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Abstract Adhesion and friction are closely related and play a predominant role in many natural processes. From
the wall-clinging feet of the gecko to bacteria forming a biofilm, in many cases adhesion is a necessity to
survive. The direction in which forces are applied has shown to influence the bond strength of certain
systems tremendously and can mean the difference between adhesion and detachment. The spatula
present on the extension of the feet of the gecko can either attach or detach, based on the angle at which
they are loaded. Certain proteins are known to unfold at different loads, depending on the direction at
which the load is applied and some bacteria have specific receptors which increase their bond strength
in the presence of shear. Bacteria adhere to any man-made surface despite the presence of shear forces
due to running fluids, air flow, and other causes. In bacterial adhesion research, however, adhesion
forces are predominantly measured perpendicularly to surfaces, whereas other directions are often
neglected. The angle of shear forces acting on bacteria or biofilms will not be at a 90� angle, as shear
induced by flow is often along the surface. Measuring at different angles or even lateral to the surface
will give a more complete overview of the adhesion forces and mechanism, perhaps even resulting in
alternative means to discourage bacterial adhesion or promote removal.
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Both friction and adhesion play a key role in many
natural phenomena. Along with the important role in all
kinds of processes, the notion that both friction and
adhesion can depend on the applied direction and angle,
has intrigued scientists. One well-known example is the
occurrence of high and low friction and adhesion cycles
in the attachment and detachment of the gecko toe
(Tian et al. 2006). Containing millions of small exten-
sions, called spatula, all exerting nanoscale forces to the
surface, the gecko can climb even upside down. By
rolling its toe, the gecko changes the angle between its
spatula and the surface, allowing it to shift between
increasing the normal adhesion force and the frictional

component (Autumn et al. 2006). At a molecular level,
these changes in the angle of the spatula influence the
Van der Waals forces in such a way that the attractive
force between the spatula and the surface is altered to
switch between high and low values (Tian et al. 2006).
Simplified, by changing the direction of loading, either
the normal adhesion force is high and the friction is low,
or the frictional component is high and the normal
adhesion force is low.

Whereas geckos can actively choose the loading
angle, allowing them to either stay attached or detached,
less autonomous systems like molecules and proteins
do not have this option. Nevertheless, these systems
display forces that highly depend on direction as well.
The E2lip3 protein, for example, which is high in beta-
sheet content, displays a resistance to pulling that
strongly depends on the angle of the applied force& Correspondence: janjtmswartjes@gmail.com (J. J. T. M. Swartjes),
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(Brockwell et al. 2003). Similar behavior is found in
the unfolding of Ubiquitin by mechanical stretching
(Carrion-Vazquez et al. 2003). The direction of the
applied force determines to a large extent the protein’s
stability. In these cases, the different angles in which the
force is applied are believed to cause a change in the
way the hydrogen bonds of inner beta-sheets rupture.
As in the case of the gecko, the angle of the force
determines whether bonds are broken by shearing or
peeling (Brockwell et al. 2003). The regulation of bond
organization by mechanical force has been simplified by
describing it either as parallel distribution of forces,
where each bond aids in resisting a mechanical force, or
a zipper-like distribution (Fig. 1) in which one bond
after another is required to oppose detachment (Al-
brecht et al. 2003; Hess 2006; Isabey et al. 2013). Based
on the organization of the bonds, changing the loading
direction will shift the distribution of forces, switching
from parallel to zipper-like, or the other way around. In
the parallel scenario, the collective bond behavior is
able to resist much larger forces as the contribution of
each bond is added up. A popular example of this is
Velcro, which is easily loosened when pulled up from

one side, but displays a highly increased resistance to
detachment when pulled sideways (Matouschek and
Bustamante 2003).

Unzipping of proteins is, for example, also observed
in the amyloid-like interactions within clusters of
adhesins called Als, which contribute in the adhesion
of Candida albicans (Alsteens et al. 2010, 2012). Force
analysis of the adhesion shows mechanical unzipping
of b-sheet interactions between Als proteins upon
being pulled from an amyloid coated surface at 90�.
One step beyond the scale of inter-protein bindings,
shear, or lateral, force dependency of adhesion is
observed in ligand-receptor complexes. The FimH
adhesin expressed by Escherichia coli binds to man-
nose and is found to enhance adhesion under high
shear conditions (Thomas et al. 2004; Aprikian et al.
2007). Whereas the behavior of the previously men-
tioned proteins is generally ascribed to bond organi-
zation, it has been suggested that in the case of E. coli
the typical behavior stems from allosteric regulation,
causing bond enhancement by mechanical force
(Yakovenko et al. 2008).

From animals to proteins it is clear that the direction
of an applied force can make the difference between
adhesion or detachment, structural integrity or unfold-
ing. For certain microorganisms, like bacteria, surface
attachment is the preferred mode of survival, as
stable surface bound communities offer protection to
antibiotics and mechanical removal (O’Toole et al. 2000;
Dunne 2002; Vlamakis et al. 2013). At the same time,
whether the surface comprises the inner-lining of the
human body, or an implant, the formation of these
biofilm communities is often highly unwanted (Cegelski
et al. 2008; Löfling et al. 2011; Foster et al. 2014). For
decades, researchers are trying to deal with bacterial
adhesion by an almost endless effort to create non-
fouling surfaces which can withstand adhesion of bac-
teria. On the other hand, there is also a tremendous
amount of work put into new strategies of effective
removal of adhered bacteria. In both cases, fundamental
knowledge of bacterial adhesion and the mechanisms
behind it are of crucial importance, and since this
knowledge is limited, new information can hold the key
to breakthroughs in either field.

Especially in the medical field where bacterial adhe-
sion and the forthcoming biofilms cause life-threatening
infections that are continuing to be more difficult to
treat with antibiotics, detachment as well as adhesion
prevention strategies are well sought after (Busscher
et al. 2012; Campoccia et al. 2013; Swartjes et al. 2013;
Swartjes et al. 2014a). To find out more about the
mechanisms of bacterial adhesion, atomic force micro-
scopy (AFM) has proven to be the tool of preference in

Fig. 1 Distribution of forces over multiple bonds. In the zipper-
like distribution (top) each bond is loaded consecutively, passing
the load on to the next bond after breaking. While in the parallel
distribution (bottom) the load is distributed over all included
bonds and after breaking of one bond, the load is redistributed
over the remaining ones. Adapted with permissions from Isabey
et al. (2013)
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order to determine the forces by which bacteria attach
to surfaces and keep themselves adhered (Dufrene
2002; Dorobantu and Gray 2010; Müller and Dufrêne
2011; Dorobantu et al. 2012). The vertical motion of the
AFM cantilever is often used to determine the force
necessary to pull a bacterium from a cell or surface. This
force, which has a magnitude of several nano Newton, is
considered as the adhesion force (Dorobantu and Gray
2010). Whenever AFM is used to measure bacterial
adhesion, the angle of the direction in which the bac-
terial adhesion force is measured and the substrate is
approximately 90�. However, the amount of work (W) to
overcome adhesion is a function of the pull-off angle h,
i.e., W = F�d�cos(h), which indicates that the force
required for detachment might change for different pull-
off angles. Additionally, bacteria in most situations
adhere from a flowing condition, in which the angle of
approach leads to friction between a bacterium and the
surface (Swartjes et al. 2014b). In fact, there is a rela-
tionship between adhesion and friction at nanoscale
often used to describe the contact between two solid
bodies, Ff = l (Fn ? Fadh), stating that the friction force
Ff, equals the coefficient of friction (l) multiplied by the
sum of the normal force Fn and the adhesion force Fadh
(Gao et al. 2004). In relation to these directional influ-
ences on bacterial adhesion, several methods have been
applied to determine the lateral forces between bacteria
and surfaces.

A distinction can be made between two types of
lateral forces; first, the shear adhesion force depending
on the strength of the bond between an adhered bac-
terium and a surface, which breaks by moving the
bacterium along the surface after it has adhered, and
second, the lateral force arising between a bacterium
and a surface when initial contact is made by a bac-
terium approaching the surface at an angle, represent-
ing the friction (Swartjes et al. 2014b). By challenging
the shear strength of the adhesion bond using different
flow rates of the liquid carrying the bacteria (Gazzola
et al. 2015), or by detachment induced by passage of a
liquid-air interface (Perera-Costa et al. 2014), estima-
tions of the first type of lateral force have been made.
However, since perpendicular to the surface the adhe-
sion force of a single bacterium can be measured
directly using the AFM, it is desirable to achieve a
similar mode of action to measure the adhesion force at
a different angle. Several attempts have recently been
made to determine the lateral forces occurring between
bacteria and surfaces using AFM (Verran et al. 2010;
Zhang et al. 2011; Swartjes et al. 2014b). Quantification
of the shear strength of bacterial adhesion has been
achieved by imaging of bacteria; as the AFM cantilever
moves along the surface in contact mode, the lateral

movement of the cantilever can displace bacteria by
pushing them away (Verran et al. 2010; Zhang et al.
2011). To measure lateral forces more directly, single-
cell force spectroscopy (SCFS), in which a single bacte-
rial cell is attached to the AFM cantilever, can be applied
to probe the forces between this single bacterium and a
surface. Kweon et al. modified an AFM cantilever with a
bacterial spore and rubbed the spore against a silica
surface to retrieve the values of occurring friction forces
(Kweon et al. 2011). Even though this only involved a
bacterial product, rather than an actual bacterium, the
principle has also been performed using bacteria
instead of a spore. The friction between polymer brush-
modified surfaces and bacteria attached to a cantilever
showed that friction was correlated to the amount of
bacteria adhering to the surface, suggesting that friction
forces play a role in attachment (Swartjes et al. 2014b).
Interestingly, the friction and adhesion forces did not
relate to each other as per the previously stated equa-
tion describing friction forces, indicating that bacterial
friction and adhesion is more complex and challenging.

Most of these studies on lateral forces involved whole
bacteria, however, based on the behavior of single pro-
teins when subjected to forces at different angles,
direction-dependent adhesion can also be studied by
looking at components of bacterial adhesion complexes.
SCFS has taken a flight over the last years and has
expanded the insights about bacterial adhesion mecha-
nisms considerably (Helenius et al. 2008; Müller and
Dufrêne 2011; Isabey et al. 2013; Beaussart et al. 2014).
Additionally, the technique has been extended to the use
of single molecules, offering the possibility of isolating
specific adhesion structures of bacteria and identifying
their sole contribution in adhesion (Benoit et al. 2000;
Sullan et al. 2015). Interestingly, single-molecule force
spectroscopy (SMFS) using specific bacterial adhesion
complexes reveals peaks in the force-distance curves
due to breakage of multiple bonds, suggested to be
caused by unfolding of the protein (Fig. 2C, D) and
closely resembling the unzipping of previously men-
tioned proteins displaying anisotropic behavior (Fig. 2A,
B) (El-Kirat-Chatel et al. 2014; Sullan et al. 2015).
Additionally, measurements of a whole Streptococcus
mutans cell suggest the presence of up to 10 ligand-
receptor complexes being responsible for the binding of
a single bacterial cell (Sullan et al. 2015).

Even though there are many examples showing that
bond strength and adhesion phenomena in certain cases
display properties highly depending on the direction of
the applied force, direct measurements in the case of
bacteria are scarce. In the quest for solutions to the
bacterial adhesion problem, attention for shear and
friction forces is present, as based on the previously
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mentioned examples and studies developing anti-
fouling super-slippery surfaces (Wong et al. 2011;
Epstein et al. 2012; Li et al. 2013; MacCallum et al.
2015), however, the fundamental role it plays in adhe-
sion is not known. As the use of bacterial probes in AFM
is increasing, unraveling the role of directionality could
reveal completely new information on the adhesion
mechanism of bacteria. Besides the added value it could
have in non-specific adhesion, the example of a shear-
dependent specific adhesion mechanism in E. coli sug-
gests that specific interactions between ligands and
receptors, which are present in the majority of bacteria,
are able to exhibit different strengths based on how
their unity is challenged. Given that specific patterns of
unzipping and unfolding of individual proteins involved
in bacterial adhesion are observed (Table 1), it is very
well possible that the same directional dependent

behavior seen in multiple types of proteins would also
apply in the case of proteins associated with adhesion of
bacteria. Additionally, for several pathogens it is sug-
gested that zipper-like sequences are involved in host
cell invasion, implicating that structures known to show
directional dependent strength are partly responsible
not only for general adhesion, but also for bacterial
pathogenesis (Schwarz-Linek et al. 2003). Altogether,
anisotropic adhesion behavior could not only stem from
an array of adhesion complexes acting as individual
bonds that can be loaded in a parallel or a zipper-like
fashion, but also from within adhesion proteins or
complexes where unfolding of single proteins might
depend on the loading direction.

As shear is present almost everywhere inside the
human body, e.g., in the oral cavity, blood vessels,
intestine, and lungs, it suggests that firm attachment by

Fig. 2 Unfolding behavior of proteins shown to have anisotropic responses to loading (A, B) and bacterial adhesion proteins displaying
similar force patterns (C, D). A The distinct differences in force curves upon stretching of PYP by pulling at different axis. B Force-
extension curves of unfolding of GFP displaying a distinct unzipping pattern for different directions of loading. C Force curves for the
interaction between S. mutans adhesin P1 and fibronectin-coated solid substrates, exhibiting similar peaks observed for anisotropic
proteins. D Unfolding force patterns of Als5p adhesion proteins closely resemble those of proteins known to respond differently to
different loading directions. Adapted with permissions from Dietz et al. (2006), Nome et al. (2007), Alsteens et al. (2009) and Sullan et al.
(2015)
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resisting shear forces is mandatory for bacteria in order
to persist in an adhered state. Proteins highly involved
in the adhesion of different bacterial strains have shown
to exhibit similar unfolding patterns compared to other
proteins, which are highly anisotropic in their unfolding.
Additionally, the shear strengthening of FimH in E. coli
supports the implications for the possibility of
direction-dependent adhesion mechanisms in bacteria,
similar to those suggested for mammalian cells (Isabey
et al. 2013). By probing friction forces and the adhesion
forces lateral to the surface, specific information can be
obtained that possibly provide new clues for anti-
adhesive, or easy to clean surfaces. It is impossible to
say which type of lateral force has more impact on
bacterial adhesion, and the frictional forces probably
contribute most to the transitions from unbound to
surface attached, while it is likely that shear adhesion
forces are most important in remaining an adhered
state. As such, the frictional forces seem most interest-
ing for design of non-fouling surface, while the shear
adhesion force could help in designing strategies for
bacterial removal. Nano-topographic surfaces could
perhaps alter the direction in which bacteria experience
shear forces, making them less likely to adhere, or easier
to be removed.

Bacteria have outsmarted mankind by adapting
resistance to a major part of our antibiotic spectrum,
resulting in an increase in infections which are extre-
mely hard to resolve (Spellberg et al. 2013; Wellington
et al. 2013). In order to prevent infection there are
many aspects of bacterial adhesion and biofilm forma-
tion requiring our utmost attention. The many sugges-
tions for anisotropy of bacterial adhesion forces
therefore imply that studying forces between bacteria

and surfaces in multiple directions are desirable, as it
might reveal precious information that can help in
making crucial steps toward the development of new
and more efficient anti-bacterial strategies.
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