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ABSTRACT: Recently, doped graphene has emerged as a promising material for gas
sensing applications. In this study, we performed first-principles calculations to
investigate the adsorption of nitrogen dioxide (NO2) on pristine, nitrogen (N)-
doped, ruthenium (Ru)-doped, and N−Ru-co-doped graphene surfaces. The
adsorption energies, Mulliken charge distributions, differential charge densities,
electronic density of states, and optical properties of NO2 on the graphene surfaces
were evaluated. The adsorption energies follow the order N−Ru-co-doped > Ru-
doped > N-doped > pristine graphene, suggesting that doped graphene has higher
sensitivity to NO2 gas molecules than pristine graphene. Analysis of the charge
transfer and differential charge densities indicated weak physisorption of NO2 on
pristine and N-doped graphene, whereas stronger chemisorption of NO2 occurred on
Ru-doped and N−Ru-co-doped graphene because of the formation of chemical bonds
between NO2 and the doped surfaces. The peak absorption and reflection coefficients
of NO2 adsorbed on N−Ru-co-doped graphene are approximately 2.88 and 7.75 times higher, respectively, than those of NO2
adsorbed on pristine graphene. The substantial changes of the electronic and optical properties of N−Ru-co-doped graphene upon
interaction with NO2 can be exploited for the development of highly sensitive and selective NO2 gas sensors.

1. INTRODUCTION
Environmental pollution has reached alarming levels because
of the rapid advance of modern industrialized society. A
pollutant of considerable concern is nitrogen dioxide (NO2),
which is a toxic and hazardous gas that poses a substantial
threat to human health and the environment.1 As a major
atmospheric contaminant, NO2 infiltrates the ozone layer,
catalyzes atmospheric degradation, and reacts with oxygen and
water vapor to form nitric acid, which corrodes plants and
materials such as metals and concrete, leading to soil
acidification and decreased fertility.2−5 Moreover, NO2 can
damage the human liver, kidneys, and respiratory system, and
it can be fatal in severe cases.6−8 Consequently, the detection
and capture of NO2 gas molecules are of great importance for
environmental monitoring, industrial chemical processing,
public safety, agriculture, medicine, and indoor air quality
control.

Over the past few years, ultrathin two-dimensional (2D)
materials have attracted remarkable interest owing to their
unique structural, optoelectronic, mechanical, and thermal
properties.9−11 The excellent sensing properties of some 2D
materials, such as graphene and MoS2, have been demon-
strated by theoretical and experimental studies.12−14 One of
the most popular 2D layered materials is graphene, which
consists of sp2-hybridized carbon atoms in a honeycomb
lattice. Graphene has excellent optical, electrical, and thermal

properties, high carrier mobility, large specific surface area, low
electrical noise, and the ability to detect various gas molecules
with high resolution even at room temperature, and it has thus
been widely investigated as a promising material for gas
sensing.15−18 However, the pristine graphene surface is
chemically inert, and the zero band gap of graphene decreases
its sensitivity to gas molecules.19,20 To overcome these
limitations and substantially improve its sensing performance,
graphene can be modified by adding impurity atoms to its
surface, such as B, N, S, and Si dopants, which strengthens the
interaction between graphene and common gases (e.g., CO,
CO2, COCl2, and O2).

21−27 Doping graphene with transition
metals (e.g., Fe, Co, Ni, Ru, Mo, Ti, Ga, Mn, and Pt) also
improves its ability to adsorb gases such as O2, SO2, COCl2,
and NH3.

28−31 Accordingly, adsorption and sensing applica-
tions of doped graphene have become research hotspots.
However, there have only been a few studies on the gas-sensing
capability of nonmetal and metal codoped graphene. In this
study, we investigated the adsorption of NO2 molecules on the
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surfaces of pristine, nonmetal (N)-doped, metal (Ru)-doped,
and nonmetal (N)−metal (Ru) codoped graphene by
dispersion-corrected density functional theory (DFT) simu-
lations and calculated the geometric, energetic, electronic, and
optical properties of the systems. By extending the
investigation of doped graphene in the field of adsorption
and sensing applications, this study will provide theoretical
support for research on graphene-based sensor materials.

2. MODEL CONSTRUCTION AND CALCULATION
METHOD

All of the DFT calculations to investigate the interaction
between NO2 gas molecules and the graphene surfaces were
performed with the CASTEP code. To ensure the accuracy of
the calculations, the calculations incorporated the Grimme
dispersion correction with the Perdew−Burke−Ernzerhof
exchange−correlation functional under the generalized gra-
dient approximation, accounting for the effects of the
dispersion interactions, long-range electronic correlation
effects, and van der Waals forces.32,33 The geometry
optimizations were performed using the plane-wave ultrasoft
pseudopotential method, where the ionic potentials are
replaced with pseudopotentials that describe the electron−
ion interactions. The Kohn−Sham equations and energy
functionals were solved through self-consistency. A 4 × 4 × 1
supercell model of each graphene surface consisting of 32
atoms was constructed to prevent interlayer interactions. A
vacuum layer of 20 Å was introduced, and the plane-wave
truncation energy was set to 430 eV. The atomic force
convergence accuracy was set to 0.03 eV/Å to ensure accurate
calculations. The energy self-consistency accuracy converged
to 5 × 10−7 eV/atom and the intra-atomic stress was
maintained at 0.05 GPa. The Brillouin zone k-point grid was
set to 4 × 4 × 1 to adequately sample the system.

To investigate whether the doped graphene structure is
stable, we calculated the binding energy (Eb)

= +E E E Eb (G C) (C) (G) (1)

where E(G+C) is the energy of the doped system, E(C) is the
energy of a single dopant atom, and E(G) is the energy of the
vacant graphene corresponding to the number of dopant
atoms.34 When Eb is negative, the doped structure is stable.

To study the adsorption state of NO2 on the doped
graphene sheets, the adsorption energy of NO2 (Eads) was
calculated by

= ++E E E E( )ads gas graphene graphene gas (2)

where Egas is the energy of a single NO2 gas molecule, Egraphene
is the energy of graphene without adsorbed NO2 molecules,
and Egas+graphene is the total energy of the whole adsorption
system.35 When Eads is positive, the energy of the system is
high and adsorption is energetically unfavorable. When Eads is
negative, the adsorption process is exothermic, the energy of
the system decreases, the structure is stable, and adsorption
readily occurs.

3. RESULTS AND DISCUSSION
Three adsorption sites were considered for the adsorption of
NO2 on the graphene surfaces: the top site above a carbon
atom (T), the center of a carbon ring (H), and the bridge site
above a C−C bond (B). Through calculation, the orientation
of the NO2 molecule was chosen to have the N atom facing

downward with an initial adsorption distance of 3 Å, as shown
in Figure 1. Based on the combinations of the adsorption sites
and doped atoms, a total of 14 models were constructed.

3.1. Adsorption Distance and Adsorption Energy.
According to the adsorption distances and Eads values (Table
S1), the H site was found to be the most stable site for NO2
adsorption among the three sites. Therefore, here, we focus on
the data for the H site. The data for the other two sites are
provided in the Supporting Information. The atomic structures
of NO2 molecules adsorbed on the pristine and doped
graphene surfaces after optimization are shown in Figure 2.

The adsorption distances before and after the adsorption of
NO2 molecules, Eads values, and Eb values of the doped
graphene surfaces are given in Table 1. The Eb values for the
doped graphene surfaces are all negative, indicating that the
doped graphene structures are stable. This provides a solid
foundation for the subsequent adsorption of NO2 molecules
on the doped graphene surfaces.

The adsorption energies (Eads) of all of the models are
negative, indicating that the systems become more stable and
have lower energy after NO2 adsorption. According to the
literature, Eads > 0.8 eV indicates chemisorption, whereas Eads <

Figure 1. (a) Top view and (b) side view of a NO2 molecule
adsorbed on the surface of pristine graphene.

Figure 2. Top and side views of NO2 adsorbed on (a) pristine
graphene, (b) N-doped graphene, (c) Ru-doped graphene, and (d)
N−Ru-co-doped graphene.
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0.6 eV indicates physisorption.36 Based on these criteria, it can
be inferred that NO2 molecules physisorb on pristine and N-
doped graphene, suggesting weak adsorption of NO2 on these
graphene surfaces. In contrast, Eads of NO2 on Ru-doped and
N−Ru codoped graphene exhibited a significant change from
that on pristine graphene (approximately −0.2 eV) to
approximately −7 eV. The magnitude of Eads suggests strong
interactions between the Ru-doped and N−Ru codoped
graphene surfaces and NO2 gas molecules, indicating
chemisorption. Furthermore, the distances between the NO2
molecules and these two graphene surfaces are smaller than
that between pristine graphene and NO2. Considering Eads and
the adsorption distances, it can be inferred that chemical bonds
form between the Ru-doped and N−Ru codoped graphene
surfaces and NO2 molecules.
3.2. Charge Transfer Analysis. The Mulliken charge

distributions of the NO2 molecules adsorbed on the different
graphene surfaces are given in Table 2. All of the surfaces
undergo charge transfer with the NO2 molecules. The amount
of charge transfer follows the order N−Ru-co-doped graphene
> Ru-doped graphene > N-doped graphene > pristine
graphene. These results indicate that NO2 acts as an electron
acceptor in the charge transfer process, indicating reduction of
NO2 by the graphene surface. Additionally, the bond lengths of
the NO2 molecules are affected by adsorption on the graphene
surfaces. The observed charge transfer and changes of the NO2
molecule bond lengths indicate strong interactions between
the doped graphene surfaces and NO2 molecules. Strong
interactions are beneficial for gas sensing because they lead to
high sensitivity of the doped graphene surface for NO2.

The charge density difference (CDD), total charge density
(TCD), and electron density difference (EDD) plots of the
NO2 molecules adsorbed on the pristine and doped graphene
surfaces are shown in Figure 3. The CDD plots clearly show

substantial charge transfer between the pristine and doped
graphene surfaces and adsorbed NO2 molecules. During the
adsorption process, charge accumulation occurs on the NO2
gas molecules and charge dissipation occurs at the adsorption
sites on the graphene surfaces. Analysis of the TCD maps
shown in Figure 3b and EDD plots shown in Figure 3c
revealed that the electron orbitals of the pristine and N-doped
graphene surfaces do not markedly overlap with those of NO2,
indicating weak interactions between these surfaces and the
NO2 molecules. In contrast, the electron orbitals of the Ru-
doped and N−Ru-co-doped graphene surfaces clearly overlap
with those of NO2, suggesting the formation of chemical bonds
between these surfaces and the gas molecules. These
observations confirm the strong interactions between NO2
and the Ru-doped and N−Ru-co-doped graphene surfaces.
These findings align with Eads and the Mulliken charge
predictions for the interaction of NO2 molecules with the
different graphene surfaces.
3.3. Surface Electron State Density. To further analyze

the electronic energies of the graphene-based systems after the
adsorption of NO2 molecules, the density of states (DOS) was
calculated following the adsorption of a NO2 molecule on each
of the different surfaces (Figure 4). The DOSs of the doped
surfaces generally shift toward the valence band compared with
that of the pristine graphene surface. Additionally, the number
of wave peaks in the valence band increases and the number of
wave peaks in the conduction band decreases after doping of
the graphene surface. The peaks from the impurity energy
levels near the Fermi level also change after doping of the
graphene surface. These phenomena suggest that the electronic
properties of the doped systems are different from those of
pristine graphene. This can be attributed to the electronic
hybridization of the dopant atoms, as shown in Figure 4d,
where the synergistic interaction of the 2p and 4d electrons of
N and Ru with the 2p electrons of C atoms modifies the DOS
of the codoped system. These changes of the DOS, particularly
in the region near the Fermi level, affect the electronic
properties of the doped systems, which is advantageous for
sensing applications.
3.4. Optical Properties. The dielectric functions,

absorption spectra, and reflection spectra of the four
graphene-based systems were calculated before and after
NO2 adsorption. The optical properties of a material can be

Table 1. Pre-adsorption Distances (dpre), Post-adsorption
Distances (dpost), Adsorption Energies (Eads), and Binding
Energies (Eb) of NO2 on the Different Graphene Surfaces

model dpre/Å dpost/Å Eads/eV Eb/eV

pristine graphene 3 2.96 −0.22
N-doped 3 2.66 −0.69 −15.43
Ru-doped 3 2.05 −7.20 −6.29
N−Ru codoped 3 2.04 −7.41 −19.73

Table 2. Mulliken Charge Distributions of the NO2 Molecules before and after Adsorption on the Different Graphene Surfaces

model species selection p electron total charge/e molecular charge/e population bond length/Å

NO2 N 1.39 3.18 4.57 0.44 0 0.68 1.23
O 1.85 4.36 6.22 −0.22
O 1.85 4.36 6.22 −0.22

pristine graphene N 1.46 3.21 4.67 0.33 −0.25 0.63 1.24
O 1.86 4.44 6.29 −0.29
O 1.86 4.44 6.29 −0.29

N-doped N 1.51 3.23 4.74 0.26 −0.48 0.60 1.25
O 1.86 4.53 6.39 −0.38
O 1.86 4.51 6.36 −0.36

Ru-doped N 1.47 3.37 4.84 0.16 −0.49 0.67 1.27
O 1.87 4.47 6.34 −0.34
O 1.86 4.45 6.31 −0.31

N−Ru codoped N 1.47 3.37 4.84 0.16 −0.51 0.67 1.27
O 1.87 4.49 6.36 −0.36
O 1.86 4.45 6.31 −0.31
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described by the dielectric function. This is because the
electron jump energy is much larger than the energy of phonon
perturbation, so the effect of the perturbation of the radiated
electric field on the electron absorption of the photon energy
from low to high energy levels can be ignored. The real and
imaginary parts of the dielectric function describe the

processes of photon absorption and release in a material.
The complex form ε(ω) = ε1(ω) + iε2(ω) describes the
process of electron migration, where ω is the angular
frequency, ε1 = n2 − k2 and ε2 = 2nk, in which n is the
refractive index and k is the wavenumber.37 The real and
imaginary parts of the dielectric function can be derived from

Figure 3. (a) Charge density difference, (b) total charge density, and (c) electron density difference plots of NO2 molecules adsorbed on the
different graphene surfaces. The isosurfaces of the charge density difference plots are set to 0.01 e/Å3, where blue represents electron accumulation
and yellow represents electron depletion. The isosurfaces of the total charge density plots are set to 0.02 e/Å3. In the electron density difference
plots, red represents charge accumulation and blue represents charge depletion.

Figure 4. Partial density of states (PDOS) of adsorbed NO2 molecules on the graphene surfaces. (a) Pristine graphene, (b) N-doped graphene, (c)
Ru-doped graphene, and (d) N−Ru-co-doped graphene.
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the Kramers−Kronig dispersion relation. In addition, the
absorption coefficient I(ω) and reflectivity R(ω) can be
derived from the Kramers−Kronig dispersion relation as
follows38

= [ ]I( ) 2 ( ) ( ) ( )1
2

2
2

1
1/2

(3)

=
+
+ +

R
i

i
( )

( ) ( ) 1

( ) ( ) 1
1 2

1 2

2

(4)

The imaginary parts of the dielectric functions before and
after NO2 adsorption on the different graphene surfaces in the
visible range (1.6−3.2 eV) are shown in Figure 5. Within the

energy range of 1.6−2.6 eV, the imaginary part values on the
doped graphene surfaces are higher than those on the pristine
graphene surface, with Ru−N-co-doped graphene exhibiting
the highest value. In the energy range of 2.6−3.2 eV, the
imaginary part values of the doped graphene surfaces are
slightly smaller than those of the pristine graphene surface,
with Ru−N-co-doped graphene showing the smallest imaginary
part value. Therefore, in the visible range, the Ru−N-co-doped
graphene surface exhibits the largest variation of the imaginary
part of the dielectric function among the graphene-based
surfaces.

The absorption rate is directly related to the number of
electrons in the ground state that absorb photon energy and
transition to the excited state. This phenomenon reflects the
ability of a material to respond to light. Similarly, higher R(ω)
indicates that more electrons absorb photon energy and
transition to an excited state, which is followed by the release
of energy as they transition back to lower energy levels.

The calculated absorption and reflection spectra of NO2
molecules adsorbed on the different graphene surfaces are
shown in Figure 6a,b, respectively. In the visible range, the
peak absorption coefficient of the pristine graphene surface of
approximately 39,200 cm−1 occurs at 3.2 eV and the peak
reflection coefficient of approximately 0.12 occurs at 3 eV. The
optical properties of the N-doped and Ru-doped graphene
surfaces with adsorbed NO2 are similar to those of pristine
graphene with adsorbed NO2. However, N−Ru codoping
greatly affects the optical properties of the graphene surface
with adsorbed NO2. The N−Ru-co-doped system exhibits a
peak absorption coefficient of approximately 112,900 cm−1 at

1.6 eV and a peak reflection coefficient of approximately 0.93
at 1.7 eV. These values are approximately 2.88 and 7.75 times
higher than the corresponding peak absorption and reflection
coefficients of pristine graphene, respectively. Therefore, the
N−Ru-co-doped graphene system shows superior optical
sensing capability for NO2 to pristine graphene. The trend is
the same for the optical properties of the other two adsorption
sites (B and T sites) (see Figures S9 and S10).

A comparative analysis of the dielectric functions, absorption
spectra, and reflection spectra of NO2 molecules adsorbed on
the different graphene surfaces revealed that the trends in the
absorption and reflection spectra are consistent with the
changes of the dielectric function. In particular, N−Ru
codoping markedly enhances the optical properties of NO2
adsorbed on the graphene surface, particularly within the
visible range.

4. CONCLUSION
In this study, we performed DFT-based first-principles
calculations to investigate the adsorption behavior of NO2
gas molecules on pristine, metal-doped, nonmetal-doped, and
metal−nonmetal-co-doped graphene surfaces. Various proper-
ties, including the adsorption energy, Mulliken charge
distribution, differential charge density, DOS, and optical
properties, were examined to characterize the interaction
between NO2 and the different graphene surfaces. The results
indicated that NO2 can adsorb to all four types of graphene,
with the doped graphene surfaces showing stronger NO2
adsorption than pristine graphene. Pristine and N-doped
graphene show physical adsorption of NO2, whereas the
introduction of transition metal atoms, such as Ru, leads to

Figure 5. Imaginary parts of the dielectric functions of the different
graphene surfaces after adsorption of NO2.

Figure 6. Optical properties of the different graphene surfaces after
adsorption of NO2. (a) Absorption spectra and (b) reflection spectra.
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strong chemical adsorption because of the formation of
chemical bonds between NO2 and the doped graphene
surfaces. The N−Ru-co-doped system shows the highest
adsorption energy of −7.41 eV. Comparison of the DOS
revealed that doped graphene materials are more sensitive to
NO2 gas molecules than pristine graphene. The electronic
properties of graphene change upon NO2 adsorption, and the
optical properties of the doped graphene surfaces are improved
compared with those of pristine graphene. Notably, the N−Ru-
co-doped graphene surface exhibits the largest changes in the
absorption and reflectance coefficients upon NO2 adsorption,
which are approximately 2.88 and 7.75 times higher than those
of pristine graphene, respectively. The substantial changes in
the electronic and optical properties of N−Ru-co-doped
graphene upon interaction with NO2 make it a promising
candidate for NO2 gas detection applications.
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