycerides in NSHD, MI in Caer-

philly, total cholesterol in HCS and NCDS, and stroke in HCS.

Forest plots for the meta-analyses are available in the Supporting

Information.

Discussion

We investigated relationships between SNP rs401681 in the

TERT-CLPTM1L locus and 30 age-related phenotypes in nine UK

cohorts of 25 774 older adults. To our knowledge, this is the

first time that this SNP has been examined with age-related

traits such as physical and cognitive capability. No associations

were found between genotype and any of the investigated

traits on the pooled analyses, even before correcting for multi-

ple testing. Also, no relationship was observed between geno-

type and age group, and although 93% of participants in our

analysis were younger than 75 years, preventing an investiga-

tion into mortality, this is consistent with an observed lack of

association with longevity (Rafnar et al., 2009). These findings

suggest that this variant is not an important contributor to a

wide range of aging traits, despite being associated with sev-

eral cancers (Wang et al., 2008; Rafnar et al., 2009; Stacey

et al., 2009; Kohno et al., 2010; Miki et al., 2010; Petersen

et al., 2010).

The number of investigations into the relationships between

SNPs in the locus and cancer types is growing. The findings

from studies examining rs401681 have been particularly inter-

esting, with its C allele being related to an increased risk of

basal cell carcinoma [odds ratio (OR): 1.20, 95% CI: 1.13–1.27

(Stacey et al., 2009)], lung [OR: 1.15, 95% CI: 1.10–1.22 (Raf-

nar et al., 2009)], bladder [OR: 1.11, 95% CI: 1.07–1.16 (Roth-

man et al., 2010)], prostate [OR: 1.07, 95% CI: 1.03–1.11

(Rafnar et al., 2009)] and cervical [OR: 1.31, 95% CI: 1.03–1.32

(Rafnar et al., 2009)] cancer. However, the same allele appears

to protect against melanoma [OR: 0.86, 95% CI: 0.81–0.91

(Stacey et al., 2009)] and pancreatic cancer [OR (authors’ con-

version): 0.84, 95% CI: 0.79–0.90 (Petersen et al., 2010)].

Meanwhile, the evidence for an association with colorectal (Raf-

nar et al., 2009; Pooley et al., 2010) and endometrial (Rafnar

et al., 2009; Prescott et al., 2010) cancer has been mixed, and

there is strong evidence against any association with breast can-

cer (Rafnar et al., 2009; Pooley et al., 2010). A summary of

these associations is given in Table S3 (Supporting Information).

Various hypotheses about how variants in the locus may affect

cancer risk have been proposed (Baird, 2010).

While in our population-based cohorts there were only 1076

cancer cases spread across numerous different tumour types,

we had good statistical power to investigate associations with

several other age-related phenotypes. Sample size calculations

for the quantitative traits estimated that around 4500 individu-

als would be required to detect a beta coefficient of 0.06 z-score

units with 80% power at the 5% significance level. As an exam-

ple, such a difference would correspond to a difference in AH4
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score between the two homozygote groups of around 1.2

points, assuming a standard deviation of 10. For most of the

phenotypes we had sufficient power to detect differences as

small as this, allowing us to conclude that associations between

rs401681 and these traits are either very small or there are no

associations.

Given that the C allele is associated with an increased risk of

various common cancers and that the incidence of cancers gen-

Table 5 Health history by genotype and cohort

Variable Cohort

C ⁄ C
n (%)*

C ⁄ T
n (%)*

T ⁄ T
n (%)*

Total

n (%)* OR (95% CI)† P-value

Het

P-value

MI Boyd Orr 10 (4.4) 20 (5.9) 10 (7.9) 40 (5.8) 1.362 (0.866–2.142) 0.18 0.08

CaPS 60 (14.7) 126 (18.3) 33 (12.4) 219 (16.1) 0.953 (0.774–1.173) 0.65

ELSA 87 (5.2) 146 (5.4) 52 (4.9) 285 (5.2) 0.976 (0.823–1.157) 0.78

HAS 15 (9.7) 21 (8.0) 10 (10.2) 46 (8.9) 1.004 (0.648–1.555) 0.99

Whitehall II 52 (3.8) 48 (2.3) 15 (1.9) 115 (2.7) 0.673 (0.511–0.888) 0.0050

Pooled [224 ⁄ 3830] [361 ⁄ 6053] [120 ⁄ 2338] [705 ⁄ 12 221] 0.936 (0.782–1.119) 0.47

Angina Boyd Orr 26 (13.1) 34 (11.9) 10 (9.7) 70 (11.9) 0.857 (0.597–1.231) 0.40 0.78

CaPS 48 (20.6) 83 (21.1) 33 (21.2) 164 (20.9) 1.018 (0.796–1.303) 0.89

ELSA 160 (9.6) 237 (8.8) 94 (8.8) 491 (9.0) 0.950 (0.832–1.085) 0.45

HAS 21 (13.5) 27 (10.3) 15 (15.2) 63 (12.2) 1.036 (0.708–1.514) 0.86

Whitehall II 65 (4.7) 96 (4.6) 25 (3.2) 186 (4.4) 0.852 (0.689–1.054) 0.14

Pooled [320 ⁄ 3649] [477 ⁄ 5733] [177 ⁄ 2212] [974 ⁄ 11 594] 0.937 (0.852–1.031) 0.18

Diabetes Boyd Orr 12 (9.2) 17 (9.0) 10 (14.7) 39 (10.1) 1.286 (0.804–2.057) 0.29 0.88

CaPS 31 (13.4) 49 (12.3) 25 (16.0) 105 (13.4) 1.099 (0.818–1.475) 0.53

ELSA 129 (7.7) 186 (6.9) 80 (7.5) 395 (7.3) 0.973 (0.840–1.126) 0.71

HAS 15 (10.1) 22 (8.9) 9 (9.3) 46 (9.3) 0.946 (0.612–1.461) 0.80

HCS 60 (6.7) 79 (5.7) 33 (6.7) 172 (6.2) 0.974 (0.779–1.217) 0.81

LBC1921 8 (4.5) 13 (5.2) 3 (3.3) 24 (4.6) 0.921 (0.511–1.661) 0.78

NCDS 38 (1.7) 66 (1.9) 21 (1.5) 125 (1.8) 0.971 (0.755–1.249) 0.82

NSHD 28 (3.6) 34 (2.7) 13 (2.5) 75 (2.9) 0.812 (0.583–1.131) 0.22

Whitehall II 100 (6.8) 126 (5.7) 49 (5.9) 275 (6.1) 0.907 (0.761–1.081) 0.27

Pooled [421 ⁄ 7750] [592 ⁄ 12 127] [243 ⁄ 4702] [1256 ⁄ 24 579] 0.963 (0.887–1.045) 0.36

Stroke Boyd Orr 5 (3.8) 10 (5.4) 3 (4.4) 18 (4.7) 1.118 (0.571–2.188) 0.74 0.86

CaPS 42 (10.3) 79 (11.5) 28 (10.5) 149 (11.0) 1.023 (0.801–1.306) 0.86

ELSA 69 (4.1) 92 (3.4) 35 (3.3) 196 (3.6) 0.876 (0.713–1.076) 0.21

HAS 6 (3.9) 6 (2.3) 3 (3.0) 15 (2.9) 0.814 (0.383–1.729) 0.59

HCS 44 (4.9) 42 (3.0) 26 (5.2) 112 (4.0) 0.963 (0.733–1.266) 0.79

Pooled [166 ⁄ 3261] [229 ⁄ 5235] [95 ⁄ 1996] [490 ⁄ 10 492] 0.943 (0.827–1.076) 0.38

CaPS: Phase V; Boyd Orr: angina Phase II.

Het, heterogeneity; MI, myocardial infarction; CaPS, Caerphilly Prospective Study; ELSA, English Longitudinal Study of Ageing; HAS, Hertfordshire Ageing

Study; HCS, Hertfordshire Cohort Study; NCDS, National Child Development Study; NSHD, National Survey of Health and Development.

*No. of participants with event (%); Pooled: [no. participants with event ⁄ total no. of participants with relevant data].

†Odds ratio per T allele.

Table 4 Anthropometry and biological function by genotype (pooled results)

Variable Total b (95% CI)* P-value Het P-value

BMI (kg m)2) 25 336 0.009 ()0.009 to 0.026) 0.33 0.81

Waist–hip ratio 22 134 )0.001 ()0.020 to 0.018) 0.93 0.72

Systolic blood pressure (mmHg) 25 030 )0.003 ()0.020 to 0.015) 0.77 0.67

Diastolic blood pressure (mmHg) 25 027 0.009 ()0.008 to 0.027) 0.29 0.75

Pulse rate (BPM) 18 355 0.007 ()0.018 to 0.033) 0.58 0.26

Forced vital capacity (L) 19 333 )0.001 ()0.027 to 0.025) 0.93 0.24

Forced expiratory volume (L) 19 338 )0.002 ()0.022 to 0.018) 0.86 0.47

Fibrinogen (g L)) 20 028 0.024 ()0.001 to 0.049) 0.06 0.23

Total cholesterol (mM) 23 098 0.020 ()0.003 to 0.043) 0.09 0.24

HDL cholesterol (mM) 23 616 0.014 ()0.018 to 0.045) 0.39 0.0207

Log triglycerides (mM) 24 279 )0.001 ()0.020 to 0.018) 0.91 0.39

LDL cholesterol (mM) 22 985 0.013 ()0.006 to 0.031) 0.18 0.67

Glucose† 22 572 0.001 ()0.017 to 0.020) 0.88 0.50

Het, heterogeneity.

*Beta coefficients per T allele based on z-scores.

†On scale 10 · (glucose in mM or HbA1c in %))2.
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erally rises with age (Nordling, 1953; DePinho, 2000; Cancer

Research UK, 2010), it is an important finding that this well-

powered multicohort study found that it was not associated

with poorer outcomes for other aging phenotypes. Indeed, our

range of investigated traits was extensive, including measures of

cognitive and physical capability, blood pressure, lung function

and blood lipid levels. Additionally, subgroup analysis demon-

strated that on the whole, the effects were similar for men and

women and for those aged below and at least 70 years.

However, it remains possible that either telomere length or

telomere maintenance functions could still influence age-

related traits despite the apparent absence of association

between rs401681 and age-related traits in our study. First, the

SNP may not substantially influence telomere length in this age

group as there are conflicting reports on the relationship with

rs401681 and telomere length, with the C allele associating

with shorter telomeres in an elderly set of females (Rafnar et al.,

2009), whereas no association was observed among adults

across a wider age span in recent reports (Mirabello et al.,

2010; Pooley et al., 2010; Prescott et al., 2010). Additionally,

no association with telomere length was found around the

TERT gene in a genome-wide association study (Levy et al.,

2010), nor in two candidate gene studies that also considered

other SNPs in the region (Mirabello et al., 2010; Prescott et al.,

2010). This would indicate that the lack of association observed

in this study is not because of the choice of common polymor-

phism within the TERT-CLPTM1L locus, although mutations in

the region may influence telomere length (Diaz de Leon et al.,

2010). Furthermore, telomere ‘length’ commonly assessed by

the Cawthon assay, which measures total telomere repeats

(Baird, 2005), is a crude phenotype which may not represent

aspects of individual telomeres differentially relevant in cancer

vs. aging traits. Second, either telomere length or another fea-

ture of telomere function could be important to age-related

traits through a mechanism distinct from that by which

rs401681 influences cancer risk (Baird, 2010). Other SNPs influ-

encing telomere length or function might be useful to further

explore these possibilities, particularly given the overall telomere

length variability explained by identified genetic loci so far have

been low (Codd et al., 2010).

Conclusion

Despite being associated with several cancers, the results of this

large, multicohort investigation into a comprehensive range of

aging phenotypes in a middle- to older-aged UK population do

not support the hypothesis that SNP rs401681 in the TERT-

CLPTM1L locus influences other aging traits.

Methods

Study populations

The Boyd Orr cohort is a historical cohort study based on chil-

dren surveyed in 1937–1939 in English and Scottish districts.

Participants were followed up in 1997–1998 (Phase II) and again

in 2002–2003 (Phase III), during which DNA was extracted from

728 adults. Details of the study design and the data collected

have been described elsewhere (Martin et al., 2005).

The Caerphilly Prospective Study (CaPS) recruited 2512 men

aged between 45 and 59 years in 1979–1983 from the town of

Caerphilly, South Wales, and its surrounding villages. Blood

samples were collected at baseline and at each of the four fol-

low-ups (Phase II: 1984–1988, Phase III: 1989–1993, Phase IV:

1993–1997 and Phase V: 2002–2004.) Further details are avail-

able on the cohort’s website (http://www.epi.bris.ac.uk/caer-

philly/caerphillyprospectivestudy.htm).

The English Longitudinal Study of Ageing contains men and

women aged 50 years and over who originally participated in

the Health Survey for England in 1998, 1999 or 2001. ELSA

fieldwork began in 2002–2003 (Phase I) with two-yearly follow-

ups in 2004–2005 (Phase II), during which blood samples were

provided by 6231 participants, 2006–2007 (Phase III) and 2008–

2009 (Phase IV). Details of the cohort are available elsewhere

(Marmot et al., 2003).

The Hertfordshire Ageing Study comprises men and women

traced in 1994–1995, the first follow-up (Phase I), from single-

ton live births in 1920–1930 in North Hertfordshire. A total of

717 participants attended a clinic during which DNA was

extracted. A second follow-up took place in 2003–2005 (Phase

II). Details of the recruitment, data collected and summaries of

participant characteristics have been described elsewhere (Syd-

dall et al., 2009).

The Hertfordshire Cohort Study is a younger and larger

cohort, with 2997 participants born in 1931–1939 and regis-

tered with a General Practitioner in East, North and West Hert-

fordshire attending a clinic in 1994–2004 (Phase I). A second

assessment took place in 2004–2005 for participants in East

Hertfordshire (Phase II). Further details of study design, data col-

lected and summaries of participant characteristics are available

(Syddall, 2005).

The Lothian Birth Cohort 1921 Study (LBC1921) participants

were all born in 1921 and completed an IQ assessment age 11.

In 1999–2001 (Phase I), 550 79-year-olds, living in and around

Edinburgh, attended a clinic, and in 2003–2005 (Phase II) 321

returned at 83 years old. Details of the recruitment into the

study are available on its website (http://www.lothianbirthcohort.

ed.ac.uk) and elsewhere (Deary et al., 2004; Gow et al., 2008).

The National Child Development Study (NCDS) follows individ-

uals from all births in England, Scotland and Wales during

1 week in March 1958. In 2002–2004, a Biomedical Survey was

conducted during home visits by a research nurse. DNA was

extracted from 8017 participants aged 44–45 years; the sample

with immortalized cell line culture (n = 7526) is used here. In

2008–2009, an eighth sweep was carried out during which cog-

nitive performance tests were conducted. Further details of the

study are available (Power & Elliott, 2006).

The Medical Research Council National Survey of Health and

Development (NSHD) comprises participants sampled from all

births in a week in March 1946 and followed up since. In 1999,
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at age 53 years, men and women were visited by a research

nurse and consent for DNA extraction was given by approxi-

mately 2900 members of the cohort. Details of the data

collected and the several phases of the study are available on

the cohort’s website http://www.nshd.mrc.ac.uk and elsewhere

(Wadsworth et al., 2006).

The Whitehall II study targeted all civil servants aged between

35 and 55 years working in London in 1985–1988. In 2002–

2004 (Phase VII), the genetics study was established and DNA

was extracted from 6156 participants. Details of the study

design and data collected have been described (Marmot & Brun-

ner, 2005).

Genotyping and quality control

Genotyping for SNP rs401681 for all cohorts, except LBC1921,

was carried out by KBioscience (http://www.kbio-

science.co.uk). Genotype information from LBC1921 came

from a genome-wide scan performed on the Illumina

Human610-Quadv1 Chip (http://www.illumina.com) (Houlihan

et al., 2010). Genotypic data quality was reviewed by assessing

departure from Hardy–Weinberg equilibrium (HWE), clustering

quality (using KBioscience software SNPviewer on their data)

and call rates.

Phenotypes

Cognitive capability

A number of cognitive performance tests in the different studies

were used to assess cognitive capability, the capacity to under-

take the mental tasks of daily living. The National Adult Reading

Test (Nelson & Willison, 1991) (NART) is a widely used assess-

ment of crystallized intelligence, i.e. acquired vocabulary and

knowledge, which was measured in CaPS, LBC1921 and NSHD.

The Alice Heim 4-I (Heim, 1970) (AH4) test was used in CaPS,

HAS and Whitehall II, and assesses fluid intelligence, i.e. reason-

ing ability, particularly in novel situations. The Mill Hill vocabu-

lary test (Raven, 1965) was used to measure crystallized verbal

intelligence in HAS and Whitehall II. Different assessments of

verbal memory were conducted: in ELSA and NCDS, a list of 10

common words were used, with participants asked to recall the

list immediately and again after a delay, the mean score was

used in the analysis; in NSHD, 15 words were used over three tri-

als; in Whitehall II 20 words were used; responses in NSHD and

Whitehall II were given in writing. Logical Memory from the

Wechsler Memory Scale-Revised (Wechsler, 1987) was used in

LBC1921. In Whitehall II, participants recalled in writing in 1 min

as many words as possible beginning with ‘S’ to assess

phonemic fluency, while in LBC1921 three letters ‘C’, ‘F’ and ‘L’

were used with responses given orally. Participants were

asked to recall as many animals as possible within 1 min to

measure semantic fluency; responses were given orally in CaPS,

ELSA, NCDS and NSHD, and in writing in Whitehall II. To assess

search speed (Richards et al., 1999), 1-min letter searches

among grids of letters were used, 600 letters in NSHD and 780

in ELSA and NCDS. Nonverbal reasoning was measured using

Raven’s Standard Progressive Matrices in LBC1921 (Raven et al.,

1977).

Physical capability

A number of physical performance tests were used to assess

physical capability, the capacity to undertake the physical tasks

of daily living. Grip strength was measured in ELSA, HAS, HCS,

LBC1921 and NSHD using electronic or hydraulic dynamome-

ters, with the best measure used in the analysis where more

than one trial was conducted. Several standing balance tests

were conducted in the cohorts, with participants’ eyes open:

Flamingo (Committee of Experts on Sports Research, 1993)

(stopped at 30 s) in Boyd Orr, CaPS, HAS and HCS; side-by-side,

semi-tandem and full tandem (Stevens et al., 2008) in ELSA; a

30-s one-legged stance in NSHD. The timed get up and go test

(Podsiadlo & Richardson, 1991) was carried out in Boyd Orr,

CaPS, HAS and HCS and required participants to get up from a

chair, walk 3 m, turn, walk back, turn and sit down. Timed

walks over 2.44 m (8 feet) and 6 m were carried out in ELSA

and LBC1921, respectively, with the fastest time used in the

analysis where more than one trial was conducted. Timed chair

rises (Csuka & McCarty, 1985) involved asking participants to

rise from a chair and sit back down five times in ELSA, HAS and

HCS, and 10 times in NSHD.

Anthropometry and biological function

Several measures of anthropometry and biological function

were used, where available in the cohorts. BMI (kg m)2) was cal-

culated as weight divided by height squared derived from mea-

surements conducted at clinics or during a clinical interview in

the home where available, or from self-reports. WHR was

defined as waist circumference (cm) divided by hip circumfer-

ence (cm). Where more than one sitting systolic, diastolic blood

pressure (mmHg) or pulse rate (BPM) measurement was

recorded at the clinical interview, the mean values were used in

analysis. Spirometry was used to assess lung function: Forced

vital capacity (L) and forced expiratory volume in 1 s (L); the

highest value was used in the analyses. Blood samples were used

to measure fibrinogen (g L)1), total, low-density lipoprotein

(LDL) and high-density lipoprotein (HDL) cholesterol (mM), trigly-

cerides (mM), fasting glucose (mM) and nonfasting glycosylated

haemoglobin (HbA1c, %).

Health history

History of myocardial infarction (MI), angina, any diabetes and

stroke were derived from self-reports and, where possible, from

GP and hospital records.

Demographic variables

Data collected on age, sex, smoking status and physical activity

were used to assess whether MAF varied by these variables

within the cohorts. Where information on ethnicity was col-

lected, non-white participants were excluded from analyses to
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avoid confounding from population stratification (Cordell &

Clayton, 2005).

Statistical methods

Statistical analysis was performed in STATA 11.1 (StataCorp LP,

College Station, Texas, USA ). Linear and logistic regression anal-

yses were conducted on the continuous and dichotomous traits

within the cohorts respectively. Additive models were used with

genotypes coded as 0, 1 and 2 for the number of minor (T)

alleles. Likelihood ratio tests were used to compare the fit of the

additive models compared to the full genotype model. For con-

tinuous traits, the normality of the standardized residuals was

inspected with distributional diagnostic plots. To improve the

normality, natural log transformations were carried out on timed

get up and go, timed walks and triglycerides. A power transfor-

mation of )2 was used on glucose and HbA1c. As with previous

analyses (Kuh et al., 2005), the reciprocal of time taken in sec-

onds · 100 was used for chair rises. Cook’s distances (Cook,

2000) were plotted against fitted values, using a cut-off of four

divided by sample size, to identify influential outliers in the con-

tinuous phenotypes. For the harmonization of continuous traits

that were used to obtain pooled estimates of the genotypic

effects, z-score units were calculated in each cohort by subtract-

ing the cohort mean and dividing by its standard deviation. The

overall mean for z-scores is 0 and standard deviation 1. Beta

coefficients calculated on z-score units can be reverted to the

original scale by multiplying by an appropriate standard devia-

tion. Two-step (Riley et al., 2010) meta-analyses were per-

formed to obtain pooled genotypic effects, with the random-

effects’ estimates presented in the tables. Meta-analyses were

also stratified by sex, cigarette smoking status and physical activ-

ity (any vs. none, or any vigorous vs. none in ELSA and Whitehall

II), chosen a priori. Meta-analyses were repeated after the

removal of the identified influential data in the continuous traits,

and results are reported on the complete data; unless the overall

effect, the overall heterogeneity or the heterogeneity between

subgroups were no longer significant, where the reporting is

then from the restricted datasets. Within-study investigations

were made in ELSA, the study with the widest age range, to

assess whether the effects of genotype differed in individuals

aged below and at least 70 years. In addition, within-study

investigations were made into follow-up measures of cognitive

and physical capability adjusting for the measure in an earlier

phase. Reporting met the appropriate items of a recommended

checklist (Stroup et al., 2000). Quanto (Gauderman & Morrison,

2006) was used for power calculations using a MAF of 0.44. A

two-tailed significance level of P < 0.05 was used.
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