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Abstract
Afforestation projects for mitigating CO2 emissions require to monitor the carbon 
fixation and plant growth as key indicators. We proposed a monitoring method for 
predicting carbon fixation in afforestation projects, combining a process‐based eco‐
system model and field data and addressed the uncertainty of predicted carbon 
fixation and ecophysiological characteristics with plant growth. Carbon pools were 
simulated using the Biome‐BGC model tuned by parameter optimization using meas‐
ured carbon density of biomass pools on an 11‐year‐old Eucommia ulmoides plantation 
on Loess Plateau, China. The allocation parameters fine root carbon to leaf carbon 
(FRC:LC) and stem carbon to leaf carbon (SC:LC), along with specific leaf area (SLA) 
and maximum stomatal conductance (gsmax) strongly affected aboveground woody 
(AC) and leaf carbon (LC) density in sensitivity analysis and were selected as adjust‐
ing parameters. We assessed the uncertainty of carbon fixation and plant growth 
predictions by modeling three growth phases with corresponding parameters: (i) be‐
fore afforestation using default parameters, (ii) early monitoring using parameters 
optimized with data from years 1 to 5, and (iii) updated monitoring at year 11 using 
parameters optimized with 11‐year data. The predicted carbon fixation and opti‐
mized parameters differed in the three phases. Overall, 30‐year average carbon fixa‐
tion rate in plantation (AC, LC, belowground woody parts and soil pools) was ranged 
0.14–0.35 kg‐C m−2 y−1 in simulations using parameters of phases (i)–(iii). Updating 
parameters by periodic field surveys reduced the uncertainty and revealed changes 
in ecophysiological characteristics with plant growth. This monitoring method should 
support management of afforestation projects by carbon fixation estimation adapt‐
ing to observation gap, noncommon species and variable growing conditions such as 
climate change, land use change.
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1  | INTRODUC TION

Planted forests, including both forest plantations and rubber plan‐
tations but not oil‐palm plantations or other agricultural planta‐
tions, account for 7% of global forest area (FAO, 2015). Although 
natural forest area declined from 3,961 Mha in 1990 to 3,721 Mha 
in 2015, planted forest area increased from 168 Mha to 278 Mha 
over the same period, helping to mitigate the annual rate of net 
forest loss (Keenan et al., 2015). Afforestation and reforestation 
could reduce the harvest pressure on natural forests by supplying 
timber (Fenning & Gershenzon, 2002) and reduce surface runoff 
and soil erosion in degraded landscapes through rainfall intercep‐
tion (Nunes, Almeida, & Coelho, 2011). Forest management using 
afforestation and reforestation is also an effective tool for pro‐
moting carbon dioxide (CO2) absorption through plant regrowth 
(Keith, Mackey, & Lindenmayer, 2009; Noormets et al., 2015; Xu, 
Wen, Zhu, & He, 2017). Indeed, the recent promotion of affor‐
estation and reforestation provides carbon storage, resulting in 
an increase of net CO2 uptake by the forests in China (Streets et 
al., 2001). Afforestation and reforestation therefore are mitigation 
and adaptation strategies for climate change in the forest sector 
(Ravindranath, 2007).

Afforestation projects under market mechanisms in the Kyoto 
Protocol and the Paris Agreement aim to reduce CO2 while support‐
ing sustainable development. The Clean Development Mechanism 
(CDM) is part of the emerging carbon market established under 
the terms of the Kyoto Protocol and aims to achieve sustainable 
development in developing countries and cost‐effective reduction 
of greenhouse gases in developed countries (Olsen, 2007). Olsen 
(2007) classified CDM projects into a typology of four groups 
according to their key findings: forward‐looking studies, sustain‐
ability impact studies, carbon forestry studies, and mixed studies. 
Afforestation and reforestation are accepted as eligible activities 
in the carbon forestry studies of CDM projects. Globally, more 
than 760 Mha of land are identified as biophysically suitable for 
CDM afforestation and reforestation (CDM‐AR) activities (Zomer, 
Trabucco, Bossio, & Verchot, 2008). In mid‐2009, however, only 
four projects were registered as CDM‐AR with the United Nations 
Framework Convention on Climate Change (UNFCCC) out of a 
total of 1,665 registered projects (Thomas, Dargusch, Harrison, & 
Herbohn, 2010). The bottlenecks in the development of CDM‐AR 
projects can be attributed to both the length of time it takes to 
gain revenue from the project and a lack of the knowledge and 
technical capacity required to meet the demands of the CDM reg‐
istration process (Thomas et al., 2010).

In the approved methodology for CDM‐AR, it is stipulated that 
projects will monitor changes in carbon stocks in five pools after 
afforestation or reforestation—aboveground biomass, below‐
ground biomass, dead wood, litter, and soil organic carbon—based 
on quality assurance/quality control (QA/QC) procedures for in‐
ventory operations (UNFCCC, 2013). The more advanced methods 
in the guide recommend the application of direct measurements 

of the carbon stock growth rate and its validation using modeling 
approaches (Penman et al., 2000), allowing an application to na‐
tional circumstances by fine temporal and spatial scale and closer 
link between biomass and soil dynamics. However, this requires 
technical competence and scientific expertise (Palm, Ostwald, 
Berndes, & Ravindranath, 2009). Previous studies in general fo‐
cused on the assessment of no‐project‐implemented carbon dy‐
namics baselines based on empirical models or forest inventories 
(Dushku & Brown, 2003; Dutschke, Butzengeiger, & Michaelowa, 
2006).

Selection of the model used in a project and the model parame‐
trization and calibration are critical issues for proper documentation 
of the validity and completeness of the data. Diagnostic biosphere 
models using remote‐sensing data would be useful in CDM‐AR proj‐
ects because of the complete coverage of information in the sub‐
jective study area, which enables the interpretation of land use and 
plant phenology. However, most conventional diagnostic biosphere 
models demonstrate low predictive skill and show uncertainty in 
simulations according to the quality of available satellite observa‐
tions, and stress factors without biophysical processes (Sasai, Ichii, 
Yamaguchi, & Nemani, 2005). Prognostic biosphere models, or pro‐
cess‐based models, predict carbon dynamics in the biosphere based 
on biogeochemical processes in individual carbon components 
driven mainly by climate variability. Changes in carbon stocks in the 
five specified pools under various circumstances are predictable 
using process‐based models, but applicability of the models to CDM‐
AR projects critically depends on appropriate model validation with 
ground observations.

Several studies have investigated validation schemes for prog‐
nostic biosphere models (e.g., Braswell, Sacks, Linder, & Schimel, 
2005; Fox et al., 2009; Mo, Chen, Ju, & Black, 2008; Santaren, Peylin, 
Viovy, & Ciais, 2007; Trudinger et al., 2007), although these studies 
were designed to examine carbon exchange rates between the atmo‐
sphere and the biosphere, not carbon pools and growth in plant or‐
gans and soil. Cienciala and Tatarinov (2006) estimated aboveground 
woody biomass in managed forests using adjusted ecophysiological 
and nitrogen parameters. Zhao, Xiang, Peng, and Tian (2009) per‐
formed sensitivity analysis and prediction for each plant organ in a 
managed forest, comparing long‐term fir‐stand data. These studies 
were performed in managed forests where long‐term data reflect 
moderately stable conditions, which differ from the conditions under 
land use changes for recovering degraded ecosystems. Saito, Ito, and 
Maksyutov (2014) applied the assimilation scheme of a prognostic 
biosphere model to 10‐years average aboveground biomass and CO2 
concentration data by combining it with an atmospheric tracer trans‐
port model, but they did not assess the temporal biomass changes 
or other carbon pools such as leaf and belowground biomass, the 
reporting of which is required in CDM‐AR projects. Unfortunately, 
there are few studies on model validation for carbon‐stock monitor‐
ing and growth processes based on field surveys.

In this study, we quantify the growth processes of carbon stocks 
in an afforestation project in China. This site has been implemented 
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the “Grain for Green” program, which returns arable lands inappro‐
priate for cultivation to forests, and restores degraded ecosystems 
to healthy condition. This program supplies increasing demands for 
timber in China and is expected to increase vegetation cover, lead‐
ing to carbon sequestration (Liu, Li, Ouyang, Tam, & Chen, 2008). 
The adaptive monitoring of carbon pools following afforestation is 
necessary to assess the potential of plantations as carbon sinks. By 
monitoring the carbon pools in an afforestation project, we aim to 
estimate carbon fixation with adapting to ecophysiological changes 
and to address the uncertainty in predicting carbon‐stock changes 
and ecophysiological characteristics. We used an optimization 
scheme for biophysical parameters in a process‐based model with 
field surveys to represent plant growth following afforestation.

2  | MATERIAL AND METHODS

2.1 | Study site and biomass data

The study site is an 11‐year‐old Eucommia ulmoides plantation in 
Loess Plateau, consisting mostly of silt soil, in Lingbao City, Henan 
Province, China (34°16′N, 110°40′E, 1,000 m a.s.l). Annual average 
air temperature and annual precipitation for 1981–2010 measured at 
Lushi station, 40 km southeast of the site, are 13.7°C and 686 mm, 
respectively. Eucommia ulmoides is one of the common deciduous 
broadleaf trees in central and southern China. The trees at the study 
site were planted in 1999 on an abandoned cornfield as part of the 
Grain for Green program (Cao, Chen, & Yu, 2009; Wang, Hu, Deng, 
Shangguan, & Deng, 2018). This forest had been surveyed as a can‐
didate site for a new afforestation project by a joint enterprise be‐
tween China and Japan (Hitz, 2010).

To obtain biomass data, we conducted a field survey at the E. ul‐
moides plantation in 2009. We measured trunk diameter at breast 
height (D; m) and tree height (H; m) of E. ulmoides trees (all 11 years 
old). Survey of D and H in four quadrats in the plantation was per‐
formed at the same time of biometric 7 model‐tree survey. Sixty‐
four samples from the four quadrats showed 10.5 ± 2.0 cm in D and 
7.8 ± 1.8 m in tree height. By comparison of model and quadrat trees, 
averages of D and H of the model trees biased by 0.9 cm and 0.0 m 
from the averages of quadrat trees, respectively. These biases were 
enough small to decide these model trees as representatives in the 
plantation.

These seven model trees were harvested and separated into 
aboveground (trunks and branches) and belowground (coarse roots) 
woody parts, and leaves. The dry weight (kg) of each part was mea‐
sured. We applied allometric relationships based on proportional 
relationships of biomass weight to D2 and D2H (Niklas, 2004). In 
general, both the above‐ and belowground biomass have allometric 
relationships with D and H as follows:

The relationship between leaf biomass and D is as follows:

The parameters a, b, c, and d for E. ulmoides in the present study were 
obtained using the measurements from the harvested trees fitted by 
linear regression using least squares method. The leaves of one of 
the trees were extremely damaged because of drainage water from 
a nearby building, so the leaf biomass data from that tree were not 
included, and the parameters for Equation (2) were obtained from the 
data of six trees.

To estimate above‐ and belowground and leaf biomass in the 
years prior to the field survey, we estimated D for previous years 
from the tree rings of the seven harvested trees. The tree trunks 
were cut at breast height, and we assumed that the tree‐ring diam‐
eter for each year was the same as D for that year. Measured aver‐
age tree height of 1–11 year measured by trunk analysis was used 
for H. The above‐ and belowground and leaf biomass for each year 
were estimated from Equations (1) and (2) and the mean value for D 
of each year. The amounts of carbon in the aboveground (AC), be‐
lowground (BC), and leaf (LC) biomass were estimated by applying 
the measured percentage carbon content of 46% for above‐ and 
belowground biomass and 45% for leaves. The calculated mean car‐
bon mass of cut trees (kg‐C) was converted into carbon density per 
unit land area (kg‐C/m2) using the total of D2 and D2H acquired from 
measured D and H of all tree in four 10 × 15 m quadrats (supplied in 
data repository).

2.2 | Model description

This study used the process‐based ecosystem model Biome‐BGC 
(Kimball, White, & Running, 1997; Running & Hunt, 1993; Thornton 
et al., 2002; Thornton & Rosenbloom, 2005; White, Thornton, 
Running, & Nemani, 2000) to simulate the biomass growth and car‐
bon fixation of each plant organ. Biome‐BGC predicts the carbon fix‐
ation of leaf, stem, and root associated with the carbon allocation of 
photosynthetic products to each plant organ for six plant functional 
types: deciduous broadleaf trees, deciduous needle‐leaf trees, ever‐
green broadleaf trees, evergreen needle‐leaf trees, C3 grasses, and 
C4 grasses. The photosynthetic productivity in the model has been 
investigated and verified by various studies (e.g., Pietsch, Hasenauer, 
& Thornton, 2005; Ueyama et al., 2010; Wang, Bauerle, & Reynolds, 
2008). Biome‐BGC allocates the photosynthetic production to each 
plant organ on the basis of carbon allocation parameters, and soil 
carbon is supplied through the litter from plant organs.

Biome‐BGC was driven with ecophysiological parameters, initial 
site information, and climate‐forcing data at a daily time‐step with 
point simulation at the site. The input parameters for ecophysiolog‐
ical characteristics for this study are shown in Table 1. The initial 
site information included the site characteristics of elevation (m), 
latitude (degree N), albedo, effective soil depth (m), first‐year max‐
imum leaf and stem carbon (kg‐C/m2), atmospheric nitrogen depo‐
sition (kg‐N/m2), symbiotic and asymbiotic nitrogen fixation (kg‐N/
m2), soil carbon content of pools (kg‐C/m2), soil nitrogen content of 
the mineral pool (kg‐N/m2), and soil texture. The nitrogen input rate 

(1)y=aD2H+b

(2)y= cD2+d
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from atmospheric deposition to the ecosystem at the site was fixed 
at 0.002 kg‐N m−2 y−1, which is the average value in broadleaf for‐
ests in various regions of China (Toda et al., 2010). Soil texture at 
the site was obtained from the literature (Li & Shao, 2006) as 5% 
sand, 68% silt, and 27% clay. The initial conditions for soil carbon 
and nitrogen density at the site were simulated by running the model 

over a 6,000‐year period with the default plant ecophysiological 
parameters of C4 annual grass and a nitrogen supply to the soil of 
0.03 kg m−2 y−1 by fertilization, which was obtained from a survey 
of plantation managers. In this spin‐up simulation, 50% of the abo‐
veground crop biomass was removed every year to represent har‐
vest practice (Penman et al., 2003).

TA B L E  1  Ecophysiological parameters used for simulations in this study

Ecophysiological parameters (Deciduous broadleaf forest; DBF) Value Source

Transfer growth period as fraction of growing season 0.2 Default for DBF in Biome‐BGC

Litter‐fall as fraction of growing season 0.2 Default for DBF in Biome‐BGC

Annual leaf and fine root turnover fraction (year−1) 1.0 Default for DBF in Biome‐BGC

Annual live wood turnover fraction (year−1) 0.7 Default for DBF in Biome‐BGC

Annual whole‐plant mortality fraction (year−1) 0.005 Default for DBF in Biome‐BGC

Annual fire mortality fraction (year−1) 0.0025 Default for DBF in Biome‐BGC

Allocation (new fine root C:new leaf C; ratio) See Table 3 Optimized (default = 1.0)

Allocation (new stem C:new leaf C; ratio) See Table 3 Optimized (default = 2.20)

Allocation (new live wood C:new total wood C; ratio) 0.10 Default for DBF in Biome‐BGC

Allocation (new root C:new stem C; ratio) 0.47 Measured (default = 0.23)

Current growth proportion 0.5 Default for DBF in Biome‐BGC

C:N of leaves (kg‐C/kg‐N) 26.0 Measured (default = 1.0)

C:N of leaf litter, after retranslocation (kg‐C/kg‐N) 49.0 Default for DBF in Biome‐BGC

C:N of fine roots (kg‐C/kg‐N) 42.0 Default for DBF in Biome‐BGC

C:N of live wood (kg‐C/kg‐N) 50.0 Default for DBF in Biome‐BGC

C:N of dead wood (kg‐C/kg‐N) 442.0 Default for DBF in Biome‐BGC

Leaf litter labile proportion 0.39 Default for DBF in Biome‐BGC

Leaf litter cellulose proportion 0.44 Default for DBF in Biome‐BGC

Leaf litter lignin proportion 0.17 Default for DBF in Biome‐BGC

Fine root labile proportion 0.30 Default for DBF in Biome‐BGC

Fine root cellulose proportion 0.45 Default for DBF in Biome‐BGC

Fine root lignin proportion 0.25 Default for DBF in Biome‐BGC

Dead wood cellulose proportion 0.76 Default for DBF in Biome‐BGC

Dead wood lignin proportion 0.24 Default for DBF in Biome‐BGC

Canopy water interception coefficient (LAI−1/d) 0.041 Default for DBF in Biome‐BGC

Canopy light extinction coefficient 0.7 Default for DBF in Biome‐BGC

All‐sided to projected leaf area ratio (ratio) 2.0 Default for DBF in Biome‐BGC

Canopy average specific leaf area (projected area basis) See Table 3 Optimized (default = 30.0)

Ratio of shaded SLA:sunlit SLA (ratio) 2.0 Default for DBF in Biome‐BGC

Fraction of leaf N in Rubisco 0.08 Default for DBF in Biome‐BGC

Maximum stomatal conductance (projected area basis; m/s) See Table 3 Optimized (default = 0.005)

Cuticular conductance (projected area basis; m/s) 0.00001 Default for DBF in Biome‐BGC

Boundary‐layer conductance (projected area basis; m/s) 0.01 Default for DBF in Biome‐BGC

Leaf water potential at start of conductance reduction (MPa) −0.6 Default for DBF in Biome‐BGC

Leaf water potential at complete conductance reduction (MPa) −2.3 Default for DBF in Biome‐BGC

Vapor pressure deficit at start of conductance reduction (Pa) 930.0 Default for DBF in Biome‐BGC

Vapor pressure deficit at complete conductance reduction (Pa) 4,100.0 Default for DBF in Biome‐BGC

Note: For sensitivity analysis (Section 2.42.4), we used the carbon allocation parameters for stem, leaf, and roots along with specific leaf area (SLA), 
maximum stomatal conductance (gsmax), and vapor pressure deficits (VPDs), changing their values by ±30% and ±60% of the default.
Abbreviations: LAI, Leaf area index; SLA, specific leaf area.
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Biome‐BGC requires five climate‐forcing data; daily precipita‐
tion (cm), daily maximum and minimum air temperatures (°C), day‐
light average vapor pressure deficit (VPD; Pa), and daylight average 
shortwave radiant flux density (SRAD; W/m2). For this study, we 
used daily precipitation and maximum and minimum air tempera‐
tures at Lushi station for 1981–2010 from the National Climatic 
Data Center (NCDC), Climate Data Online (CDO) of the National 
Oceanic and Atmospheric Administration (NOAA) (NOAA, 2018, 
2018). Daily VPD, SRAD, and day length were estimated from 
daily precipitation and maximum and minimum air temperatures 
using the mountain microclimate simulator MTCLIM 4.3 (Bohn et 
al., 2013; Kimball, Running, & Nemani, 1997; Running, Nemani, 
& Hungerford, 1987; Thornton, Hasenauer, & White, 2000; 
Thornton & Running, 1999) by taking into account the elevation 
and latitude at the site. The input daily average air temperature, 
precipitation, SRAD, and VPD calculated from observations at the 
nearest weather station Lushi in 2009 using MTCLIM are shown 
in Figure 1. The annual average air temperature, precipitation, 
SRAD, and VPD for 1981–2010 were 13.7°C, 692 mm, 346 W/
m2, and 743 Pa, respectively. The peak daily mean temperature in 
2009 was 30.3°C in July, and the lowest temperature was −8.9°C 
in January. The peak monthly precipitation was 156 mm in July. 

Vapor pressure deficit estimated from these meteorological values 
was highest in the summer. Estimated SRAD showed small varia‐
tions around normal yearly values (210–484).

2.3 | Sensitivity of carbon pool simulations to 
ecophysiological parameters

To represent the carbon storage and growth of each plant organ 
adaptively, parameter adjustment was required. We therefore ana‐
lyzed the sensitivity of AC and LC to ecophysiological parameters 
related to photosynthesis and carbon allocation to plant organs to 
select the parameters for adjustment by an optimization scheme. 
The sensitivity of BC was not analyzed because BC is calculated by 
multiplying AC by the ratio of carbon allocation of coarse root car‐
bon to stem carbon (CRC:SC) in Biome‐BGC, so BC can be repro‐
duced by using the appropriate AC and the CRC:SC ratio.

In Biome‐BGC, the photosynthetic assimilation rate A 
(µmol CO2 m−2 s−1) is simulated using Farquhar's photosynthesis model 
(Farquhar, Caemmerer, & Berry, 1980; De Pury & Farquhar, 1997):

(3)A=min
(

Ac,Aj

)

,

F I G U R E  1  Meteorological data for 
daily average temperature (corrected by 
the mountain climate simulator MTCLIM), 
precipitation, solar radiation (SRAD), and 
vapor pressure deficit (VPD) generated 
from temperature, SRAD and VPD by 
MTCLIM for 2009 (solid lines). Dashed 
lines for SRAD and VPD represent the 
average values for 1981–2010

0

1,000

2,000

3,000

1 31 61 91 121 151 181 211 241 271 301 331 361

V
PD

 (P
a)

DOY
2009

–20

–10

0

10

20

30

40

0

20

40

60

80

Pr
ec

ip
ita

tio
n 

(m
m

) 

0

200

400

600

800

SR
A

D
 (W

 m
–2

)
D

ai
ly

 a
ve

ra
ge

 te
m

pe
ra

tu
re

 (°
C

)



8030  |     MIYAUCHI et al.

where Ac (μmol CO2 m−2 s−1) is the carboxylation‐limited assimilation 
and Aj (μmol CO2 m−2 s−1) is the RuBP‐regeneration‐limited assimila‐
tion. Ac and Aj are calculated as follows:

where Vcmax (μmol CO2 m−2 s−1) is the maximum carboxylation rate, 
J (μmol CO2 m−2 s−1) is the actual electron transport rate and is re‐
lated to the incident photosynthetic photon flux density (PPFD), 
and the maximum electron transport rate (Jmax; μmol CO2 m−2 s−1) 
(Kuehn & McFadden, 1969), Ci (Pa) is the leaf intercellular CO2 con‐
centration (partial pressure), Γ* (Pa) is the CO2 compensation point 
in the absence of photorespiration, Kc and Ko are the Michaelis–
Menten constants of Rubisco for CO2 and O2, respectively, and Rd 
(μmol CO2 m−2 s−1) is the photorespiration rate.

Biome‐BGC calculates Vcmax from leaf nitrogen data and Rubisco 
activity as follows:

where lnc (kg‐N/m2) is the leaf nitrogen content per unit projected 
sunlight leaf area, flnr (kg‐N/kg‐N) is the proportion of leaf nitrogen 
content that is in Rubisco, fnr (kg‐Rubisco/kg‐N) is the weight ratio 
of Rubisco to its nitrogen content (=7.16), and act (μmol‐CO2  kg‐
Rubisco−1 s−1) is the Rubisco activity, which is adjusted for temperature 
and O2 and CO2 levels.

A in Equation (3) can also be determined by using the relation‐
ship between the photosynthetic assimilation, the stomatal conduc‐
tance, and the atmospheric and leaf intercellular CO2 concentrations 
as follows:

where g (μmol‐CO2 m−2 s−1 Pa−1) is the leaf‐scale conductance of CO2, 
and Ca (Pa) is the atmospheric concentration of CO2. To represent the 
stomatal closure corresponding to environmental stresses, Biome‐
BGC scales the maximum stomatal conductance (gsmax) by a series of 
multipliers between 0 and 1 for stresses connected with the PPFD, 
soil‐water potential, minimum temperature, and VPD (Körner, 1995; 
White et al., 2000). Biome‐BGC represents the ecophysiological re‐
sponses of stomata to the stresses of the light and water environment, 
and photosynthetic activity to nitrogen content, by these processes.

These processes are calculated for leaves both in sun and shade 
by daily steps. The actual photosynthesis can be calculated by 
solving the quadric expressions in Equations (3) and (7). In Biome‐
BGC, 39 ecophysiological parameters are used to represent pho‐
tosynthetic production based on A and its allocation to each plant 

organ according to specified allocation parameters. We conducted 
a literature search for these parameters (e.g., Chiesi et al., 2007; 
Cienciala & Tatarinov, 2006; Hidy et al., 2012; Jarvis, 1976; Jarvis 
& McNaughton, 1986; Leuning, 1995; Pietsch et al., 2005; Warren, 
Livingston, & Turpin, 2004; White et al., 2000). We then arbitrarily 
selected seven parameters for sensitivity analysis to determine the 
critical parameters for variability in the carbon pools of each plant 
organ. For carbon allocation parameters, we used the ratios of fine 
root carbon to leaf carbon (FRC:LC), stem carbon to leaf carbon 
(SC:LC), and CRC:SC. We also selected the specific leaf area (SLA), 
gsmax, VPD at the final reduction of stomatal conductance (VPDf), 
and VPD at the initial reduction of stomatal conductance (VPDi). 
In the sensitivity analysis, we individually tested the sensitivity of 
predicted AC and LC to variations in parameter levels of ±30% and 
±60% of default values.

2.4 | Model tuning

The seven parameters selected as described in Section 2.32.3 were 
optimized to represent the observed biomass growth using the 
Dakota optimizer version 5.3 (Adams et al., 2013). Dakota is an op‐
timizer developed by Sandia National Laboratories and is applicable 
for optimizing model parameters using an interface in the Dakota 
system (Figure 2). Dakota can apply several optimization algorithms 
by simply rewriting the settings file. To optimize the ecophysiologi‐
cal parameters in this study, we applied the algorithms for deriva‐
tive‐free global optimization methods for linear and nonlinear 
constraints in the Dakota system (Adams et al., 2013).

Five algorithms of derivative‐free global methods—the dividing 
rectangles (DIRECT) method of the common optimization library in‐
terface (coliny DIRECT), the DIRECT method of North Carolina State 
University library (NCSU DIRECT), the efficient global optimization 
method (EGO), the coliny evolutionary algorithm (coliny EA), and the 
Single‐Objective Genetic Algorithm (SOGA)—were tested to minimize 
the object function for reproducing carbon fixation of each plant 
organ. All optimization algorithms ran the model iteratively, revising 

(4)Ac=
Vcmax(Ci−Γ

∗)
Ci+Kc(1+O2∕Ko)

−Rd ,

(5)Aj=
J(Ci−Γ

∗)
4.5Ci+10.5Γ

∗
−Rd,

(6)Vcmax= lnc× flnr× fnr×act,

(7)A=g
(

Ca−Ci

)

,

F I G U R E  2  Schematic diagram of the system for minimizing 
the object function using Dakota optimizer (Adams et al., 2013). 
The Dakota system provides the parameters generated by user‐
specified optimization methods to a model and then reads the 
object function estimated from model outputs. The system iterates 
this procedure until the object function is minimized

Biome-BGC

Dakota

Object functionInput parameter 
file

Reading object functionProviding input parameters

Input file
for controlling optimization
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the input parameters to minimize the object function and generate 
search‐optimized parameters. The derivative‐free global methods 
can search optimal parameters for the minimum object function 
even for black‐box models or functions without derivatives, and 
these five methods were able to solve nonconvex functions such as 
the Rosenbrock function (Adams et al., 2013). Trudinger et al. (2007) 
compared optimization methods for data assimilation of terrestrial 
ecosystem models, and they reported that the design of the object 
function is more important for parameter optimization than selection 
of optimization methods. In this study, we simply adopted the algo‐
rithm showing the highest performance of the five tested to represent 
the measured carbon density of plant organs. The results of the tests 
of the five algorithms using measured biomass data and minimized ob‐
ject functions (described in Equation 8 below) are shown in Table A1.

As the object function to be minimized by Dakota, we defined 
the average yearly relative error between simulated and measured 
LC and AC pools over 11 years as follows:

where f is the object function, i is stand age (years), n is the stand age 
at the last field survey (n = 11 in this study), ACi and LCi are the abo‐
veground woody and leaf carbon densities in year i, respectively, and 
WA (=25) and WL (=5) are the weighting coefficients of the error in the 
last field survey year for aboveground woody and leaf carbon density, 
respectively. Subscripts sim and obs indicate simulated and observed 
values, respectively.

In addition to optimization using 11‐year data, we also performed 
optimization using 1‐ to 5‐year‐old stand data to investigate param‐
eter variability during the afforestation and plant growth phases of 
the project. We performed optimization at three different phases 
with different parameters to represent carbon fixation during each 
phase: (i) the phase before implementation of the afforestation 
project (“planning” phase), using the default parameters; (ii) the first 
monitoring phase at year 5, with parameters optimized using stand 
data for years 1–5; and (iii) an updated monitoring phase at year 11, 
with parameters optimized using stand data for years 1–11. The field 
survey at year 11 was performed as part of this study and yielded 
the tree‐ring data and total D2 and D2H for each quadrat; however, 
there was no field survey at year 5. Instead, we simply used the data 
for years 1–5 estimated from the allometric relationships and the 
tree‐ring measurements from the 11‐year‐old stand.

2.5 | 30‐year carbon fixation

In this study, we estimated the carbon fixation in each carbon pool 
over the project period (30 years as in some approved CDM‐AR 
monitoring methodology). The goal was to assess total carbon 
fixation and the variability associated with ecophysiological pa‐
rameters that are individually tuned to three different phases 
as described in Section 2.42.4: before implementation, year 5 

monitoring, and year 11 updated monitoring. We estimated the 
variability in carbon fixation of above‐ and belowground woody bi‐
omass and leaf biomass at the site for 30 years after afforestation 
using climate‐forcing data for 1981–2010. To reduce the impact of 
climate anomalies on plant carbon fixation in the simulation, the 
model was driven by repeating the 30‐year climate‐forcing data 
cyclically from the beginning of each year, with atmospheric CO2 
concentrations for 1981–2010, and then averaging the resulting 
ensemble of estimated carbon pools. In addition to the simulation 
using the model fully tuned by the observations of eleven years, 
we estimated the carbon fixation using default parameters and 
those tuned with observations from the stand at ages 1–5 years. 
These processes yield simulations for the planning phase, with up‐
dated predictions for the implementation phase of an afforesta‐
tion project.

3  | RESULTS

3.1 | Biomass variability and meteorological 
conditions at the study site

We determined the allometric relationships between D and H and the 
dry weights of aboveground woody biomass (trunks and branches), be‐
lowground woody biomass, and leaf dry weight for E. ulmoides using 
the data from the biometric survey (Figure 3). The relationships were 
well approximated by straight lines. The parameters a and b of Equation 
(1) for aboveground woody parts were 373.5 and 3.2, respectively; for 
belowground woody parts they were 162.6 and 1.2, respectively. The 
parameters c and d of Equation (2) for leaves were 392.3 and 0.0, re‐
spectively. The carbon densities (AC, BC, and LC) for years 1–11 were 
estimated using the total D2 and D2H of the 11‐year‐old stand, the al‐
lometric relationships (Figure 3), the D2 and D2H for each year as deter‐
mined from ring analysis, and the measured fractional carbon content of 
aboveground woody parts (0.46) and leaves, (0.45; Figure 4). The carbon 
densities for AC, BC, and LC at year 11 were 1.81, 0.86, and 0.22 kg‐C/
m2, respectively. These values were used as measured carbon pools for 
validation of the model. The standard deviations of estimated carbon 
densities were based on the variability of D in the tree‐ring analysis. 
The mean ratio of the belowground carbon density to the aboveground 
carbon density (trunks and branches) over 11 years was 0.47.

3.2 | Sensitivity analysis of carbon pools to 
ecophysiological parameters

We investigated sensitivity of AC and LC to ecophysiological param‐
eters by varying individual parameters by ±30% and ±60% from de‐
fault values to select the parameters for optimization for reproducing 

f=
1

2
�

n−1
�

+WA+WL

⎧

⎪

⎨

⎪

⎩

n−1
�

i=1

�

�

�

�

�

�

ACi,sim−ACi,obs

ACi,obs

�2

+

n−1
�

i=1

�

�

�

�

�

�

LCi−LCi,obs

LCi,obs

�2

+WA×

�

�

�

�

�

�

ACn,sim−ACn,obs

ACn,obs

�2

+WL×

�

�

�

�

�

�

(LCn,sim−LCn,obs)

LCn,obs

�2⎫

⎪

⎬

⎪

⎭

, (8)



8032  |     MIYAUCHI et al.

measured biomass carbon (Figures 5 and 6). The estimates of AC 
and LC at the 30‐year stand age were 6.89 and 0.13 kg‐C/m2 using 
the default parameters. Both AC and LC at the 30‐year stand age 
varied with changes in the seven parameters, namely FRC:LC 
(5.80–8.56 and 0.12–0.16 kg‐C/m2, respectively), SC:LC (3.27–9.15 
and 0.12–0.15 kg‐C/m2), CRC:SC (6.67–7.12 and 0.126–0.133 kg‐C/
m2), SLA (6.01–7.62 and 0.12–0.17  kg‐C/m2), gsmax (6.20–8.65 and 
0.11–0.16  kg‐C/m2), VPDf (6.71–7.15 and 0.13–0.14  kg‐C/m

2), and 
VPDi (6.78–7.62 and 0.13–0.14  kg‐C/m

2). These are the ranges of 
variation when the respective parameters were ±60% of default pa‐
rameter values.

FRC:LC controls the allocation of photosynthetic production to 
fine root carbon and LC in the model, with LC increasing with de‐
creasing FRC:LC. AC is estimated by multiplying LC by SC:LC in the 
model (Running & Hunt, 1993), so AC and LC show a high sensitivity 
to FRC:LC and SC:LC allocation parameters.

The sensitivity of the carbon pools to SLA reversed from the 
early to the later stages of the 11‐year plant growth period (note the 
line representing −60% of default SLA in Figures 5 and 6). Changes 
in gsmax strongly affected AC and LC, and the sensitivity of LC also 
reversed around year 5 at gsmax = −60% of the default value. Thus, 

the sensitivity of plant growth to ecophysiological parameters some‐
times changes according to growth stages, and the update of model 
parameters using field survey data every few years is necessary for 
improving the adaptivity of the carbon fixation predictions.

Three parameters, CRC:SC, VPDf, and VPDi, had little effect on 
AC and LC. Although CRC:SC controls the carbon allocation ratio 
between coarse root and aboveground wood (stems or trunks), the 
range of estimated AC at 30‐year stand age was relatively narrow at 
6.67–7.12 kg‐C/m2, even with changes of ±60% from default values. 
These results show that variability in the three parameters CRC:SC, 
VPDf, and VPDi had negligible effects on carbon pool estimates in our 
studies, and thus, CRC:SC was set to the measured ratio of BC to AC 
averaged over eleven years (0.47), and we used the default parameter 
values for deciduous broadleaf forest for both VPDf, and VPDi. In this 
study, therefore, we selected four parameters, FRC:LC, SC:LC, SLA, 
and gsmax, to fit estimates of AC and LC to the observations.

3.3 | Model tuning

We tested derivative‐free global methods in Dakota to adjust the 
selected parameters to represent the measured biomass growth 

F I G U R E  3  Allometric relationships between above‐ and belowground biomass and diameter at breast height for each tree trunk diameter 
(D) and tree height (H), and between leaf biomass and D, for 11‐year‐old Eucommia ulmoides
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of each plant organ. The value of the object function minimized by 
coliny DIRECT, which showed the best performance, was 0.118. 
Table 2 shows a comparison between the results using nonweighted 
and weighted object functions and AC and LC at 11 years. The mini‐
mized nonweighted (WA  = WL  =  1) object function in Equation (8) 
using 1‐ to 11‐year‐old stand data was 0.225, whereas the weighted 
(WA = 25, WL = 5) object function was 0.118, where the best weight 
coefficients were determined by trial and error. The weight factors 
were not calibrated using the optimization method because of the 
computational cost. The weight functions we used are designed to 
prioritize the information from the latest field survey. The model 
simulation optimized with the weighted object function showed a 
closer match to the observed AC and LC, showing that updates using 
the latest field survey data can improve the carbon pool estimates at 
an afforestation site.

The four selected ecophysiological parameters were adjusted 
to fit the observed biomass variability for the first 5 years and for 
the entire 11‐year period (Table 3). All parameters showed variations 
relative to the default values as a result of tuning the model. Three 
of the adjusted parameters showed differences between the first 
5 years and entire 11‐year period: FRC:LC, SC:LC, and gsmax. The ad‐
justed FRC:LC and gsmax for the first 5 years (2.36 and 0.008 m/s, 
respectively) increased in magnitude relative to the default settings 

(1.0 and 0.005 m/s), whereas those for the entire 11 years (0.53 and 
0.003 m/s) were lower. The adjusted SC:LC was lower that the de‐
fault (2.20) for both the first five years (1.23) and the entire 11 years 
(1.76). These results show that the appropriate values for ecophys‐
iological parameters can vary with stand age. Specific leaf area ad‐
justed for both the 5‐year and 11‐year periods (15 m2/kg‐C) was half 
the default value (30 m2/kg‐C).

When using the default settings, AC was overestimated for the 
entire 11‐year period and reached 2.27 kg‐C/m2 at the stand age of 
11 years (Figure 7a). The root mean square error (RMSE) between the 
observed and estimated AC was 0.54 kg‐C/m2. The estimates using 
default settings overestimated LC and BC by the stand age of 7 years 
and then switched to an underestimate after 9‐year stand age, with 
the discrepancies between the observations and the estimates ex‐
panding every year. The RMSEs for LC and BC between observa‐
tions and estimates with default settings were 0.06 and 0.14 kg‐C/
m2, respectively. The estimates using parameters adjusted for the 
first 5 years fitted the observed AC, LC, and BC by 5‐year stand age, 
but underestimated them after 6‐year stand age (Figure 7b). RMSEs 
for AC, LC, and BC for years 1–5 were 0.01, 0.01, and 0.01 kg‐C/
m2, respectively; for years 6–11 they were 0.35, 0.05, and 0.16 kg‐C/
m2, respectively; and for the entire 11 years they were 0.35, 0.05, 
and 0.16 kg‐C/m2, respectively. AC, LC, and BC estimated using the 

F I G U R E  5  Sensitivity of aboveground woody‐carbon density to seven ecophysiological parameters. Curves represent the model 
predictions when parameters were changed by ±60%, ±30%, and 0% (default of Biome‐BGC). CRC, coarse root carbon; FRC, fine root 
carbon; gsmax, maximum stomatal conductance; LC, leaf carbon; SC, stem carbon; SLA, specific leaf area; VPDf, vapor pressure deficit at the 
final reduction of stomatal conductance; VPDi, vapor pressure deficit at the initial reduction of stomatal conductance
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parameters adjusted for the entire 11‐year period agreed well with 
observations (RMSE = 0.02, 0.02, and 0.01  kg‐C/m2, respectively; 
Figure 7c).

3.4 | 30‐year carbon fixation

We estimated the carbon fixation for 30 years after planting at the 
afforestation site to assess the impact on carbon pool estimates of 
using ecophysiological parameters that were individually optimized 
for three different project phases (see Section 2.52.5; Figure 8 and 
Table 4). We also estimated the carbon fixation in the soil pool. 
The soil carbon pool is affected by estimates of AC, BC, and LC 
because the soil pool varies with the carbon supplied through lit‐
ter. There were large differences in plant biomass and total carbon 
pools estimated with the three parameter settings, namely the de‐
fault values (phase i), those adjusted for the initial 5  years (phase 
ii), and those adjusted for the entire 11 years (phase iii). The aver‐
age fixation rates of leaf and soil carbon (0.004–0.006 and −0.04 to 
−0.01 kg‐C m−2 year−1, respectively) were very low compared to AC 

F I G U R E  6  Sensitivity of leaf carbon density to seven ecophysiological parameters. Curves represent the model predictions when 
parameters were changed by ±60%, ±30%, and 0% (default of Biome‐BGC). See caption to Figure 5 for an explanation of the parameters
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Carbon density (kg‐C/m2)

Minimized ob‐
ject function

Aboveground woody 
(relative error)

Leaf (relative 
error)

Observed 1.812 0.223  

Simulated with nonweighted 
object function

1.815 (0.002) 0.173 (0.226) 0.225

Simulated with weighted 
object function

1.812 (0.000) 0.174 (0.220) 0.118

TA B L E  2  Comparison of observed 
and simulated aboveground woody and 
leaf carbon density for the year of the 
field survey (year 11) using the optimized 
models with nonweighted and weighted 
object functions using the coliny DIRECT 
method of Dakota (Adams et al., 2013)

TA B L E  3  Default ecophysiological‐characteristic parameters 
and those tuned by the coliny DIRECT method of Dakota (Adams et 
al., 2013) using the biomass data in the first 5 years and the entire 
11‐year period

  Default 5‐year 11‐year

FRC:LC (ratio) 1.00 2.36 0.53

SC:LC (ratio) 2.20 1.23 1.76

SLA (m2/kg‐C) 30.00 15.00 15.00

gsmax (m/s) 0.005 0.008 0.003

Abbreviations: FRC, fine root carbon; gsmax, maximum stomatal con‐
ductance; LC, leaf carbon; SLA, specific leaf area.
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(0.11–0.26 kg‐C m−2 year−1). The total carbon density at the end of 
the 30‐year project estimated by the model tuned during the first 5‐
year period (11.55 kg‐C/m2) was approximately 30% lower than that 
from the model tuned for the 11‐year period (17.86 kg‐C/m2); this 
result shows the variability of carbon fixation rates and ecophysi‐
ological parameters between project phases. The total combined 
carbon fixation of AC, BC, LC, and soil as estimated using param‐
eters optimized for each phase ranged from 4.2 to 10.5 kg‐C/m2 in a 
30‐year projection (Figure 8).

4  | DISCUSSION

4.1 | Parameter variation with plant growth stage

The ecophysiological parameters FRC:LC, SC:LC, SLA, and gsmax, 
having shown a high contribution to AC and LC, were optimized 
to reproduce the temporal changes in carbon pools for each plant 
organ. They also showed variability with plant growth stage. FRC:LC 
optimized using the data from years 1 to 5 was higher (2.36) than 

F I G U R E  7  Measured above‐ and 
belowground woody biomass carbon and 
leaf biomass carbon, and those simulated 
using (a) the default ecophysiological‐
characteristic parameters, (b) parameters 
tuned by Dakota using the observed 
biomass in the first 5 years, and (c) 
parameters tuned using the entire 11‐year 
period
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F I G U R E  8  Temporal changes in leaf, 
above‐ and belowground woody, and soil 
carbon density simulated using (a) the 
default ecophysiological‐characteristic 
parameters, (b) those tuned using data 
from the first 5 years, and (c) those 
tuned using data from the entire 11‐year 
period of the implementation phase of 
the plantation project (30 years). The 
values are the ensemble averages of 
simulation runs with cyclic use of 30‐year 
meteorological data
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the default (1.0), and that optimized by 1–11‐year data was lower 
(0.53). This difference reflects a change in growth patterns where 
the production of fine roots, and increases in root length, are greater 
in younger forests (Grier, Vogt, Keyes, & Edmonds, 1981). The mean 
and standard deviation of FRC:LC in the data collected for general 
deciduous broadleaf forest of Biome‐BGC were both 1.2 (White et 
al., 2000), and FRC:LC at phases ii and iii in our study fell within this 
range. Ellenberg, Mayer, and Schauermann (1986) reported similar 
values (0.55) in Fagus stands.

Values of SC:LC optimized using 1‐ to 5‐year and 1‐ to 11‐year 
data were both lower (1.23, 1.76, respectively) than the default value 
(2.20). These lower values mean that the proportional allocation of 
carbon to leaf compared to stem was higher than that for a generalized 
deciduous broadleaf forest in Biome‐BGC. This observation might re‐
flect the phenomenon where carbon allocation to leaf becomes higher 
in arid conditions (Orians & Solbrig, 1977). The mean SC:LC value and 
standard deviation of the collected data for Biome‐BGC were 2.20 
and 1.10, respectively (White et al., 2000). The optimized values in 
this study fell within this range. Several other studies reported similar 
values in deciduous broadleaf stands (e.g., Betula pubescens [White et 
al., 2000], Fagus crenata [Kakubari, 1977; White et al., 2000]).

BC was reproduced by using the ratio of BC to AC as CRC:SC 
(0.47) estimated from field survey data, which is higher than the de‐
fault value (0.23). This demonstrated that the coarse root growth 
corresponded to a higher allocation of photosynthetic production in 
roots with the response of trees to water stress (Silva et al., 2004). 
CRC:SC had a small contribution to AC and LC, but this parameter 
is primarily important for reproducing BC. Because CRC:SC did not 
affect AC or LC, we were able to simply use the ratio of measured AC 
and BC. If CRC:SC had affected AC and LC by supplying carbon and 
nitrogen through litter, then CRC:SC should have been considered as 
a parameter to optimize.

Specific leaf area as optimized using 5‐year and 11‐year data 
showed a lower value (15 m2/kg‐C) than the default value for de‐
ciduous broadleaf forests (30 m2/kg‐C). In semi‐arid and arid areas, 
leaves protect themselves from water stress and reduce transpi‐
ration by thickening (Orians & Solbrig, 1977). Eucommia ulmoides 

is known to accumulate trans‐polyisoprene gum in its tissues 
(Nakazawa et al., 2009) and that could have influenced leaf thick‐
ness. The mean SLA and standard deviation from the collected data 
for Biome‐BGC were 32 and 11 m2/kg‐C, respectively (White et al., 
2000). The optimized SLA in this study was somewhat lower than 
this range. This can be explained by the common tendency of leaf 
thickening in arid climates (Onoda et al., 2011). Specific leaf areas 
in deciduous broadleaf stands have been reported as 16.8 m2/kg‐C 
in an Ulmus americana stand (Reich, Kloeppel, Ellsworth, & Walters, 
1995) and 16.3 m2/kg‐C in a Godmania macrocarpa stand (Holbrook, 
Whitbeck, & Mooney, 1995).

The gsmax optimized using 5‐year data was higher (0.008) than the 
default value (0.005) but lower than the default using 11‐year data 
(0.003). There are few data for gsmax, and just one reference (Kelliher, 
Leuning, Raupach, & Schulze, 1995) was used in Biome‐BGC. Plants 
under semi‐arid and arid conditions in general survive by reducing 
transpiration through lower stomatal conductance (Orians & Solbrig, 
1977). In the 11‐year‐old stand, transpiration increased with in‐
creased LC and leaf area, so leaves may have reduced transpiration 
by decreasing gsmax.

These results show that our optimized parameters fell within ac‐
tual ranges reported by other studies, and the values at each phase 
reflect the behavior of plants in semi‐arid and arid conditions. In 
this study, the parameters for reproducing the phenomena under 
semi‐arid conditions were selected a priori for the sensitivity anal‐
ysis. That selection contributed to the reproducibility of the carbon 
pools, but at the same time it might have been arbitrary.

4.2 | Monitoring method for afforestation projects 
in this study

We demonstrated a monitoring methodology for afforestation pro‐
jects using process‐based model and field surveys. Conventional 
monitoring (e.g., AR‐ACM0003 of CDM [Methodology for 
Afforestation and Reforestation of Lands except Wetlands]; 
UNFCCC, 2013) includes field surveys every few years for monitor‐
ing plant carbon pools and enhanced QA/QC. This study used the 

TA B L E  4  Carbon density in the forest carbon pools at the end of the 30‐year afforestation project, and average carbon fixation 
rates over the 30 years as estimated (i) using the default ecophysiological‐characteristic parameters (as in the planning phase), (ii) using 
parameters tuned with data for the first 5 years after planting, and (iii) using parameters tuned using data from the entire 11‐year period of 
the implementation phase

 

Average ± standard deviation of carbon density at the end of 
30‐year project (kg‐C/m2)

Average carbon fixation rates for 30 years 
(kg‐C m−2 y−1)

(i) (ii) (iii) (i) (ii) (iii)

Leaf 0.12 ± 0.01 0.10 ± 0.01 0.19 ± 0.01 0.004 0.003 0.006

Aboveground woody 7.00 ± 0.08 3.17 ± 0.06 7.80 ± 0.07 0.23 0.11 0.26

Belowground woody 1.61 ± 0.02 1.50 ± 0.03 3.69 ± 0.03 0.05 0.05 0.12

Soil 7.02 ± 0.02 6.78 ± 0.02 6.18 ± 0.05 −0.01 −0.02 −0.04

Total 15.75 ± 0.11 11.55 ± 0.08 17.86 ± 0.08 0.28 0.14 0.35

Note: The carbon density values at 30 years are the ensemble averages of simulation runs with the cyclic use of 30‐year meteorological data begin‐
ning in each year. Standard deviations are also shown.
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mandatory field survey for model tuning, and the monitoring method 
that we propose is additionally applicable to conventional methods.

There are few studies using a process‐based model in the for‐
est management field because of the requirement for large amounts 
of information that are not readily available or easily obtained 
(Landsberg, Johnsen, Albaugh, Allen, & McKeand, 2001). It is there‐
fore beneficial to have model parameter information to reproduce 
plant growth. The model, once tuned, would be reusable for the next 
project or another project with the same tree species and climate 
conditions. Adaptive monitoring by using a tuned model with field 
surveys could help obtain sustainable ecosystem services.

The model parameter optimization scheme demonstrated that it 
is possible to adaptively estimate each plant carbon pool in 1‐ to 11‐
year‐old stands (Figure 7c). The parameters describing ecophysio‐
logical characteristics changed with the three phases of the project, 
and there was uncertainty in the prediction of carbon fixation for 
30 years using the parameters optimized for each phase (Figure 8 
and Table 4). A reliable monitoring method that incorporates the 
uncertainties at each plant growth stage promotes positive out‐
comes of afforestation projects, such as acquiring carbon credits 
through market mechanisms. Reducing the uncertainty of the pre‐
diction using ecophysiological parameters requires the validation 
of ecophysiological characteristics by field survey every few years. 
Because this method requires a field survey every few years, it is 
consistent with the actual implementation of projects. Increasing 
the monitoring frequency can greatly contribute to the reduction of 
uncertainty in young stands if projects can afford the monitoring 
costs.

The process‐based approach can support forest inventory‐ and 
literature‐based approaches adapting changes of growth condi‐
tion, noncommon species, and observation gap. Zhou et al. (2014) 
demonstrated the relationship between the biomass carbon density 
and forest age on a plantation by using the forest inventory and es‐
timated carbon storage well. However, they also mentioned some 
uncertainties. For example, using a relationship established at a pro‐
vincial scale and the data from the national forest inventory for only 
one phase of forest growth can easily cause error. The other un‐
certainties arose because the calculation of carbon storage resulted 
from the hypothesis that plantation growth followed the growth 
equation, and some plantings were affected by geographic and cli‐
mate conditions. Models incorporating climate as a driving force and 
ecophysiological processes can mitigate these problems because 
they accommodate environmental changes.

As the next step resulting from this study, the process‐based 
approach could be used in conjunction with forest management 
models in assessing both CO2 mitigation and other ecosystem ser‐
vices concerned with forest management strategy and human ac‐
tivity. Forest management models can simulate carbon storage, 
plant growth, timber volume, and management effects of thinning 
and cutting (Lemma, Kleja, Olsson, & Nilsson, 2007; Ooba, Hayashi, 
Machimura, & Matsui, 2014). The growth process in these models is 
estimated on the basis of yield tables and forest inventory without 
accounting for changes in climate and environmental conditions. We 

focused on required monitoring, and thus, we estimated carbon fixa‐
tion and uncertainty by using a process‐based model that calculated 
photosynthetic productivity based on meteorological forcing data 
and ecophysiological parameters. This can address concerns about 
the effects of changes in climate and environmental conditions, 
and it can also incorporate limited accessible data such as that for 
E. ulmoides stands planted under changing land use. The monitoring 
method used in this study can contribute to afforestation projects 
such as CDM‐AR and other market mechanisms that strictly require 
highly reliable monitoring.

4.3 | Limitations of this study

Most studies assessing carbon storage in CDM‐AR projects have 
generally focused on no‐project‐implemented baseline carbon stor‐
age (e.g., Dushku & Brown, 2003), and there are no studies assessing 
CDM‐AR with long‐term monitoring using a process‐based model. 
Our approach requires regular field surveys to ensure the validation 
of the model, resulting in increases in the total cost of the project. 
This is a bottleneck in our approach; it would be acceptable, how‐
ever, in situations where the afforestation project is aimed at carbon 
fixation and field surveys are obligatory.

The object function using relative error and weighting coeffi‐
cients for AC and LC was designed to reproduce each plant organ 
pool (Equation 8). The weighted AC and LC for the year of the field 
survey were applied, and their values were determined by trial and 
error. We prioritized LC at year 11 (the year of the field survey) by a 
factor of 5 over the other years, and AC at year 11 by a factor of 25, 
on the basis of the ratio of their absolute values (in Equation 8), but 
these weight factors could vary at other sites.

In this study, the available data were restricted to trunk diameter 
at breast height, tree height, and the dry weight of each carbon pool 
in an 11‐year‐old E. ulmoides stand. We estimated AC, BC, and LC 
using the allometric relationships based on these data, but the period 
for which biomass data were available was shorter than the project 
term (30 years in CDM‐AR). This data limitation might also affect the 
spatial representativeness of our study. We focused mainly on our 
ability to reproduce carbon storage and changes in each plant organ 
during the afforestation monitoring phases by tuning the model, al‐
though the period with available data was insufficient to make this 
assessment over the project term. The growth rates and the eco‐
physiological conditions might change for years 12–30. Our meth‐
ods were designed to estimate carbon fixation in the plantation after 
a land use change and to investigate the uncertainty in the model 
predictions by model tuning at each plant growth stage, but more 
observations over a longer period are needed to support our results.

Our method adaptively updates the prediction by observations 
every few years, which corresponds to long‐term predictions under 
limited conditions that do not cause phenomena beyond the model 
representation (fire and wind disturbances, exceptional drought, 
forest fire, pest attack). Biome‐BGC has no capacities responding 
to drastic environmental changes. For sustainable management 
and monitoring of afforestation, the incorporation of processes for 
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above phenomena or the coupling with other management models 
is required.

5  | CONCLUSIONS

To meet the requirement of highly reliable monitoring of afforesta‐
tion projects aimed at mitigating CO2 levels, we have described a 
monitoring methodology that combines a process‐based ecosystem 
model simulation with field surveys for monitoring different phases 
of a project. The requirements of the model for afforestation pro‐
jects were that the model reproduces carbon storage and changes 
in each plant organ using adjustable parameters, as well as defining 
the uncertainty of prediction using adjusted parameters and envi‐
ronmental conditions.

We demonstrated that the model can reproduce carbon density 
for AC, BC, and LC using optimized ecophysiological model parame‐
ters (FRC:LC, SC:LC, SLA, and gsmax) for Biome‐BGC as a case study 
in a E.  ulmoides plantation in Lingbao City, Henan Province, China. 
The ecophysiological parameters were optimized by a deviation‐free 
global optimization method, and the values of the optimized param‐
eters changed with plant growth stages. The changes in parameters 
were consistent with the general behavior of plants under semi‐arid 
and arid climate conditions. The predicted carbon fixation for a 30‐
year afforestation project using parameters optimized at each phase 
showed uncertainty. The total combined carbon fixation of AC, BC, 
LC, and soil estimated by parameters optimized for each phase was in 
the range of 4.2–10.5 kg‐C/m2 for the 30‐year project. Updating the 
parameters using field surveys every few years is important for reduc‐
ing the uncertainty of the estimates and for determining the changes 
in ecophysiological characteristics at each plant growth stage.

This study shows how to estimate each plant carbon pool and 
understand the parameter changes with plant growth stages and the 
uncertainty of predicted carbon fixation in a plantation by an opti‐
mization scheme using field survey data. We expect the application 
of this monitoring method to support the management of afforesta‐
tion projects by carbon fixation estimation adapting to observation 
gap, noncommon species, and variable growing conditions such as 
climate change, land use change.
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APPENDIX 1

TA B L E  A 1  Optimized parameters and the minimized object function determined by five algorithms for derivative‐free global 
optimization methods: the dividing rectangles (DIRECT) method of the common optimization library interface (coliny DIRECT), the DIRECT 
method of North Carolina State University library (NCSU DIRECT), the efficient global optimization method (EGO), the coliny evolutionary 
algorithm (coliny EA), and the single‐objective genetic algorithm (SOGA)

  Coliny DIRECT NCSU DIRECT EGO Coliny EA SOGA

FRC:LC 0.53 1.26 1.58 0.56 0.58

SC:LC 1.76 1.91 2.28 1.25 1.59

SLA 15.0 15.0 20.3 10.5 8.8

gsmax 0.003 0.005 0.005 0.003 0.007

Object function 0.118 0.165 0.190 0.166 0.123

Abbreviations: FRC, fine root carbon; gsmax, maximum stomatal conductance; LC, leaf carbon; SC, stem carbon.
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