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Abstract
Afforestation	projects	 for	mitigating	CO2	emissions	 require	 to	monitor	 the	carbon	
fixation	and	plant	growth	as	key	indicators.	We	proposed	a	monitoring	method	for	
predicting	carbon	fixation	in	afforestation	projects,	combining	a	process‐based	eco‐
system	model	 and	 field	 data	 and	 addressed	 the	 uncertainty	 of	 predicted	 carbon	
fixation	and	ecophysiological	characteristics	with	plant	growth.	Carbon	pools	were	
simulated	using	the	Biome‐BGC	model	tuned	by	parameter	optimization	using	meas‐
ured	carbon	density	of	biomass	pools	on	an	11‐year‐old	Eucommia ulmoides	plantation	
on	Loess	Plateau,	China.	The	allocation	parameters	fine	root	carbon	to	leaf	carbon	
(FRC:LC)	and	stem	carbon	to	leaf	carbon	(SC:LC),	along	with	specific	leaf	area	(SLA)	
and	maximum	stomatal	conductance	 (gsmax)	strongly	affected	aboveground	woody	
(AC)	and	leaf	carbon	(LC)	density	in	sensitivity	analysis	and	were	selected	as	adjust‐
ing	parameters.	We	assessed	 the	uncertainty	of	 carbon	 fixation	and	plant	growth	
predictions	by	modeling	three	growth	phases	with	corresponding	parameters:	(i)	be‐
fore	 afforestation	using	default	 parameters,	 (ii)	 early	monitoring	using	parameters	
optimized	with	data	from	years	1	to	5,	and	(iii)	updated	monitoring	at	year	11	using	
parameters	 optimized	with	 11‐year	 data.	 The	 predicted	 carbon	 fixation	 and	 opti‐
mized	parameters	differed	in	the	three	phases.	Overall,	30‐year	average	carbon	fixa‐
tion	rate	in	plantation	(AC,	LC,	belowground	woody	parts	and	soil	pools)	was	ranged	
0.14–0.35	kg‐C	m−2	y−1	in	simulations	using	parameters	of	phases	(i)–(iii).	Updating	
parameters	by	periodic	field	surveys	reduced	the	uncertainty	and	revealed	changes	
in	ecophysiological	characteristics	with	plant	growth.	This	monitoring	method	should	
support	management	of	afforestation	projects	by	carbon	fixation	estimation	adapt‐
ing	to	observation	gap,	noncommon	species	and	variable	growing	conditions	such	as	
climate	change,	land	use	change.
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1  | INTRODUC TION

Planted	forests,	including	both	forest	plantations	and	rubber	plan‐
tations	 but	 not	 oil‐palm	plantations	 or	 other	 agricultural	 planta‐
tions,	account	for	7%	of	global	forest	area	(FAO,	2015).	Although	
natural	forest	area	declined	from	3,961	Mha	in	1990	to	3,721	Mha	
in	2015,	planted	forest	area	increased	from	168	Mha	to	278	Mha	
over	 the	 same	period,	helping	 to	mitigate	 the	annual	 rate	of	net	
forest	 loss	 (Keenan	et	al.,	2015).	Afforestation	and	reforestation	
could	reduce	the	harvest	pressure	on	natural	forests	by	supplying	
timber	 (Fenning	&	Gershenzon,	2002)	and	reduce	surface	runoff	
and	soil	erosion	in	degraded	landscapes	through	rainfall	intercep‐
tion	(Nunes,	Almeida,	&	Coelho,	2011).	Forest	management	using	
afforestation	 and	 reforestation	 is	 also	 an	 effective	 tool	 for	 pro‐
moting	 carbon	 dioxide	 (CO2)	 absorption	 through	 plant	 regrowth	
(Keith,	Mackey,	&	Lindenmayer,	2009;	Noormets	et	al.,	2015;	Xu,	
Wen,	 Zhu,	 &	 He,	 2017).	 Indeed,	 the	 recent	 promotion	 of	 affor‐
estation	 and	 reforestation	 provides	 carbon	 storage,	 resulting	 in	
an	increase	of	net	CO2	uptake	by	the	forests	in	China	(Streets	et	
al.,	2001).	Afforestation	and	reforestation	therefore	are	mitigation	
and	adaptation	strategies	for	climate	change	 in	the	forest	sector	
(Ravindranath,	2007).

Afforestation	projects	under	market	mechanisms	in	the	Kyoto	
Protocol	and	the	Paris	Agreement	aim	to	reduce	CO2	while	support‐
ing	sustainable	development.	The	Clean	Development	Mechanism	
(CDM)	 is	 part	 of	 the	 emerging	 carbon	market	 established	 under	
the	terms	of	 the	Kyoto	Protocol	and	aims	to	achieve	sustainable	
development	in	developing	countries	and	cost‐effective	reduction	
of	greenhouse	gases	in	developed	countries	(Olsen,	2007).	Olsen	
(2007)	 classified	 CDM	 projects	 into	 a	 typology	 of	 four	 groups	
according	to	their	key	findings:	forward‐looking	studies,	sustain‐
ability	impact	studies,	carbon	forestry	studies,	and	mixed	studies.	
Afforestation	and	reforestation	are	accepted	as	eligible	activities	
in	 the	 carbon	 forestry	 studies	 of	 CDM	 projects.	 Globally,	 more	
than	760	Mha	of	 land	are	 identified	as	biophysically	 suitable	 for	
CDM	afforestation	and	reforestation	(CDM‐AR)	activities	(Zomer,	
Trabucco,	 Bossio,	&	Verchot,	 2008).	 In	mid‐2009,	 however,	 only	
four	projects	were	registered	as	CDM‐AR	with	the	United	Nations	
Framework	 Convention	 on	 Climate	 Change	 (UNFCCC)	 out	 of	 a	
total	of	1,665	registered	projects	(Thomas,	Dargusch,	Harrison,	&	
Herbohn,	2010).	The	bottlenecks	in	the	development	of	CDM‐AR	
projects	can	be	attributed	 to	both	 the	 length	of	 time	 it	 takes	 to	
gain	 revenue	 from	 the	 project	 and	 a	 lack	 of	 the	 knowledge	 and	
technical	capacity	required	to	meet	the	demands	of	the	CDM	reg‐
istration	process	(Thomas	et	al.,	2010).

In	the	approved	methodology	for	CDM‐AR,	it	is	stipulated	that	
projects	will	monitor	changes	in	carbon	stocks	in	five	pools	after	
afforestation	 or	 reforestation—aboveground	 biomass,	 below‐
ground	biomass,	dead	wood,	litter,	and	soil	organic	carbon—based	
on	quality	 assurance/quality	 control	 (QA/QC)	procedures	 for	 in‐
ventory	operations	(UNFCCC,	2013).	The	more	advanced	methods	
in	 the	guide	 recommend	the	application	of	direct	measurements	

of	the	carbon	stock	growth	rate	and	its	validation	using	modeling	
approaches	 (Penman	et	al.,	2000),	allowing	an	application	 to	na‐
tional	circumstances	by	fine	temporal	and	spatial	scale	and	closer	
link	 between	biomass	 and	 soil	 dynamics.	However,	 this	 requires	
technical	 competence	 and	 scientific	 expertise	 (Palm,	 Ostwald,	
Berndes,	&	Ravindranath,	 2009).	 Previous	 studies	 in	 general	 fo‐
cused	on	 the	 assessment	 of	 no‐project‐implemented	 carbon	dy‐
namics	baselines	based	on	empirical	models	or	forest	inventories	
(Dushku	&	Brown,	2003;	Dutschke,	Butzengeiger,	&	Michaelowa,	
2006).

Selection	of	the	model	used	in	a	project	and	the	model	parame‐
trization	and	calibration	are	critical	issues	for	proper	documentation	
of	the	validity	and	completeness	of	the	data.	Diagnostic	biosphere	
models	using	remote‐sensing	data	would	be	useful	in	CDM‐AR	proj‐
ects	because	of	 the	complete	coverage	of	 information	 in	 the	sub‐
jective	study	area,	which	enables	the	interpretation	of	land	use	and	
plant	phenology.	However,	most	conventional	diagnostic	biosphere	
models	 demonstrate	 low	 predictive	 skill	 and	 show	 uncertainty	 in	
simulations	 according	 to	 the	 quality	 of	 available	 satellite	 observa‐
tions,	and	stress	factors	without	biophysical	processes	(Sasai,	Ichii,	
Yamaguchi,	&	Nemani,	2005).	Prognostic	biosphere	models,	or	pro‐
cess‐based	models,	predict	carbon	dynamics	in	the	biosphere	based	
on	 biogeochemical	 processes	 in	 individual	 carbon	 components	
driven	mainly	by	climate	variability.	Changes	in	carbon	stocks	in	the	
five	 specified	 pools	 under	 various	 circumstances	 are	 predictable	
using	process‐based	models,	but	applicability	of	the	models	to	CDM‐
AR	projects	critically	depends	on	appropriate	model	validation	with	
ground	observations.

Several	 studies	 have	 investigated	 validation	 schemes	 for	 prog‐
nostic	 biosphere	 models	 (e.g.,	 Braswell,	 Sacks,	 Linder,	 &	 Schimel,	
2005;	Fox	et	al.,	2009;	Mo,	Chen,	Ju,	&	Black,	2008;	Santaren,	Peylin,	
Viovy,	&	Ciais,	2007;	Trudinger	et	al.,	2007),	although	these	studies	
were	designed	to	examine	carbon	exchange	rates	between	the	atmo‐
sphere	and	the	biosphere,	not	carbon	pools	and	growth	in	plant	or‐
gans	and	soil.	Cienciala	and	Tatarinov	(2006)	estimated	aboveground	
woody	biomass	in	managed	forests	using	adjusted	ecophysiological	
and	 nitrogen	 parameters.	 Zhao,	 Xiang,	 Peng,	 and	 Tian	 (2009)	 per‐
formed	sensitivity	analysis	and	prediction	for	each	plant	organ	 in	a	
managed	 forest,	 comparing	 long‐term	 fir‐stand	data.	These	 studies	
were	 performed	 in	 managed	 forests	 where	 long‐term	 data	 reflect	
moderately	stable	conditions,	which	differ	from	the	conditions	under	
land	use	changes	for	recovering	degraded	ecosystems.	Saito,	Ito,	and	
Maksyutov	 (2014)	 applied	 the	 assimilation	 scheme	 of	 a	 prognostic	
biosphere	model	to	10‐years	average	aboveground	biomass	and	CO2 
concentration	data	by	combining	it	with	an	atmospheric	tracer	trans‐
port	model,	but	 they	did	not	assess	 the	 temporal	biomass	changes	
or	 other	 carbon	 pools	 such	 as	 leaf	 and	 belowground	 biomass,	 the	
reporting	of	which	 is	 required	 in	CDM‐AR	projects.	Unfortunately,	
there	are	few	studies	on	model	validation	for	carbon‐stock	monitor‐
ing	and	growth	processes	based	on	field	surveys.

In	this	study,	we	quantify	the	growth	processes	of	carbon	stocks	
in	an	afforestation	project	in	China.	This	site	has	been	implemented	
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the	“Grain	for	Green”	program,	which	returns	arable	lands	inappro‐
priate	for	cultivation	to	forests,	and	restores	degraded	ecosystems	
to	healthy	condition.	This	program	supplies	increasing	demands	for	
timber	in	China	and	is	expected	to	increase	vegetation	cover,	lead‐
ing	 to	carbon	sequestration	 (Liu,	 Li,	Ouyang,	Tam,	&	Chen,	2008).	
The	adaptive	monitoring	of	carbon	pools	following	afforestation	is	
necessary	to	assess	the	potential	of	plantations	as	carbon	sinks.	By	
monitoring	the	carbon	pools	in	an	afforestation	project,	we	aim	to	
estimate	carbon	fixation	with	adapting	to	ecophysiological	changes	
and	to	address	the	uncertainty	in	predicting	carbon‐stock	changes	
and	 ecophysiological	 characteristics.	 We	 used	 an	 optimization	
scheme	 for	biophysical	parameters	 in	a	process‐based	model	with	
field	surveys	to	represent	plant	growth	following	afforestation.

2  | MATERIAL AND METHODS

2.1 | Study site and biomass data

The	 study	 site	 is	 an	 11‐year‐old	 Eucommia ulmoides	 plantation	 in	
Loess	Plateau,	consisting	mostly	of	silt	soil,	 in	Lingbao	City,	Henan	
Province,	China	(34°16′N,	110°40′E,	1,000	m	a.s.l).	Annual	average	
air	temperature	and	annual	precipitation	for	1981–2010	measured	at	
Lushi	station,	40	km	southeast	of	the	site,	are	13.7°C	and	686	mm,	
respectively.	Eucommia ulmoides	 is	 one	 of	 the	 common	 deciduous	
broadleaf	trees	in	central	and	southern	China.	The	trees	at	the	study	
site	were	planted	in	1999	on	an	abandoned	cornfield	as	part	of	the	
Grain	for	Green	program	(Cao,	Chen,	&	Yu,	2009;	Wang,	Hu,	Deng,	
Shangguan,	&	Deng,	2018).	This	forest	had	been	surveyed	as	a	can‐
didate	site	for	a	new	afforestation	project	by	a	joint	enterprise	be‐
tween	China	and	Japan	(Hitz,	2010).

To	obtain	biomass	data,	we	conducted	a	field	survey	at	the	E. ul‐
moides	 plantation	 in	2009.	We	measured	 trunk	diameter	at	breast	
height	(D;	m)	and	tree	height	(H;	m)	of	E. ulmoides	trees	(all	11	years	
old).	Survey	of	D	and	H	 in	four	quadrats	in	the	plantation	was	per‐
formed	at	 the	 same	 time	of	biometric	7	model‐tree	 survey.	 Sixty‐
four	samples	from	the	four	quadrats	showed	10.5	±	2.0	cm	in	D	and	
7.8	±	1.8	m	in	tree	height.	By	comparison	of	model	and	quadrat	trees,	
averages	of	D	and	H	of	the	model	trees	biased	by	0.9	cm	and	0.0	m	
from	the	averages	of	quadrat	trees,	respectively.	These	biases	were	
enough	small	to	decide	these	model	trees	as	representatives	in	the	
plantation.

These	 seven	 model	 trees	 were	 harvested	 and	 separated	 into	
aboveground	(trunks	and	branches)	and	belowground	(coarse	roots)	
woody	parts,	and	leaves.	The	dry	weight	(kg)	of	each	part	was	mea‐
sured.	 We	 applied	 allometric	 relationships	 based	 on	 proportional	
relationships	 of	 biomass	 weight	 to	D2	 and	D2H	 (Niklas,	 2004).	 In	
general,	both	the	above‐	and	belowground	biomass	have	allometric	
relationships	with	D	and	H	as	follows:

The	relationship	between	leaf	biomass	and	D	is	as	follows:

The	parameters	a,	b,	c,	and	d	for	E. ulmoides	in	the	present	study	were	
obtained	using	the	measurements	from	the	harvested	trees	fitted	by	
linear	 regression	 using	 least	 squares	 method.	 The	 leaves	 of	 one	 of	
the	 trees	were	extremely	damaged	because	of	drainage	water	 from	
a	nearby	building,	 so	 the	 leaf	biomass	data	 from	 that	 tree	were	not	
included,	and	the	parameters	for	Equation	(2)	were	obtained	from	the	
data	of	six	trees.

To	 estimate	 above‐	 and	 belowground	 and	 leaf	 biomass	 in	 the	
years	prior	 to	 the	 field	 survey,	we	estimated	D	 for	previous	years	
from	 the	 tree	 rings	of	 the	 seven	harvested	 trees.	 The	 tree	 trunks	
were	cut	at	breast	height,	and	we	assumed	that	the	tree‐ring	diam‐
eter	for	each	year	was	the	same	as	D	for	that	year.	Measured	aver‐
age	tree	height	of	1–11	year	measured	by	trunk	analysis	was	used	
for	H.	The	above‐	and	belowground	and	leaf	biomass	for	each	year	
were	estimated	from	Equations	(1)	and	(2)	and	the	mean	value	for	D 
of	each	year.	The	amounts	of	carbon	in	the	aboveground	(AC),	be‐
lowground	 (BC),	and	 leaf	 (LC)	biomass	were	estimated	by	applying	
the	 measured	 percentage	 carbon	 content	 of	 46%	 for	 above‐	 and	
belowground	biomass	and	45%	for	leaves.	The	calculated	mean	car‐
bon	mass	of	cut	trees	(kg‐C)	was	converted	into	carbon	density	per	
unit	land	area	(kg‐C/m2)	using	the	total	of	D2	and	D2H	acquired	from	
measured	D	and	H	of	all	tree	in	four	10	×	15	m	quadrats	(supplied	in	
data	repository).

2.2 | Model description

This	 study	 used	 the	 process‐based	 ecosystem	model	 Biome‐BGC	
(Kimball,	White,	&	Running,	1997;	Running	&	Hunt,	1993;	Thornton	
et	 al.,	 2002;	 Thornton	 &	 Rosenbloom,	 2005;	 White,	 Thornton,	
Running,	&	Nemani,	2000)	to	simulate	the	biomass	growth	and	car‐
bon	fixation	of	each	plant	organ.	Biome‐BGC	predicts	the	carbon	fix‐
ation	of	leaf,	stem,	and	root	associated	with	the	carbon	allocation	of	
photosynthetic	products	to	each	plant	organ	for	six	plant	functional	
types:	deciduous	broadleaf	trees,	deciduous	needle‐leaf	trees,	ever‐
green	broadleaf	trees,	evergreen	needle‐leaf	trees,	C3	grasses,	and	
C4	grasses.	The	photosynthetic	productivity	in	the	model	has	been	
investigated	and	verified	by	various	studies	(e.g.,	Pietsch,	Hasenauer,	
&	Thornton,	2005;	Ueyama	et	al.,	2010;	Wang,	Bauerle,	&	Reynolds,	
2008).	Biome‐BGC	allocates	the	photosynthetic	production	to	each	
plant	organ	on	 the	basis	of	 carbon	allocation	parameters,	 and	 soil	
carbon	is	supplied	through	the	litter	from	plant	organs.

Biome‐BGC	was	driven	with	ecophysiological	parameters,	initial	
site	 information,	and	climate‐forcing	data	at	a	daily	time‐step	with	
point	simulation	at	the	site.	The	input	parameters	for	ecophysiolog‐
ical	 characteristics	 for	 this	 study	 are	 shown	 in	Table	1.	 The	 initial	
site	 information	 included	 the	 site	 characteristics	 of	 elevation	 (m),	
latitude	(degree	N),	albedo,	effective	soil	depth	(m),	first‐year	max‐
imum	leaf	and	stem	carbon	(kg‐C/m2),	atmospheric	nitrogen	depo‐
sition	(kg‐N/m2),	symbiotic	and	asymbiotic	nitrogen	fixation	(kg‐N/
m2),	soil	carbon	content	of	pools	(kg‐C/m2),	soil	nitrogen	content	of	
the	mineral	pool	(kg‐N/m2),	and	soil	texture.	The	nitrogen	input	rate	

(1)y=aD2H+b

(2)y= cD2+d
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from	atmospheric	deposition	to	the	ecosystem	at	the	site	was	fixed	
at	0.002	kg‐N	m−2	y−1,	which	is	the	average	value	in	broadleaf	for‐
ests	 in	various	 regions	of	China	 (Toda	et	al.,	2010).	Soil	 texture	at	
the	 site	was	obtained	 from	 the	 literature	 (Li	&	Shao,	2006)	 as	5%	
sand,	68%	silt,	 and	27%	clay.	The	 initial	 conditions	 for	 soil	 carbon	
and	nitrogen	density	at	the	site	were	simulated	by	running	the	model	

over	 a	 6,000‐year	 period	 with	 the	 default	 plant	 ecophysiological	
parameters	of	C4	annual	grass	and	a	nitrogen	supply	to	the	soil	of	
0.03	kg	m−2	y−1	by	fertilization,	which	was	obtained	from	a	survey	
of	plantation	managers.	In	this	spin‐up	simulation,	50%	of	the	abo‐
veground	crop	biomass	was	 removed	every	year	 to	 represent	har‐
vest	practice	(Penman	et	al.,	2003).

TA B L E  1  Ecophysiological	parameters	used	for	simulations	in	this	study

Ecophysiological parameters (Deciduous broadleaf forest; DBF) Value Source

Transfer	growth	period	as	fraction	of	growing	season 0.2 Default	for	DBF	in	Biome‐BGC

Litter‐fall	as	fraction	of	growing	season 0.2 Default	for	DBF	in	Biome‐BGC

Annual	leaf	and	fine	root	turnover	fraction	(year−1) 1.0 Default	for	DBF	in	Biome‐BGC

Annual	live	wood	turnover	fraction	(year−1) 0.7 Default	for	DBF	in	Biome‐BGC

Annual	whole‐plant	mortality	fraction	(year−1) 0.005 Default	for	DBF	in	Biome‐BGC

Annual	fire	mortality	fraction	(year−1) 0.0025 Default	for	DBF	in	Biome‐BGC

Allocation	(new	fine	root	C:new	leaf	C;	ratio) See	Table	3 Optimized	(default	=	1.0)

Allocation	(new	stem	C:new	leaf	C;	ratio) See	Table	3 Optimized	(default	=	2.20)

Allocation	(new	live	wood	C:new	total	wood	C;	ratio) 0.10 Default	for	DBF	in	Biome‐BGC

Allocation	(new	root	C:new	stem	C;	ratio) 0.47 Measured	(default	=	0.23)

Current	growth	proportion 0.5 Default	for	DBF	in	Biome‐BGC

C:N	of	leaves	(kg‐C/kg‐N) 26.0 Measured	(default	=	1.0)

C:N	of	leaf	litter,	after	retranslocation	(kg‐C/kg‐N) 49.0 Default	for	DBF	in	Biome‐BGC

C:N	of	fine	roots	(kg‐C/kg‐N) 42.0 Default	for	DBF	in	Biome‐BGC

C:N	of	live	wood	(kg‐C/kg‐N) 50.0 Default	for	DBF	in	Biome‐BGC

C:N	of	dead	wood	(kg‐C/kg‐N) 442.0 Default	for	DBF	in	Biome‐BGC

Leaf	litter	labile	proportion 0.39 Default	for	DBF	in	Biome‐BGC

Leaf	litter	cellulose	proportion 0.44 Default	for	DBF	in	Biome‐BGC

Leaf	litter	lignin	proportion 0.17 Default	for	DBF	in	Biome‐BGC

Fine	root	labile	proportion 0.30 Default	for	DBF	in	Biome‐BGC

Fine	root	cellulose	proportion 0.45 Default	for	DBF	in	Biome‐BGC

Fine	root	lignin	proportion 0.25 Default	for	DBF	in	Biome‐BGC

Dead	wood	cellulose	proportion 0.76 Default	for	DBF	in	Biome‐BGC

Dead	wood	lignin	proportion 0.24 Default	for	DBF	in	Biome‐BGC

Canopy	water	interception	coefficient	(LAI−1/d) 0.041 Default	for	DBF	in	Biome‐BGC

Canopy	light	extinction	coefficient 0.7 Default	for	DBF	in	Biome‐BGC

All‐sided	to	projected	leaf	area	ratio	(ratio) 2.0 Default	for	DBF	in	Biome‐BGC

Canopy	average	specific	leaf	area	(projected	area	basis) See	Table	3 Optimized	(default	=	30.0)

Ratio	of	shaded	SLA:sunlit	SLA	(ratio) 2.0 Default	for	DBF	in	Biome‐BGC

Fraction	of	leaf	N	in	Rubisco 0.08 Default	for	DBF	in	Biome‐BGC

Maximum	stomatal	conductance	(projected	area	basis;	m/s) See	Table	3 Optimized	(default	=	0.005)

Cuticular	conductance	(projected	area	basis;	m/s) 0.00001 Default	for	DBF	in	Biome‐BGC

Boundary‐layer	conductance	(projected	area	basis;	m/s) 0.01 Default	for	DBF	in	Biome‐BGC

Leaf	water	potential	at	start	of	conductance	reduction	(MPa) −0.6 Default	for	DBF	in	Biome‐BGC

Leaf	water	potential	at	complete	conductance	reduction	(MPa) −2.3 Default	for	DBF	in	Biome‐BGC

Vapor	pressure	deficit	at	start	of	conductance	reduction	(Pa) 930.0 Default	for	DBF	in	Biome‐BGC

Vapor	pressure	deficit	at	complete	conductance	reduction	(Pa) 4,100.0 Default	for	DBF	in	Biome‐BGC

Note:	For	sensitivity	analysis	(Section	2.42.4),	we	used	the	carbon	allocation	parameters	for	stem,	leaf,	and	roots	along	with	specific	leaf	area	(SLA),	
maximum	stomatal	conductance	(gsmax),	and	vapor	pressure	deficits	(VPDs),	changing	their	values	by	±30%	and	±60%	of	the	default.
Abbreviations:	LAI,	Leaf	area	index;	SLA,	specific	leaf	area.
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Biome‐BGC	requires	five	climate‐forcing	data;	daily	precipita‐
tion	(cm),	daily	maximum	and	minimum	air	temperatures	(°C),	day‐
light	average	vapor	pressure	deficit	(VPD;	Pa),	and	daylight	average	
shortwave	radiant	flux	density	 (SRAD;	W/m2).	For	this	study,	we	
used	daily	precipitation	and	maximum	and	minimum	air	tempera‐
tures	 at	 Lushi	 station	 for	 1981–2010	 from	 the	National	Climatic	
Data	Center	 (NCDC),	Climate	Data	Online	(CDO)	of	the	National	
Oceanic	and	Atmospheric	Administration	 (NOAA)	 (NOAA,	2018,	
2018).	 Daily	 VPD,	 SRAD,	 and	 day	 length	 were	 estimated	 from	
daily	 precipitation	 and	maximum	and	minimum	air	 temperatures	
using	the	mountain	microclimate	simulator	MTCLIM	4.3	(Bohn	et	
al.,	 2013;	 Kimball,	 Running,	 &	 Nemani,	 1997;	 Running,	 Nemani,	
&	 Hungerford,	 1987;	 Thornton,	 Hasenauer,	 &	 White,	 2000;	
Thornton	&	Running,	1999)	by	 taking	 into	account	 the	elevation	
and	 latitude	at	 the	site.	The	 input	daily	average	air	 temperature,	
precipitation,	SRAD,	and	VPD	calculated	from	observations	at	the	
nearest	weather	station	Lushi	 in	2009	using	MTCLIM	are	shown	
in	 Figure	 1.	 The	 annual	 average	 air	 temperature,	 precipitation,	
SRAD,	 and	 VPD	 for	 1981–2010	were	 13.7°C,	 692	mm,	 346	W/
m2,	and	743	Pa,	respectively.	The	peak	daily	mean	temperature	in	
2009	was	30.3°C	in	July,	and	the	lowest	temperature	was	−8.9°C	
in	 January.	The	peak	monthly	precipitation	was	156	mm	 in	 July.	

Vapor	pressure	deficit	estimated	from	these	meteorological	values	
was	highest	in	the	summer.	Estimated	SRAD	showed	small	varia‐
tions	around	normal	yearly	values	(210–484).

2.3 | Sensitivity of carbon pool simulations to 
ecophysiological parameters

To	 represent	 the	 carbon	 storage	 and	 growth	 of	 each	 plant	 organ	
adaptively,	parameter	adjustment	was	required.	We	therefore	ana‐
lyzed	 the	 sensitivity	of	AC	and	LC	 to	ecophysiological	parameters	
related	to	photosynthesis	and	carbon	allocation	to	plant	organs	to	
select	 the	 parameters	 for	 adjustment	 by	 an	 optimization	 scheme.	
The	sensitivity	of	BC	was	not	analyzed	because	BC	is	calculated	by	
multiplying	AC	by	the	ratio	of	carbon	allocation	of	coarse	root	car‐
bon	 to	stem	carbon	 (CRC:SC)	 in	Biome‐BGC,	 so	BC	can	be	 repro‐
duced	by	using	the	appropriate	AC	and	the	CRC:SC	ratio.

In	 Biome‐BGC,	 the	 photosynthetic	 assimilation	 rate	 A 
(µmol	CO2 m−2	s−1)	is	simulated	using	Farquhar's	photosynthesis	model	
(Farquhar,	Caemmerer,	&	Berry,	1980;	De	Pury	&	Farquhar,	1997):

(3)A=min
(

Ac,Aj

)

,

F I G U R E  1  Meteorological	data	for	
daily	average	temperature	(corrected	by	
the	mountain	climate	simulator	MTCLIM),	
precipitation,	solar	radiation	(SRAD),	and	
vapor	pressure	deficit	(VPD)	generated	
from	temperature,	SRAD	and	VPD	by	
MTCLIM	for	2009	(solid	lines).	Dashed	
lines	for	SRAD	and	VPD	represent	the	
average	values	for	1981–2010
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where Ac (μmol	CO2 m−2	s−1)	 is	the	carboxylation‐limited	assimilation	
and	Aj (μmol	CO2 m−2	s−1)	 is	 the	RuBP‐regeneration‐limited	assimila‐
tion.	Ac	and	Aj	are	calculated	as	follows:

where Vcmax (μmol	CO2 m−2	s−1)	is	the	maximum	carboxylation	rate,	
J (μmol	CO2 m−2	s−1)	is	the	actual	electron	transport	rate	and	is	re‐
lated	 to	 the	 incident	 photosynthetic	 photon	 flux	 density	 (PPFD),	
and	 the	maximum	electron	 transport	 rate	 (Jmax; μmol	CO2 m−2	 s−1)	
(Kuehn	&	McFadden,	1969),	Ci	(Pa)	is	the	leaf	intercellular	CO2	con‐
centration	(partial	pressure),	Γ*	 (Pa)	is	the	CO2	compensation	point	
in	 the	 absence	 of	 photorespiration,	 Kc	 and	 Ko	 are	 the	Michaelis–
Menten	constants	of	Rubisco	for	CO2	and	O2,	 respectively,	and	Rd 
(μmol	CO2 m−2	s−1)	is	the	photorespiration	rate.

Biome‐BGC	calculates	Vcmax	from	leaf	nitrogen	data	and	Rubisco	
activity	as	follows:

where	 lnc	 (kg‐N/m2)	 is	 the	 leaf	 nitrogen	 content	 per	 unit	 projected	
sunlight	 leaf	area,	 flnr	 (kg‐N/kg‐N)	 is	 the	proportion	of	 leaf	nitrogen	
content	 that	 is	 in	Rubisco,	 fnr	 (kg‐Rubisco/kg‐N)	 is	 the	weight	 ratio	
of	 Rubisco	 to	 its	 nitrogen	 content	 (=7.16),	 and	 act	 (μmol‐CO2	 kg‐
Rubisco−1	s−1)	is	the	Rubisco	activity,	which	is	adjusted	for	temperature	
and	O2	and	CO2	levels.

A	 in	Equation	(3)	can	also	be	determined	by	using	the	relation‐
ship	between	the	photosynthetic	assimilation,	the	stomatal	conduc‐
tance,	and	the	atmospheric	and	leaf	intercellular	CO2	concentrations	
as	follows:

where g (μmol‐CO2 m−2	s−1	Pa−1)	is	the	leaf‐scale	conductance	of	CO2,	
and	Ca	(Pa)	is	the	atmospheric	concentration	of	CO2.	To	represent	the	
stomatal	 closure	 corresponding	 to	 environmental	 stresses,	 Biome‐
BGC	scales	the	maximum	stomatal	conductance	(gsmax)	by	a	series	of	
multipliers	between	0	and	1	 for	 stresses	connected	with	 the	PPFD,	
soil‐water	potential,	minimum	 temperature,	 and	VPD	 (Körner,	 1995;	
White	et	 al.,	 2000).	Biome‐BGC	 represents	 the	ecophysiological	 re‐
sponses	of	stomata	to	the	stresses	of	the	light	and	water	environment,	
and	photosynthetic	activity	to	nitrogen	content,	by	these	processes.

These	processes	are	calculated	for	leaves	both	in	sun	and	shade	
by	 daily	 steps.	 The	 actual	 photosynthesis	 can	 be	 calculated	 by	
solving	the	quadric	expressions	 in	Equations	 (3)	and	 (7).	 In	Biome‐
BGC,	 39	 ecophysiological	 parameters	 are	 used	 to	 represent	 pho‐
tosynthetic	production	based	on	A	and	 its	allocation	to	each	plant	

organ	according	to	specified	allocation	parameters.	We	conducted	
a	 literature	 search	 for	 these	 parameters	 (e.g.,	 Chiesi	 et	 al.,	 2007;	
Cienciala	&	Tatarinov,	2006;	Hidy	et	 al.,	2012;	 Jarvis,	1976;	 Jarvis	
&	McNaughton,	1986;	Leuning,	1995;	Pietsch	et	al.,	2005;	Warren,	
Livingston,	&	Turpin,	2004;	White	et	al.,	2000).	We	then	arbitrarily	
selected	seven	parameters	for	sensitivity	analysis	to	determine	the	
critical	parameters	for	variability	 in	the	carbon	pools	of	each	plant	
organ.	For	carbon	allocation	parameters,	we	used	the	ratios	of	fine	
root	 carbon	 to	 leaf	 carbon	 (FRC:LC),	 stem	 carbon	 to	 leaf	 carbon	
(SC:LC),	and	CRC:SC.	We	also	selected	the	specific	leaf	area	(SLA),	
gsmax,	VPD	at	 the	 final	 reduction	of	 stomatal	 conductance	 (VPDf),	
and	 VPD	 at	 the	 initial	 reduction	 of	 stomatal	 conductance	 (VPDi).	
In	 the	 sensitivity	 analysis,	we	 individually	 tested	 the	 sensitivity	of	
predicted	AC	and	LC	to	variations	in	parameter	levels	of	±30%	and	
±60%	of	default	values.

2.4 | Model tuning

The	seven	parameters	selected	as	described	in	Section	2.32.3	were	
optimized	 to	 represent	 the	 observed	 biomass	 growth	 using	 the	
Dakota	optimizer	version	5.3	(Adams	et	al.,	2013).	Dakota	is	an	op‐
timizer	developed	by	Sandia	National	Laboratories	and	is	applicable	
for	optimizing	model	parameters	using	an	interface	in	the	Dakota	
system	(Figure	2).	Dakota	can	apply	several	optimization	algorithms	
by	simply	rewriting	the	settings	file.	To	optimize	the	ecophysiologi‐
cal	parameters	in	this	study,	we	applied	the	algorithms	for	deriva‐
tive‐free	 global	 optimization	 methods	 for	 linear	 and	 nonlinear	
constraints	in	the	Dakota	system	(Adams	et	al.,	2013).

Five	 algorithms	 of	 derivative‐free	 global	 methods—the	 dividing	
rectangles	(DIRECT)	method	of	the	common	optimization	library	in‐
terface	(coliny	DIRECT),	the	DIRECT	method	of	North	Carolina	State	
University	 library	 (NCSU	DIRECT),	 the	efficient	global	optimization	
method	(EGO),	the	coliny	evolutionary	algorithm	(coliny	EA),	and	the	
Single‐Objective	Genetic	Algorithm	(SOGA)—were	tested	to	minimize	
the	 object	 function	 for	 reproducing	 carbon	 fixation	 of	 each	 plant	
organ.	All	optimization	algorithms	ran	the	model	iteratively,	revising	

(4)Ac=
Vcmax(Ci−Γ

∗)
Ci+Kc(1+O2∕Ko)

−Rd ,

(5)Aj=
J(Ci−Γ

∗)
4.5Ci+10.5Γ

∗
−Rd,

(6)Vcmax= lnc× flnr× fnr×act,

(7)A=g
(

Ca−Ci

)

,

F I G U R E  2  Schematic	diagram	of	the	system	for	minimizing	
the	object	function	using	Dakota	optimizer	(Adams	et	al.,	2013).	
The	Dakota	system	provides	the	parameters	generated	by	user‐
specified	optimization	methods	to	a	model	and	then	reads	the	
object	function	estimated	from	model	outputs.	The	system	iterates	
this	procedure	until	the	object	function	is	minimized

Biome-BGC

Dakota

Object functionInput parameter 
file

Reading object functionProviding input parameters

Input file
for controlling optimization
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the	 input	parameters	 to	minimize	 the	object	 function	and	generate	
search‐optimized	 parameters.	 The	 derivative‐free	 global	 methods	
can	 search	 optimal	 parameters	 for	 the	 minimum	 object	 function	
even	 for	 black‐box	 models	 or	 functions	 without	 derivatives,	 and	
these	five	methods	were	able	to	solve	nonconvex	functions	such	as	
the	Rosenbrock	function	(Adams	et	al.,	2013).	Trudinger	et	al.	(2007)	
compared	 optimization	methods	 for	 data	 assimilation	 of	 terrestrial	
ecosystem	models,	and	they	reported	that	the	design	of	 the	object	
function	is	more	important	for	parameter	optimization	than	selection	
of	optimization	methods.	In	this	study,	we	simply	adopted	the	algo‐
rithm	showing	the	highest	performance	of	the	five	tested	to	represent	
the	measured	carbon	density	of	plant	organs.	The	results	of	the	tests	
of	the	five	algorithms	using	measured	biomass	data	and	minimized	ob‐
ject	functions	(described	in	Equation	8	below)	are	shown	in	Table	A1.

As	the	object	 function	to	be	minimized	by	Dakota,	we	defined	
the	average	yearly	relative	error	between	simulated	and	measured	
LC	and	AC	pools	over	11	years	as	follows:

where f	is	the	object	function,	i	is	stand	age	(years),	n	is	the	stand	age	
at	the	last	field	survey	(n	=	11	in	this	study),	ACi	and	LCi	are	the	abo‐
veground	woody	and	leaf	carbon	densities	in	year	i,	respectively,	and	
WA	(=25)	and	WL	(=5)	are	the	weighting	coefficients	of	the	error	in	the	
last	field	survey	year	for	aboveground	woody	and	leaf	carbon	density,	
respectively.	Subscripts	sim	and	obs	indicate	simulated	and	observed	
values,	respectively.

In	addition	to	optimization	using	11‐year	data,	we	also	performed	
optimization	using	1‐	to	5‐year‐old	stand	data	to	investigate	param‐
eter	variability	during	the	afforestation	and	plant	growth	phases	of	
the	 project.	We	performed	optimization	 at	 three	 different	 phases	
with	different	parameters	to	represent	carbon	fixation	during	each	
phase:	 (i)	 the	 phase	 before	 implementation	 of	 the	 afforestation	
project	(“planning”	phase),	using	the	default	parameters;	(ii)	the	first	
monitoring	phase	at	year	5,	with	parameters	optimized	using	stand	
data	for	years	1–5;	and	(iii)	an	updated	monitoring	phase	at	year	11,	
with	parameters	optimized	using	stand	data	for	years	1–11.	The	field	
survey	at	year	11	was	performed	as	part	of	this	study	and	yielded	
the	tree‐ring	data	and	total	D2	and	D2H	for	each	quadrat;	however,	
there	was	no	field	survey	at	year	5.	Instead,	we	simply	used	the	data	
for	 years	 1–5	 estimated	 from	 the	 allometric	 relationships	 and	 the	
tree‐ring	measurements	from	the	11‐year‐old	stand.

2.5 | 30‐year carbon fixation

In	this	study,	we	estimated	the	carbon	fixation	in	each	carbon	pool	
over	 the	project	period	 (30	years	as	 in	 some	approved	CDM‐AR	
monitoring	 methodology).	 The	 goal	 was	 to	 assess	 total	 carbon	
fixation	 and	 the	 variability	 associated	with	 ecophysiological	 pa‐
rameters	 that	 are	 individually	 tuned	 to	 three	 different	 phases	
as	 described	 in	 Section	 2.42.4:	 before	 implementation,	 year	 5	

monitoring,	 and	 year	 11	 updated	monitoring.	We	 estimated	 the	
variability	in	carbon	fixation	of	above‐	and	belowground	woody	bi‐
omass	and	leaf	biomass	at	the	site	for	30	years	after	afforestation	
using	climate‐forcing	data	for	1981–2010.	To	reduce	the	impact	of	
climate	anomalies	on	plant	carbon	fixation	 in	 the	simulation,	 the	
model	was	 driven	by	 repeating	 the	30‐year	 climate‐forcing	 data	
cyclically	from	the	beginning	of	each	year,	with	atmospheric	CO2 
concentrations	 for	 1981–2010,	 and	 then	 averaging	 the	 resulting	
ensemble	of	estimated	carbon	pools.	In	addition	to	the	simulation	
using	the	model	fully	tuned	by	the	observations	of	eleven	years,	
we	 estimated	 the	 carbon	 fixation	 using	 default	 parameters	 and	
those	tuned	with	observations	from	the	stand	at	ages	1–5	years.	
These	processes	yield	simulations	for	the	planning	phase,	with	up‐
dated	predictions	 for	 the	 implementation	phase	of	an	afforesta‐
tion	project.

3  | RESULTS

3.1 | Biomass variability and meteorological 
conditions at the study site

We	determined	the	allometric	relationships	between	D	and	H	and	the	
dry	weights	of	aboveground	woody	biomass	(trunks	and	branches),	be‐
lowground	woody	biomass,	and	 leaf	dry	weight	 for	E. ulmoides	using	
the	data	from	the	biometric	survey	(Figure	3).	The	relationships	were	
well	approximated	by	straight	lines.	The	parameters	a	and	b	of	Equation	
(1)	for	aboveground	woody	parts	were	373.5	and	3.2,	respectively;	for	
belowground	woody	parts	they	were	162.6	and	1.2,	respectively.	The	
parameters	c	and	d	of	Equation	(2)	for	leaves	were	392.3	and	0.0,	re‐
spectively.	The	carbon	densities	(AC,	BC,	and	LC)	for	years	1–11	were	
estimated	using	the	total	D2	and	D2H	of	the	11‐year‐old	stand,	the	al‐
lometric	relationships	(Figure	3),	the	D2	and	D2H	for	each	year	as	deter‐
mined	from	ring	analysis,	and	the	measured	fractional	carbon	content	of	
aboveground	woody	parts	(0.46)	and	leaves,	(0.45;	Figure	4).	The	carbon	
densities	for	AC,	BC,	and	LC	at	year	11	were	1.81,	0.86,	and	0.22	kg‐C/
m2,	respectively.	These	values	were	used	as	measured	carbon	pools	for	
validation	of	the	model.	The	standard	deviations	of	estimated	carbon	
densities	were	based	on	 the	variability	of	D	 in	 the	 tree‐ring	analysis.	
The	mean	ratio	of	the	belowground	carbon	density	to	the	aboveground	
carbon	density	(trunks	and	branches)	over	11	years	was	0.47.

3.2 | Sensitivity analysis of carbon pools to 
ecophysiological parameters

We	investigated	sensitivity	of	AC	and	LC	to	ecophysiological	param‐
eters	by	varying	individual	parameters	by	±30%	and	±60%	from	de‐
fault	values	to	select	the	parameters	for	optimization	for	reproducing	
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measured	 biomass	 carbon	 (Figures	 5	 and	 6).	 The	 estimates	 of	 AC	
and	LC	at	the	30‐year	stand	age	were	6.89	and	0.13	kg‐C/m2	using	
the	default	parameters.	Both	AC	and	LC	at	 the	30‐year	 stand	age	
varied	 with	 changes	 in	 the	 seven	 parameters,	 namely	 FRC:LC	
(5.80–8.56	and	0.12–0.16	kg‐C/m2,	respectively),	SC:LC	(3.27–9.15	
and	0.12–0.15	kg‐C/m2),	CRC:SC	(6.67–7.12	and	0.126–0.133	kg‐C/
m2),	 SLA	 (6.01–7.62	 and	0.12–0.17	 kg‐C/m2),	gsmax	 (6.20–8.65	 and	
0.11–0.16	 kg‐C/m2),	VPDf	 (6.71–7.15	 and	0.13–0.14	 kg‐C/m

2),	 and	
VPDi	 (6.78–7.62	 and	0.13–0.14	 kg‐C/m

2).	 These	 are	 the	 ranges	of	
variation	when	the	respective	parameters	were	±60%	of	default	pa‐
rameter	values.

FRC:LC	controls	the	allocation	of	photosynthetic	production	to	
fine	root	carbon	and	LC	 in	the	model,	with	LC	 increasing	with	de‐
creasing	FRC:LC.	AC	is	estimated	by	multiplying	LC	by	SC:LC	in	the	
model	(Running	&	Hunt,	1993),	so	AC	and	LC	show	a	high	sensitivity	
to	FRC:LC	and	SC:LC	allocation	parameters.

The	 sensitivity	 of	 the	 carbon	 pools	 to	 SLA	 reversed	 from	 the	
early	to	the	later	stages	of	the	11‐year	plant	growth	period	(note	the	
line	representing	−60%	of	default	SLA	in	Figures	5	and	6).	Changes	
in	gsmax	strongly	affected	AC	and	LC,	and	the	sensitivity	of	LC	also	
reversed	around	year	5	at	gsmax	=	−60%	of	the	default	value.	Thus,	

the	sensitivity	of	plant	growth	to	ecophysiological	parameters	some‐
times	changes	according	to	growth	stages,	and	the	update	of	model	
parameters	using	field	survey	data	every	few	years	is	necessary	for	
improving	the	adaptivity	of	the	carbon	fixation	predictions.

Three	parameters,	CRC:SC,	VPDf,	and	VPDi,	had	 little	effect	on	
AC	 and	 LC.	 Although	 CRC:SC	 controls	 the	 carbon	 allocation	 ratio	
between	coarse	root	and	aboveground	wood	(stems	or	trunks),	the	
range	of	estimated	AC	at	30‐year	stand	age	was	relatively	narrow	at	
6.67–7.12	kg‐C/m2,	even	with	changes	of	±60%	from	default	values.	
These	results	show	that	variability	in	the	three	parameters	CRC:SC,	
VPDf,	and	VPDi	had	negligible	effects	on	carbon	pool	estimates	in	our	
studies,	and	thus,	CRC:SC	was	set	to	the	measured	ratio	of	BC	to	AC	
averaged	over	eleven	years	(0.47),	and	we	used	the	default	parameter	
values	for	deciduous	broadleaf	forest	for	both	VPDf,	and	VPDi.	In	this	
study,	therefore,	we	selected	four	parameters,	FRC:LC,	SC:LC,	SLA,	
and	gsmax,	to	fit	estimates	of	AC	and	LC	to	the	observations.

3.3 | Model tuning

We	 tested	derivative‐free	 global	methods	 in	Dakota	 to	 adjust	 the	
selected	 parameters	 to	 represent	 the	 measured	 biomass	 growth	

F I G U R E  3  Allometric	relationships	between	above‐	and	belowground	biomass	and	diameter	at	breast	height	for	each	tree	trunk	diameter	
(D)	and	tree	height	(H),	and	between	leaf	biomass	and	D,	for	11‐year‐old	Eucommia ulmoides
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F I G U R E  4  Yearly	carbon	biomass	of	each	tree	part	per	unit	land	area	estimated	from	the	field	survey	in	year	11.	Plotted	values	are	
averages	from	seven	trees	(for	above‐	and	belowground	parts)	or	six	trees	(for	leaves).	Values	for	years	1–10	were	calculated	on	the	basis	of	
tree‐ring	analysis.	The	error	bars	show	standard	deviations	as	estimated	from	the	variation	of	D	in	tree‐ring	analysis
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of	each	plant	organ.	The	value	of	the	object	function	minimized	by	
coliny	 DIRECT,	 which	 showed	 the	 best	 performance,	 was	 0.118.	
Table	2	shows	a	comparison	between	the	results	using	nonweighted	
and	weighted	object	functions	and	AC	and	LC	at	11	years.	The	mini‐
mized	nonweighted	 (WA	 =	WL	 =	 1)	 object	 function	 in	 Equation	 (8)	
using	1‐	to	11‐year‐old	stand	data	was	0.225,	whereas	the	weighted	
(WA	=	25,	WL	=	5)	object	function	was	0.118,	where	the	best	weight	
coefficients	were	determined	by	trial	and	error.	The	weight	factors	
were	not	calibrated	using	the	optimization	method	because	of	the	
computational	cost.	The	weight	functions	we	used	are	designed	to	
prioritize	 the	 information	 from	 the	 latest	 field	 survey.	 The	model	
simulation	optimized	with	 the	weighted	object	 function	 showed	a	
closer	match	to	the	observed	AC	and	LC,	showing	that	updates	using	
the	latest	field	survey	data	can	improve	the	carbon	pool	estimates	at	
an	afforestation	site.

The	 four	 selected	 ecophysiological	 parameters	 were	 adjusted	
to	fit	the	observed	biomass	variability	for	the	first	5	years	and	for	
the	entire	11‐year	period	(Table	3).	All	parameters	showed	variations	
relative	to	the	default	values	as	a	result	of	tuning	the	model.	Three	
of	 the	 adjusted	 parameters	 showed	 differences	 between	 the	 first	
5	years	and	entire	11‐year	period:	FRC:LC,	SC:LC,	and	gsmax.	The	ad‐
justed	FRC:LC	and	gsmax	 for	 the	 first	5	years	 (2.36	and	0.008	m/s,	
respectively)	increased	in	magnitude	relative	to	the	default	settings	

(1.0	and	0.005	m/s),	whereas	those	for	the	entire	11	years	(0.53	and	
0.003	m/s)	were	lower.	The	adjusted	SC:LC	was	lower	that	the	de‐
fault	(2.20)	for	both	the	first	five	years	(1.23)	and	the	entire	11	years	
(1.76).	These	results	show	that	the	appropriate	values	for	ecophys‐
iological	parameters	can	vary	with	stand	age.	Specific	leaf	area	ad‐
justed	for	both	the	5‐year	and	11‐year	periods	(15	m2/kg‐C)	was	half	
the	default	value	(30	m2/kg‐C).

When	using	the	default	settings,	AC	was	overestimated	for	the	
entire	11‐year	period	and	reached	2.27	kg‐C/m2	at	the	stand	age	of	
11	years	(Figure	7a).	The	root	mean	square	error	(RMSE)	between	the	
observed	and	estimated	AC	was	0.54	kg‐C/m2.	The	estimates	using	
default	settings	overestimated	LC	and	BC	by	the	stand	age	of	7	years	
and	then	switched	to	an	underestimate	after	9‐year	stand	age,	with	
the	discrepancies	between	the	observations	and	the	estimates	ex‐
panding	 every	 year.	 The	RMSEs	 for	 LC	 and	BC	between	 observa‐
tions	and	estimates	with	default	settings	were	0.06	and	0.14	kg‐C/
m2,	 respectively.	 The	 estimates	 using	 parameters	 adjusted	 for	 the	
first	5	years	fitted	the	observed	AC,	LC,	and	BC	by	5‐year	stand	age,	
but	underestimated	them	after	6‐year	stand	age	(Figure	7b).	RMSEs	
for	AC,	LC,	and	BC	 for	years	1–5	were	0.01,	0.01,	and	0.01	kg‐C/
m2,	respectively;	for	years	6–11	they	were	0.35,	0.05,	and	0.16	kg‐C/
m2,	 respectively;	and	for	 the	entire	11	years	they	were	0.35,	0.05,	
and	0.16	kg‐C/m2,	respectively.	AC,	LC,	and	BC	estimated	using	the	

F I G U R E  5  Sensitivity	of	aboveground	woody‐carbon	density	to	seven	ecophysiological	parameters.	Curves	represent	the	model	
predictions	when	parameters	were	changed	by	±60%,	±30%,	and	0%	(default	of	Biome‐BGC).	CRC,	coarse	root	carbon;	FRC,	fine	root	
carbon;	gsmax,	maximum	stomatal	conductance;	LC,	leaf	carbon;	SC,	stem	carbon;	SLA,	specific	leaf	area;	VPDf,	vapor	pressure	deficit	at	the	
final	reduction	of	stomatal	conductance;	VPDi,	vapor	pressure	deficit	at	the	initial	reduction	of	stomatal	conductance
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parameters	adjusted	for	the	entire	11‐year	period	agreed	well	with	
observations	 (RMSE	=	0.02,	 0.02,	 and	0.01	 kg‐C/m2,	 respectively;	
Figure	7c).

3.4 | 30‐year carbon fixation

We	estimated	the	carbon	fixation	for	30	years	after	planting	at	the	
afforestation	site	to	assess	the	impact	on	carbon	pool	estimates	of	
using	ecophysiological	parameters	that	were	individually	optimized	
for	three	different	project	phases	(see	Section	2.52.5;	Figure	8	and	
Table	 4).	 We	 also	 estimated	 the	 carbon	 fixation	 in	 the	 soil	 pool.	
The	 soil	 carbon	 pool	 is	 affected	 by	 estimates	 of	 AC,	 BC,	 and	 LC	
because	 the	 soil	 pool	 varies	with	 the	 carbon	 supplied	 through	 lit‐
ter.	There	were	large	differences	in	plant	biomass	and	total	carbon	
pools	estimated	with	the	three	parameter	settings,	namely	the	de‐
fault	 values	 (phase	 i),	 those	 adjusted	 for	 the	 initial	 5	 years	 (phase	
ii),	and	those	adjusted	for	the	entire	11	years	 (phase	 iii).	The	aver‐
age	fixation	rates	of	leaf	and	soil	carbon	(0.004–0.006	and	−0.04	to	
−0.01	kg‐C	m−2	year−1,	respectively)	were	very	low	compared	to	AC	

F I G U R E  6  Sensitivity	of	leaf	carbon	density	to	seven	ecophysiological	parameters.	Curves	represent	the	model	predictions	when	
parameters	were	changed	by	±60%,	±30%,	and	0%	(default	of	Biome‐BGC).	See	caption	to	Figure	5	for	an	explanation	of	the	parameters
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Carbon density (kg‐C/m2)

Minimized ob‐
ject function

Aboveground woody 
(relative error)

Leaf (relative 
error)

Observed 1.812 0.223  

Simulated	with	nonweighted	
object	function

1.815	(0.002) 0.173	(0.226) 0.225

Simulated	with	weighted	
object	function

1.812	(0.000) 0.174	(0.220) 0.118

TA B L E  2  Comparison	of	observed	
and	simulated	aboveground	woody	and	
leaf	carbon	density	for	the	year	of	the	
field	survey	(year	11)	using	the	optimized	
models	with	nonweighted	and	weighted	
object	functions	using	the	coliny	DIRECT	
method	of	Dakota	(Adams	et	al.,	2013)

TA B L E  3  Default	ecophysiological‐characteristic	parameters	
and	those	tuned	by	the	coliny	DIRECT	method	of	Dakota	(Adams	et	
al.,	2013)	using	the	biomass	data	in	the	first	5	years	and	the	entire	
11‐year	period

 Default 5‐year 11‐year

FRC:LC	(ratio) 1.00 2.36 0.53

SC:LC	(ratio) 2.20 1.23 1.76

SLA	(m2/kg‐C) 30.00 15.00 15.00

gsmax	(m/s) 0.005 0.008 0.003

Abbreviations:	FRC,	fine	root	carbon;	gsmax,	maximum	stomatal	con‐
ductance;	LC,	leaf	carbon;	SLA,	specific	leaf	area.
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(0.11–0.26	kg‐C	m−2	year−1).	The	total	carbon	density	at	the	end	of	
the	30‐year	project	estimated	by	the	model	tuned	during	the	first	5‐
year	period	(11.55	kg‐C/m2)	was	approximately	30%	lower	than	that	
from	the	model	tuned	for	the	11‐year	period	 (17.86	kg‐C/m2);	 this	
result	 shows	 the	variability	of	 carbon	 fixation	 rates	 and	ecophysi‐
ological	 parameters	 between	 project	 phases.	 The	 total	 combined	
carbon	 fixation	of	AC,	BC,	LC,	 and	 soil	 as	estimated	using	param‐
eters	optimized	for	each	phase	ranged	from	4.2	to	10.5	kg‐C/m2	in	a	
30‐year	projection	(Figure	8).

4  | DISCUSSION

4.1 | Parameter variation with plant growth stage

The	 ecophysiological	 parameters	 FRC:LC,	 SC:LC,	 SLA,	 and	 gsmax,	
having	 shown	 a	 high	 contribution	 to	 AC	 and	 LC,	 were	 optimized	
to	reproduce	the	temporal	changes	 in	carbon	pools	 for	each	plant	
organ.	They	also	showed	variability	with	plant	growth	stage.	FRC:LC	
optimized	using	the	data	 from	years	1	 to	5	was	higher	 (2.36)	 than	

F I G U R E  7  Measured	above‐	and	
belowground	woody	biomass	carbon	and	
leaf	biomass	carbon,	and	those	simulated	
using	(a)	the	default	ecophysiological‐
characteristic	parameters,	(b)	parameters	
tuned	by	Dakota	using	the	observed	
biomass	in	the	first	5	years,	and	(c)	
parameters	tuned	using	the	entire	11‐year	
period
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F I G U R E  8  Temporal	changes	in	leaf,	
above‐	and	belowground	woody,	and	soil	
carbon	density	simulated	using	(a)	the	
default	ecophysiological‐characteristic	
parameters,	(b)	those	tuned	using	data	
from	the	first	5	years,	and	(c)	those	
tuned	using	data	from	the	entire	11‐year	
period	of	the	implementation	phase	of	
the	plantation	project	(30	years).	The	
values	are	the	ensemble	averages	of	
simulation	runs	with	cyclic	use	of	30‐year	
meteorological	data
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the	 default	 (1.0),	 and	 that	 optimized	 by	 1–11‐year	 data	was	 lower	
(0.53).	This	difference	 reflects	a	change	 in	growth	patterns	where	
the	production	of	fine	roots,	and	increases	in	root	length,	are	greater	
in	younger	forests	(Grier,	Vogt,	Keyes,	&	Edmonds,	1981).	The	mean	
and	standard	deviation	of	FRC:LC	in	the	data	collected	for	general	
deciduous	broadleaf	forest	of	Biome‐BGC	were	both	1.2	(White	et	
al.,	2000),	and	FRC:LC	at	phases	ii	and	iii	in	our	study	fell	within	this	
range.	Ellenberg,	Mayer,	 and	Schauermann	 (1986)	 reported	 similar	
values	(0.55)	in	Fagus	stands.

Values	 of	 SC:LC	 optimized	 using	 1‐	 to	 5‐year	 and	 1‐	 to	 11‐year	
data	were	both	lower	(1.23,	1.76,	respectively)	than	the	default	value	
(2.20).	 These	 lower	 values	mean	 that	 the	proportional	 allocation	of	
carbon	to	leaf	compared	to	stem	was	higher	than	that	for	a	generalized	
deciduous	broadleaf	forest	in	Biome‐BGC.	This	observation	might	re‐
flect	the	phenomenon	where	carbon	allocation	to	leaf	becomes	higher	
in	arid	conditions	(Orians	&	Solbrig,	1977).	The	mean	SC:LC	value	and	
standard	deviation	of	 the	 collected	data	 for	Biome‐BGC	were	2.20	
and	1.10,	 respectively	 (White	et	 al.,	 2000).	The	optimized	values	 in	
this	study	fell	within	this	range.	Several	other	studies	reported	similar	
values	in	deciduous	broadleaf	stands	(e.g.,	Betula pubescens	[White	et	
al.,	2000],	Fagus crenata	[Kakubari,	1977;	White	et	al.,	2000]).

BC	was	 reproduced	by	using	 the	 ratio	of	BC	 to	AC	as	CRC:SC	
(0.47)	estimated	from	field	survey	data,	which	is	higher	than	the	de‐
fault	 value	 (0.23).	 This	 demonstrated	 that	 the	 coarse	 root	 growth	
corresponded	to	a	higher	allocation	of	photosynthetic	production	in	
roots	with	the	response	of	trees	to	water	stress	(Silva	et	al.,	2004).	
CRC:SC	had	a	small	contribution	to	AC	and	LC,	but	this	parameter	
is	primarily	important	for	reproducing	BC.	Because	CRC:SC	did	not	
affect	AC	or	LC,	we	were	able	to	simply	use	the	ratio	of	measured	AC	
and	BC.	If	CRC:SC	had	affected	AC	and	LC	by	supplying	carbon	and	
nitrogen	through	litter,	then	CRC:SC	should	have	been	considered	as	
a	parameter	to	optimize.

Specific	 leaf	 area	 as	 optimized	 using	 5‐year	 and	 11‐year	 data	
showed	a	 lower	value	 (15	m2/kg‐C)	 than	 the	default	value	 for	de‐
ciduous	broadleaf	forests	(30	m2/kg‐C).	In	semi‐arid	and	arid	areas,	
leaves	 protect	 themselves	 from	 water	 stress	 and	 reduce	 transpi‐
ration	 by	 thickening	 (Orians	 &	 Solbrig,	 1977).	 Eucommia ulmoides 

is	 known	 to	 accumulate	 trans‐polyisoprene	 gum	 in	 its	 tissues	
(Nakazawa	et	 al.,	 2009)	 and	 that	 could	have	 influenced	 leaf	 thick‐
ness.	The	mean	SLA	and	standard	deviation	from	the	collected	data	
for	Biome‐BGC	were	32	and	11	m2/kg‐C,	respectively	(White	et	al.,	
2000).	The	optimized	SLA	 in	 this	study	was	somewhat	 lower	 than	
this	range.	This	can	be	explained	by	the	common	tendency	of	 leaf	
thickening	 in	arid	climates	 (Onoda	et	al.,	2011).	Specific	 leaf	areas	
in	deciduous	broadleaf	stands	have	been	reported	as	16.8	m2/kg‐C	
in	an	Ulmus americana	stand	(Reich,	Kloeppel,	Ellsworth,	&	Walters,	
1995)	and	16.3	m2/kg‐C	in	a	Godmania macrocarpa	stand	(Holbrook,	
Whitbeck,	&	Mooney,	1995).

The gsmax	optimized	using	5‐year	data	was	higher	(0.008)	than	the	
default	value	(0.005)	but	lower	than	the	default	using	11‐year	data	
(0.003).	There	are	few	data	for	gsmax,	and	just	one	reference	(Kelliher,	
Leuning,	Raupach,	&	Schulze,	1995)	was	used	in	Biome‐BGC.	Plants	
under	semi‐arid	and	arid	conditions	 in	general	survive	by	reducing	
transpiration	through	lower	stomatal	conductance	(Orians	&	Solbrig,	
1977).	 In	 the	 11‐year‐old	 stand,	 transpiration	 increased	 with	 in‐
creased	LC	and	leaf	area,	so	leaves	may	have	reduced	transpiration	
by	decreasing	gsmax.

These	results	show	that	our	optimized	parameters	fell	within	ac‐
tual	ranges	reported	by	other	studies,	and	the	values	at	each	phase	
reflect	 the	 behavior	 of	 plants	 in	 semi‐arid	 and	 arid	 conditions.	 In	
this	 study,	 the	 parameters	 for	 reproducing	 the	 phenomena	 under	
semi‐arid	conditions	were	selected	a	priori	for	the	sensitivity	anal‐
ysis.	That	selection	contributed	to	the	reproducibility	of	the	carbon	
pools,	but	at	the	same	time	it	might	have	been	arbitrary.

4.2 | Monitoring method for afforestation projects 
in this study

We	demonstrated	a	monitoring	methodology	for	afforestation	pro‐
jects	 using	 process‐based	 model	 and	 field	 surveys.	 Conventional	
monitoring	 (e.g.,	 AR‐ACM0003	 of	 CDM	 [Methodology	 for	
Afforestation	 and	 Reforestation	 of	 Lands	 except	 Wetlands];	
UNFCCC,	2013)	includes	field	surveys	every	few	years	for	monitor‐
ing	plant	carbon	pools	and	enhanced	QA/QC.	This	study	used	the	

TA B L E  4  Carbon	density	in	the	forest	carbon	pools	at	the	end	of	the	30‐year	afforestation	project,	and	average	carbon	fixation	
rates	over	the	30	years	as	estimated	(i)	using	the	default	ecophysiological‐characteristic	parameters	(as	in	the	planning	phase),	(ii)	using	
parameters	tuned	with	data	for	the	first	5	years	after	planting,	and	(iii)	using	parameters	tuned	using	data	from	the	entire	11‐year	period	of	
the	implementation	phase

 

Average ± standard deviation of carbon density at the end of 
30‐year project (kg‐C/m2)

Average carbon fixation rates for 30 years 
(kg‐C m−2 y−1)

(i) (ii) (iii) (i) (ii) (iii)

Leaf 0.12	±	0.01 0.10	±	0.01 0.19	±	0.01 0.004 0.003 0.006

Aboveground	woody 7.00	±	0.08 3.17	±	0.06 7.80	±	0.07 0.23 0.11 0.26

Belowground	woody 1.61	±	0.02 1.50	±	0.03 3.69	±	0.03 0.05 0.05 0.12

Soil 7.02	±	0.02 6.78	±	0.02 6.18	±	0.05 −0.01 −0.02 −0.04

Total 15.75	±	0.11 11.55	±	0.08 17.86	±	0.08 0.28 0.14 0.35

Note:	The	carbon	density	values	at	30	years	are	the	ensemble	averages	of	simulation	runs	with	the	cyclic	use	of	30‐year	meteorological	data	begin‐
ning	in	each	year.	Standard	deviations	are	also	shown.
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mandatory	field	survey	for	model	tuning,	and	the	monitoring	method	
that	we	propose	is	additionally	applicable	to	conventional	methods.

There	are	 few	studies	using	a	process‐based	model	 in	 the	 for‐
est	management	field	because	of	the	requirement	for	large	amounts	
of	 information	 that	 are	 not	 readily	 available	 or	 easily	 obtained	
(Landsberg,	Johnsen,	Albaugh,	Allen,	&	McKeand,	2001).	It	is	there‐
fore	beneficial	 to	have	model	parameter	 information	to	 reproduce	
plant	growth.	The	model,	once	tuned,	would	be	reusable	for	the	next	
project	or	another	project	with	 the	same	 tree	species	and	climate	
conditions.	Adaptive	monitoring	by	using	a	tuned	model	with	field	
surveys	could	help	obtain	sustainable	ecosystem	services.

The	model	parameter	optimization	scheme	demonstrated	that	it	
is	possible	to	adaptively	estimate	each	plant	carbon	pool	in	1‐	to	11‐
year‐old	 stands	 (Figure	 7c).	 The	 parameters	 describing	 ecophysio‐
logical	characteristics	changed	with	the	three	phases	of	the	project,	
and	 there	was	uncertainty	 in	 the	prediction	of	carbon	 fixation	 for	
30	years	using	 the	parameters	optimized	 for	each	phase	 (Figure	8	
and	 Table	 4).	 A	 reliable	 monitoring	 method	 that	 incorporates	 the	
uncertainties	 at	 each	 plant	 growth	 stage	 promotes	 positive	 out‐
comes	 of	 afforestation	 projects,	 such	 as	 acquiring	 carbon	 credits	
through	market	mechanisms.	Reducing	the	uncertainty	of	the	pre‐
diction	 using	 ecophysiological	 parameters	 requires	 the	 validation	
of	ecophysiological	characteristics	by	field	survey	every	few	years.	
Because	 this	method	 requires	a	 field	 survey	every	 few	years,	 it	 is	
consistent	 with	 the	 actual	 implementation	 of	 projects.	 Increasing	
the	monitoring	frequency	can	greatly	contribute	to	the	reduction	of	
uncertainty	 in	 young	 stands	 if	 projects	 can	 afford	 the	monitoring	
costs.

The	process‐based	approach	can	support	forest	inventory‐	and	
literature‐based	 approaches	 adapting	 changes	 of	 growth	 condi‐
tion,	noncommon	species,	and	observation	gap.	Zhou	et	al.	 (2014)	
demonstrated	the	relationship	between	the	biomass	carbon	density	
and	forest	age	on	a	plantation	by	using	the	forest	inventory	and	es‐
timated	 carbon	 storage	well.	However,	 they	 also	mentioned	 some	
uncertainties.	For	example,	using	a	relationship	established	at	a	pro‐
vincial	scale	and	the	data	from	the	national	forest	inventory	for	only	
one	 phase	 of	 forest	 growth	 can	 easily	 cause	 error.	 The	 other	 un‐
certainties	arose	because	the	calculation	of	carbon	storage	resulted	
from	 the	 hypothesis	 that	 plantation	 growth	 followed	 the	 growth	
equation,	and	some	plantings	were	affected	by	geographic	and	cli‐
mate	conditions.	Models	incorporating	climate	as	a	driving	force	and	
ecophysiological	 processes	 can	 mitigate	 these	 problems	 because	
they	accommodate	environmental	changes.

As	 the	 next	 step	 resulting	 from	 this	 study,	 the	 process‐based	
approach	 could	 be	 used	 in	 conjunction	 with	 forest	 management	
models	 in	assessing	both	CO2	mitigation	and	other	ecosystem	ser‐
vices	 concerned	with	 forest	management	 strategy	 and	 human	 ac‐
tivity.	 Forest	 management	 models	 can	 simulate	 carbon	 storage,	
plant	growth,	 timber	volume,	and	management	effects	of	 thinning	
and	cutting	(Lemma,	Kleja,	Olsson,	&	Nilsson,	2007;	Ooba,	Hayashi,	
Machimura,	&	Matsui,	2014).	The	growth	process	in	these	models	is	
estimated	on	the	basis	of	yield	tables	and	forest	inventory	without	
accounting	for	changes	in	climate	and	environmental	conditions.	We	

focused	on	required	monitoring,	and	thus,	we	estimated	carbon	fixa‐
tion	and	uncertainty	by	using	a	process‐based	model	that	calculated	
photosynthetic	 productivity	 based	 on	meteorological	 forcing	 data	
and	ecophysiological	parameters.	This	can	address	concerns	about	
the	 effects	 of	 changes	 in	 climate	 and	 environmental	 conditions,	
and	 it	can	also	 incorporate	 limited	accessible	data	such	as	that	for	
E. ulmoides	stands	planted	under	changing	land	use.	The	monitoring	
method	used	in	this	study	can	contribute	to	afforestation	projects	
such	as	CDM‐AR	and	other	market	mechanisms	that	strictly	require	
highly	reliable	monitoring.

4.3 | Limitations of this study

Most	 studies	 assessing	 carbon	 storage	 in	 CDM‐AR	 projects	 have	
generally	focused	on	no‐project‐implemented	baseline	carbon	stor‐
age	(e.g.,	Dushku	&	Brown,	2003),	and	there	are	no	studies	assessing	
CDM‐AR	with	 long‐term	monitoring	using	a	process‐based	model.	
Our	approach	requires	regular	field	surveys	to	ensure	the	validation	
of	the	model,	resulting	in	increases	in	the	total	cost	of	the	project.	
This	 is	a	bottleneck	 in	our	approach;	 it	would	be	acceptable,	how‐
ever,	in	situations	where	the	afforestation	project	is	aimed	at	carbon	
fixation	and	field	surveys	are	obligatory.

The	 object	 function	 using	 relative	 error	 and	 weighting	 coeffi‐
cients	 for	AC	and	LC	was	designed	to	reproduce	each	plant	organ	
pool	(Equation	8).	The	weighted	AC	and	LC	for	the	year	of	the	field	
survey	were	applied,	and	their	values	were	determined	by	trial	and	
error.	We	prioritized	LC	at	year	11	(the	year	of	the	field	survey)	by	a	
factor	of	5	over	the	other	years,	and	AC	at	year	11	by	a	factor	of	25,	
on	the	basis	of	the	ratio	of	their	absolute	values	(in	Equation	8),	but	
these	weight	factors	could	vary	at	other	sites.

In	this	study,	the	available	data	were	restricted	to	trunk	diameter	
at	breast	height,	tree	height,	and	the	dry	weight	of	each	carbon	pool	
in	an	11‐year‐old	E. ulmoides	 stand.	We	estimated	AC,	BC,	and	LC	
using	the	allometric	relationships	based	on	these	data,	but	the	period	
for	which	biomass	data	were	available	was	shorter	than	the	project	
term	(30	years	in	CDM‐AR).	This	data	limitation	might	also	affect	the	
spatial	representativeness	of	our	study.	We	focused	mainly	on	our	
ability	to	reproduce	carbon	storage	and	changes	in	each	plant	organ	
during	the	afforestation	monitoring	phases	by	tuning	the	model,	al‐
though	the	period	with	available	data	was	insufficient	to	make	this	
assessment	over	 the	project	 term.	The	growth	 rates	 and	 the	eco‐
physiological	conditions	might	change	for	years	12–30.	Our	meth‐
ods	were	designed	to	estimate	carbon	fixation	in	the	plantation	after	
a	 land	use	change	and	to	 investigate	the	uncertainty	 in	 the	model	
predictions	by	model	 tuning	at	each	plant	growth	stage,	but	more	
observations	over	a	longer	period	are	needed	to	support	our	results.

Our	method	adaptively	updates	the	prediction	by	observations	
every	few	years,	which	corresponds	to	long‐term	predictions	under	
limited	conditions	that	do	not	cause	phenomena	beyond	the	model	
representation	 (fire	 and	 wind	 disturbances,	 exceptional	 drought,	
forest	 fire,	 pest	 attack).	 Biome‐BGC	has	 no	 capacities	 responding	
to	 drastic	 environmental	 changes.	 For	 sustainable	 management	
and	monitoring	of	afforestation,	the	incorporation	of	processes	for	
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above	phenomena	or	the	coupling	with	other	management	models	
is	required.

5  | CONCLUSIONS

To	meet	the	requirement	of	highly	reliable	monitoring	of	afforesta‐
tion	projects	 aimed	 at	mitigating	CO2	 levels,	we	have	described	 a	
monitoring	methodology	that	combines	a	process‐based	ecosystem	
model	simulation	with	field	surveys	for	monitoring	different	phases	
of	a	project.	The	requirements	of	the	model	for	afforestation	pro‐
jects	were	that	the	model	reproduces	carbon	storage	and	changes	
in	each	plant	organ	using	adjustable	parameters,	as	well	as	defining	
the	uncertainty	of	prediction	using	adjusted	parameters	and	envi‐
ronmental	conditions.

We	demonstrated	that	the	model	can	reproduce	carbon	density	
for	AC,	BC,	and	LC	using	optimized	ecophysiological	model	parame‐
ters	(FRC:LC,	SC:LC,	SLA,	and	gsmax)	for	Biome‐BGC	as	a	case	study	
in	 a	E. ulmoides	 plantation	 in	 Lingbao	City,	Henan	 Province,	 China.	
The	ecophysiological	parameters	were	optimized	by	a	deviation‐free	
global	optimization	method,	and	the	values	of	the	optimized	param‐
eters	changed	with	plant	growth	stages.	The	changes	in	parameters	
were	consistent	with	the	general	behavior	of	plants	under	semi‐arid	
and	arid	climate	conditions.	The	predicted	carbon	fixation	for	a	30‐
year	afforestation	project	using	parameters	optimized	at	each	phase	
showed	uncertainty.	The	total	combined	carbon	fixation	of	AC,	BC,	
LC,	and	soil	estimated	by	parameters	optimized	for	each	phase	was	in	
the	range	of	4.2–10.5	kg‐C/m2	for	the	30‐year	project.	Updating	the	
parameters	using	field	surveys	every	few	years	is	important	for	reduc‐
ing	the	uncertainty	of	the	estimates	and	for	determining	the	changes	
in	ecophysiological	characteristics	at	each	plant	growth	stage.

This	 study	shows	how	to	estimate	each	plant	carbon	pool	and	
understand	the	parameter	changes	with	plant	growth	stages	and	the	
uncertainty	of	predicted	carbon	fixation	in	a	plantation	by	an	opti‐
mization	scheme	using	field	survey	data.	We	expect	the	application	
of	this	monitoring	method	to	support	the	management	of	afforesta‐
tion	projects	by	carbon	fixation	estimation	adapting	to	observation	
gap,	noncommon	species,	and	variable	growing	conditions	such	as	
climate	change,	land	use	change.
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APPENDIX 1

TA B L E  A 1  Optimized	parameters	and	the	minimized	object	function	determined	by	five	algorithms	for	derivative‐free	global	
optimization	methods:	the	dividing	rectangles	(DIRECT)	method	of	the	common	optimization	library	interface	(coliny	DIRECT),	the	DIRECT	
method	of	North	Carolina	State	University	library	(NCSU	DIRECT),	the	efficient	global	optimization	method	(EGO),	the	coliny	evolutionary	
algorithm	(coliny	EA),	and	the	single‐objective	genetic	algorithm	(SOGA)

 Coliny DIRECT NCSU DIRECT EGO Coliny EA SOGA

FRC:LC 0.53 1.26 1.58 0.56 0.58

SC:LC 1.76 1.91 2.28 1.25 1.59

SLA 15.0 15.0 20.3 10.5 8.8

gsmax 0.003 0.005 0.005 0.003 0.007

Object	function 0.118 0.165 0.190 0.166 0.123

Abbreviations:	FRC,	fine	root	carbon;	gsmax,	maximum	stomatal	conductance;	LC,	leaf	carbon;	SC,	stem	carbon.
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