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ABSTRACT: The development of new ROMP-derived silica-
immobilized heterocyclic phosphate reagents and their
application in purification-free protocols is reported. Grafting
of norbornenyl norbornenyl-functionalized (Nb-tagged) silica
particles with functionalized Nb-tagged heterocyclic phosphate
monomers efficiently yield high-load, hybrid silica-immobilized
oligomeric heterobenzyl phosphates (Si−OHBP) and hetero-
triazolyl phosphates (Si−OHTP) as efficient alkylation agents.
Applications of these reagents for the diversification of N-, O-,
and S-nucleophilic species, for efficient heterobenzylation and
hetero(triazolyl)methylation have been validated.
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Heterocycles are prevalent in small molecule drugs and
natural compounds1 and often they are used to

manipulate structural and electronic properties of small
molecules that are key to regulating molecular lipophilicity,
polarity, and hydrogen bonding capacity.2 Despite these
attributes, introduction of N-heterocyclic functionality into
core structures can be problematic in subsequent purification
stages due to increased polarity and basicity in combinatorial
synthesis. Immobilized reagents offer many advantages that can
potentially circumvent these issues. Compared to traditional
solution-phase synthesis, solid-phase techniques3 have shown
advantages in simplifying the purification process, especially in
flow-through chemistry and automated synthesis.4 As part of
our program aimed at the development of immobilized reagents
to facilitate synthetic pathways, we herein report the develop-
ment of hybrid silica-immobilized oligomeric heterobenzyl
phosphates (Si−OHBPn) and heterotriazolyl phosphate (Si−
OHTPn) as efficient alkylating reagents. We envision that, these
high load ring-opening metathesis polymerization (ROMP)-
derived reagents are highly applicable in purification-free
protocols to install heterocycles, namely pyridines and
pyridine-substituted triazoles in N-, O-, and S-nucleophilic
species, in the synthesis of complex molecules. In addition to
these benefits, the titled Si−OHBPn and Si−OHTPn reagents
are bench stable, environmental friendly, and have ease of
purification via simple filtration through Celite. Furthermore,
the low cost, commercial availability of the starting pyridine
methanol derivatives, as compared to their corresponding

bromomethylpyridines, is another advantage that inspired us to
produce the titled silica-supported phosphate analogs.
When compared to their polymeric counterparts, silica-

supported reagents and scavengers have shown a number of
advantages, including (i) elimination of the precipitation step
and (ii) elimination of polymeric swelling. These features have
inspired the recent development of a number of silica-
supported reagents/catalysts, include an isocyanide reagent5

developed by Diver and co-workers for the removal of
ruthenium, a chiral dirhodium(II) catalyst6 developed by
Davies and co-workers for enantioselective carbenoid reactions,
an iron BPMEN-inspired catalysts7 for C−H bond function-
alization and hybrid sulfonic acid catalysts8 demonstrated by
Jones and co-workers, a tungsten oxo alkylidene9 as a highly
active metathesis catalyst developed by Copeŕet−Schrock and
co-workers, and a peracid10 developed by Gonzaĺez-Nuñ́ez and
co-workers for the epoxidation of olefins.
A critical part in developing successful silica-supported

reagents and scavengers is to find a suitable technology to
install functional groups on the surface of silica. There have
been, a number of grafting methods reported for immobilized
compounds, such as immobilized polystyrene resins,11 silicas,12

soluble polyethylene glycol (PEG) polymers,13 monolith,14 and
fluorous-tagged compounds.15 In particular, using ring-opening
metathesis polymerization (ROMP) to attach functional groups

Received: March 23, 2016
Revised: May 11, 2016
Published: June 14, 2016

Letter

pubs.acs.org/acscombsci

© 2016 American Chemical Society 394 DOI: 10.1021/acscombsci.6b00042
ACS Comb. Sci. 2016, 18, 394−398

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

pubs.acs.org/acscombsci
http://dx.doi.org/10.1021/acscombsci.6b00042
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


on Nb-tagged silica core, have been proven to be an efficient
method to bring high-loading functionality on cost-effective and
environmentally benign silica particles.16 A number of ROMP-
derived Si-supported reagents have been developed, including
oligomeric bis-acid chloride Si-OBAC50 as scavenger,17

dichlorotriazine Si-ODCT50 as a coupling reagent,17a and
triphenylphosphine Si-OTPP50.

17a Recently, our group has
reported silica-immobilized benzyl phosphate Si-OBPn and
triazole phosphate Si-OTPn as efficient alkylating reagents.18

Taken collectively, these examples have showcased the
synthesis of high-load, ROMP-derived silica-immobilized
reagents and their utilization in a variety of organic reactions.
The route to the titled phosphates began with reduction of

exo-norbornenyl carbic anhydride (readily derived from
commercially available endo-norbornenyl carbic anhydride)19

to the corresponding diol using LiAlH4, followed by
phosphorylation of the norbornenyl (Nb) exo-diol 1 using
freshly distilled POCl3 and Et3N, to afford the Nb-
phosphorochloridate 2 as a white solid in 73% yield (Scheme
1). This reagent was conveniently stored up to several months
as a solid over argon in a desiccator for use in preparing various
phosphate monomer analogs. Addition of 2 into a solution
containing heterobenzyl alcohol, NMI, and CH2Cl2 at room
temperature cleanly afforded heterobenzylic phosphates 3a−3b
in good yields (65−70%). Similarly, phosphorylation of Nb-
tagged phosphorochloridate 2 with propargyl alcohol, followed
by a “click”-capture event of an azidomethylpyridine, afforded

the corresponding heterobenzylic triazole phosphate mono-
mers 4a−4b in good yields (63−65% over two steps).
Utilizing a similar protocol reported in our previous work,17a

we tagged activated silica (60 Å, 20 μm particle size) with
(MeO)3Si-(CH2)2−(Nb) 5, and the unreacted hydroxyl groups
were capped with trimethoxymethylsilane and dimethoxydime-
thylsilane (Scheme 2). Using this method, we obtained Nb-
tagged silica particles (Si−Nb) 6 in gram-scale quantities with
0.3−0.4 mmol/g loading (determined using a bromine titration
method).20 It should be noted that we observed an increased
norbornene loading of Si−Nb when (MeO)3Si−(CH2)2−(Nb)
[(2-(bicyclo[2.2.1]hept-5-en-2-yl)ethyl)trimethoxysilane] was
utilized, as compared to using bicyclo[2.2.1]hept-5-en-2-
yltriethoxysilane.
With these Nb-tagged silica particles in hand, surface-

initiated polymerization of Nb-tagged phosphate monomers
3a−3b and 4a−4b onto the silica surface was achieved using
the Grubbs second-generation catalyst (G-II), followed by
washing with CH2Cl2, to furnish the desired silica-tagged
heterocyclic phosphates as free-flowing solids possessing
experiment loads of 1.1−1.7 mmol/g (Scheme 2).17 Gram-
scale syntheses were next carried out for both Si-ROMP
heterobenzylating (Si−OHBPn) and hetero(triazolyl)-
methylating (Si−OHTPn) reagents, 7a−7b and 7c−7d,
respectively. The SEM images of Si−OHBPn and Si−OHTPn
are shown in Figure 1 and depict grafting of the corresponding

Scheme 1. Synthesis of Hetero-benzyl and Hetero-triazole Phosphate Monomers

Scheme 2. Synthesis of Silica-Supported Oligomeric Hetero-benzyl (Si−OHBPn) and Hetero-triazole (Si−OHTPn) Phosphates
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monomer onto the silica surface and the inherent morphology
of the new hybrid Si-ROMP materials.

With the hybrid Si-ROMP materials in hand, efforts were
focused on utilization of Si−OHBPn 7a−7b as heterobenzylat-
ing reagents. After investigating various reagent stoichiometry
an optimized condition was established by using nucleophiles
(1 equiv), Si−OHBPn (1.5 equiv), Cs2CO3 (3.0 equiv), and
NaI (0.2 equiv) in 0.1 M THF at 80 °C (oil bath temperature)
in a sealed pressure tube. With these optimized conditions, the
heterobenzylation of a variety of N-, O-, and S- nucleophiles
was achieved using two silica oligomeric heterobenzyl
phosphates (Si−OHBPn, 7a−7b) (Table 1). Various phenols
and thiophenols, as well as more complex sulfonamides were
successfully alkylated to afford the corresponding heterobenzy-
lated products 8a−8i (Table 1). In all cases, simple filtration
through a Celite SPE allowed the products to be isolated in

good to excellent yields (70−99%) and desired crude purity
(>90%, calculated by UV area percent from HPLC analysis).
With these results in hand, silica-immobilized triazole

phosphate derivatives 7c−7d were synthesized on gram scale
having load of 1.1−1.3 mmol/g as free-flowing powders.
Utilization of these reagents in nucleophilic substitution
reactions with N-, O-, and S-nucleophiles afforded (triazolyl)-
methylated products 9a−9f in excellent yield (81−93%) and
purities (>90%, calculated by UV area percent from HPLC
analysis) using simple filtration through a Celite SPE (Table 2).
Efforts to expand the scope of these reagents in multi-

component reactions (one-pot processes) toward drug-related
heterocycles, and improvement in scale-up are continued for
further applications in diversity-oriented synthesis. These
efforts and corresponding results will be reported in due course.
Grafting of Nb-tagged silica particles with functionalized Nb-

tagged heterocyclic phosphate monomers using ROM polymer-
ization efficiently yields high-load, hybrid Si-immobilized
oligomeric heterobenzyl (Si−OHBPn) and triazolyl phosphates
(Si−OHTPn). Further application of these ROMP-derived
oligomeric heterocyclic phosphate reagents have been demon-
strated for diversification of various N-, O-, and S-nucleophilic
species, for efficient heterobenzylation and (triazolyl)-
methylation in purification-free protocols. Further applications
of these Si-ROMP reagents in one-pot protocols and in
diversification of core scaffolds for the synthesis of drug-like
molecules is underway and will be reported in due time.

Figure 1. SEM images of Si−OHBPn (left) and Si−OHTPn (right).

Table 1. Hetero-benzylation of N-, O-, and S-Nucleophiles Utilizing Si−OHBPn
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