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Hypoxic–ischemic encephalopathy induces secondary brain injury characterized by delayed energy failure.
Currently, therapeutic hypothermia is the sole treatment available after severe intrapartum asphyxia in babies
and acts to attenuate secondary loss of high energy phosphates improving both short- and long-term outcome.
In order to develop the next generation of neuroprotective therapies, we urgently need to understand the under-
lying molecular mechanisms leading to cell death. Hypoxia–ischemia creates a toxic intracellular environment
including accumulation of reactive oxygen/nitrosative species and intracellular calcium after the insult, inducing
mitochondrial impairment. More specifically mitochondrial respiration is suppressed and calcium signaling is
dysregulated. At a certain threshold, Bax-dependent mitochondrial permeabilization will occur leading to
activation of caspase-dependent and apoptosis-inducing factor-dependent apoptotic cell death. In addition,
hypoxia–ischemia induces inflammation, which leads to the release of TNF-α, TRAIL, TWEAK, FasL and
Toll-like receptor agonists that will activate death receptors on neurons and oligodendroglia. Death receptors
trigger apoptotic death via caspase-8 and necroptotic cell death through formation of the necrosome (composed
of RIP1, RIP3 and MLKL), both of which converge at the mitochondria.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The causes of neonatal brain damage in response to hypoxic–ische-
mic insult are multifactorial. In the developing brain, lack of oxygen
availability results in an initial depletion of high energy phosphates, in
particular ATP and phospho-creatine. These levels return transiently to
baseline but are followed by a second more prolonged depletion of
cellular energy reserves accompanied by progression of brain injury
[1,2]. These disturbances in energy metabolism trigger a number of
pathophysiological responses but there is a common convergence at
the level of the mitochondria. This range of injurious events includes
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the release of excitatory amino acids activating glutamate receptors
(NMDA, AMPA), activation of nitric oxide synthase on neurons and oli-
godendroglial precursors, leading to increased intracellular Ca2+ and
accumulation of reactive oxygen species (ROS) through release of nitric
oxide (NO) [1,3].

2. Effect of calcium on mitochondria

Activation of NMDA and AMPA receptors after HI (hypoxia–ische-
mia), in response to excitotoxic amino acid release, results in cellular
uptake of calcium. Indeed,we have found increased deposits of intracel-
lular calcium in the endoplasmic reticulum, cytosol, nucleus and more
significantly in the mitochondrial matrix of neurons [4]. Not only does
this influx activate a number of intracellular signaling pathways, it is
taken up by mitochondria causing mitochondrial swelling, impairment
of respiration, increased production of reactive oxygen species and
may ultimately trigger mitochondrial permeabilization (MP) and cell
death [1,5,6] (Fig. 1).

3. Mitochondrial permeabilization and apoptosis

Mitochondria determine cell fate in many different ways. They can
induce cell death due to their ability to release proapoptotic proteins,
which occurs following MP. MP can occur either through selective
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Interweaving apoptosis and necroptosis pathways after neonatal HI insult. A) Neonatal HI induces mitochondrial accumulation of calcium, increased production of reactive oxygen
species, and suppression ofmitochondrial respiration that culminates inMOMP. Changes in Bcl-2 family proteins induce Bax-dependentMOMP leading to the release of cytochrome c (cyt
c) and apoptosis-inducing factor (AIF). Cyt c induces apoptosome formation leading to caspase-3 activation, caspase-activated DNase (CAD) and DNA degradation. AIF forms a complex
with cyclophilin A (CyA) which translocates to the nucleus and induces chromatinolysis and apoptotic cell death. B) Concomitantly, inflammatory microglia and astroglia will release
tumor necrosis factor-α (TNF-α) or other ligands (FasL, TWEAK, TRAIL and lipopolysaccharide, LPS) leading to the activation of death receptors, which in turn can induce both apoptosis
and necroptosis depending on the availability of caspases. Recruitment of TRADD (or other adaptor proteins) and RIP1 will lead to caspase-8 activation and cleavage of Bid leading to ap-
optotic cell death. Alternatively, under conditionswhen caspase-8 is inhibited, TRADD facilitates the interaction and activation of RIP1 and RIP3. RIP3 phosphorylates and recruits MLKL to
the necrosome which can then be targeted to both plasma and mitochondria-associated endoplasmic reticulum membranes triggering increased reactive oxygen species, fission and
necroptosis. Alternative non-mitochondrial mechanisms may also play a role in the induction of necroptosis.
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opening of the outer mitochondrial membrane, mitochondrial outer
membrane permeabilization (MOMP), or be the result of opening of
the mitochondrial permeability transition pore, which permeabilizes
both the outer and inner mitochondrial membranes [7]. MOMP appears
predominantly to induce apoptosis whereas mitochondrial permeabili-
ty transition pore opening results in mitochondrial swelling and tends
to lead to necrotic cell death. Importantly, cyclophilin D has been
shown to be implicated in mitochondrial permeability transition pore
opening in the adult brain after ischemia [8], whereas Bax-dependent
MOMP seems to be the predominant mechanism in the neonatal brain
following HI [9]. Mitochondria can also be involved in necroptosis (see
below).

Mitochondrial permeabilization results in the release of key
proapoptotic proteins cytochrome c, apoptosis inducing factor (AIF),
endonuclease (endo) G and Smac/Diablo from the mitochondria to the
cytosol [3,5,10–12]. Each protein has different downstream targets,
but all contribute to cell death. Following translocation to the cytosol,
cytochrome c binds to Apaf-1 forming an apoptosome which binds to
procaspase-9 leading to caspase-3 activation [13]. Smac/Diablo also
enhances the activity of caspases, whilst AIF, which is caspase-
independent, interacts with cyclophilin A. This complex then translo-
cates to the nucleus and is associated with DNA fragmentation which
has been shown to occur following neonatal HI [10]. High expression
of proapoptotic proteins such as caspase-3, Bax and Bcl-2 during
development strongly suggests that apoptosis is more prominent in
the immature brain compared with the adult [5,11,12].

3.1. Apoptosis and neonatal HI brain injury

The induction of MOMP in the immature brain after HI depends on
Bcl-2 family proteins; Bax translocates from the cytosol to the
mitochondria and in association with Bak forms pores in the outer
membrane resulting in the subsequent release of proapoptotic proteins.
In the immature brain, Bax and its associated proteins are highly
expressed, with further upregulation of expression occurring following
neonatal HI [9,14,15]. Pharmacological inhibition of Bax-dependent
mitochondrial permeabilization prior to neonatal HI attenuates the
severity of brain injury [16] highlighting that, in the immature brain,
Bax-dependent MOMP is a critical event leading to execution of
cell death.
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One of the proposed regulators of Bcl-2 proteins includes the tumor
suppressor p53, which has been shown to stimulate mitochondrial per-
meabilization and apoptosis thereby regulating cell death. Following ac-
tivation, p53 accumulates in the nucleus and can upregulate
proapoptotic genes such as Bax [17]. Consistentwith the above observa-
tions that the development of perinatal brain injury is Bax- andMOMP-
dependent, it has been shown that blockingmitochondrial p53with the
inhibitor pifithrin-μ, after neonatal HI in the rodent resulted in de-
creased lesion size and improved functional outcome [18]. However,
pifithrin-μ also modulates other proteins (e.g. heat shock proteins)
and genetic evidence is yet lacking that p53 is critical for triggering
MOMP in the setting of perinatal brain injury.

The initiator caspase caspase-2, also triggers Bax-mediated MOMP
[19], and data suggest that caspase-2 inhibition offers the potential for
improved neuroprotection after perinatal HI. Newborn caspase-2
knockout mice were significantly protected in HI and excitotoxic
models of neuronal damage [20], a protection which was additive
when combined with hypothermia [21]. Furthermore, TRP601, a phar-
macological caspase-2 inhibitor, reduced brain injury in three in vivo
models of immature brain injury without adverse effects [22,23].

4. Death receptors and necroptosis

Necrosis is defined as accidental uncontrolled cell death. On the
other hand, necroptosis or programmed necrosis is a form of highly reg-
ulated cell death that morphologically resembles necrosis [24].
Necroptosis is activated in situations when the AIF- or caspase-
dependent apoptotic pathway is inhibited by, for example, viruses or
ATP deficiency. Necroptosis is commonly induced by death receptor li-
gands such as TNF-α, Fas, TRAIL or by Toll-like receptor (TLR) 3 and 4
signaling [25] (Fig. 1), and can occur following ischemia in adults [26]
or hypoxia–ischemia in the immature brain [27]. Once ligand-death re-
ceptor binding occurs, an adaptor protein is recruited which varies de-
pending on the receptor but can include TRADD (for TNF receptor) or
TRIF (for TLR3/4). The adaptor promotes the interaction between two
kinases, RIP1 and RIP3 (also known as RIPK1 and RIPK3) forming the
key signaling complex, the necrosome. Recently, it was also discovered
that themixed lineage kinase domain-like protein (MLKL) is also critical
in necroptosis asMLKL−/−mice are unable to undergo necroptosis [28].
It is still not completely understood exactly how necrosome formation
induces cell death. Phosphorylated RIP3 can recruit MLKL to the
necrosome which promotes its translocation to mitochondrial-
associated endoplasmic reticulum membranes [29] and that RIP3 in-
duces a shift in metabolism leading to excessive ROS production and
subsequent cell death [25] (Fig. 1). Another proposal is that assembly
of the necrosome induces activation of Drp-1 (regulates mitochondrial
fission), which somehow induces cell death as Drp-1 inhibitors block
necroptosis [30]. These data strongly imply that the execution phase
of necroptosis, similar to apoptosis, relies on mitochondria in some
cell types, although mitochondria-independent mechanisms may also
play a role [31].

Necroptosis and apoptosis are fundamentally linked as certain li-
gands can trigger both pathways. In this situation, caspase-8 activation
state sits at the divergence point. RIP1 and RIP3 are substrates for
cleavage by active caspase-8 and therefore necroptosis is inhibited
[32]. Conversely, caspase-8 homodimers promote apoptosis whereas
caspase-8-FLIP heterodimers inhibit necroptosis [33] (Fig. 1). In
addition, RIP3 may also play a role in the decision of the cell to follow
an apoptotic or necroptotic route although the mechanism is unclear
[34,35].

4.1. Necroptosis and HI injury

There is increasing evidence that death receptors are involved in im-
mature brain injury [13,36]. Children who develop cerebral palsy show
increased blood levels of TNF-α [37], and TNF receptor 1 is critical for
LPS-mediated sensitization to oxygen glucose deprivation in vitro [38].
Moreover, deletion of the TNF gene cluster abolishes LPS-mediated
sensitization of the neonatal brain to HI insult [39]. The FasL binds
with Fas death receptor triggering cell death [13]. HI activates Fas
death receptor signaling in the neonatal brain and Fas receptor gene
deficiency confers neuroprotection [40]. The death receptor agonists
TRAIL and TWEAK have also been implicated in adult stroke models
[41,42] and we recently found that TRAIL–Death Receptor signaling is
involved in hypoxic–ischemic brain injury [36].

Caspase-8 inhibition reduces HI brain injury in the neonate in some
studies [43] suggesting that death receptor activation of the apoptotic
pathway is important. Recently, evidence implicating necroptosis in
neonatal brain injury was obtained; the RIP1 inhibitor necrostatin-1
reduces the formation of the RIP1-RIP3 complex and attenuates HI
brain injury in postnatal day 7 male mice [27]. Necrostatin-1 also
decreased the accumulation of oxidants, prevented the decline in
complex I activity and improved ATP levels 24 h and 96 h after HI [44]
supporting the hypothesis that execution of necroptosis in the imma-
ture brain depends on mitochondria.

5. Potential clinical translation

A variety of drugs targeting cell death pathways have been tested in
animal models of perinatal brain injury. The amplitude of neuroprotec-
tion observed in these studies has been quite variable, and sometimes
the results are inconsistent betweenmodels and research groups. How-
ever, several compounds (erythropoietin, N-acetyl-cysteine, caspase-2
inhibitors, p53 inhibitors, melatonin, JNK inhibitors) have shown prom-
ising neuroprotective properties [18,22,45–49].

The clinical translation is, however, hampered by several obstacles
that have to be overcome. Firstly, it is not known whether all of the
candidate drugs can cross the blood–brain barrier, but recent studies
using dendrimers hold promise as ameans of facilitating transfer across
both blood brain barrier and across cell membranes [50]. Secondly, the
immature brain undergoes major developmental changes that will
determine the long-term cognitive and motor outcome, meaning that
the safety of every compound needs to be carefully tested in long-
term follow-up studies. Thirdly, most drugs tested are non-specific
and have multiple effects that go beyond the anti-anti-apoptotic/anti-
necrotic effects. Fourth, most interventions have been performed in a
limited number of rodent models and validation in gyrencephalic
animals or in humans is lacking. Finally, hypothermia is now used in
clinical practice as a neuroprotectant for term hypoxic–ischemic
encephalopathy. This means that drugs need to be tested for their neu-
roprotective efficacy in combination with hypothermia [45] rather than
given alone which is not done in most experimental studies.

There are two drugs, melatonin and erythropoietin, which have
been tested in clinical trials in preterm infants, and in term infants in
conjunction with hypothermia. A recent randomized trial based on a
relatively small number of patients has shown that preterm infants
had a significantly better cognitive outcome after erythropoietin vs.
placebo [51]. Furthermore, in a large randomized clinical trial, exposure
of preterm infants to high dose of erythropoietin was associated with
significantly reduced brain damage on MRI [52]. While awaiting the
results of several ongoing promising trials, future research will aim at
definingmore targeted approaches considering the critical role of mito-
chondria for apoptotic and necrotic cell death and how these pathways
may be different in males and females [53].

6. Summary

Mitochondria are center stage in the response to HI in the neonatal
brain. Mitochondrial impairment leads to bioenergetic failure, generation
of reactive oxygen species and dysregulation of calcium homeostasis
culminating in Bax-dependent mitochondrial permeabilization and
apoptotic cell death. In addition, death receptors are activated that
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could lead to caspase-8 dependent cell death or triggering of necroptosis
through the formation of a necrosome, composed of RIP1 and RIP3.
Recruitment of MLKL targets the necrosome to associate with plasma
and mitochondria/endoplasmic reticulum membranes and RIP3 induces
mitochondrial fission, excessive reactive oxygen species production and
cell death with a predominately necrotic phenotype.
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