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Intestinal immunity and homeostasis are maintained through the regulation of cytokine
trafficking, microbiota, necrosis and apoptosis. Intestinal immunity and homeostasis
participate in host defenses and inflammatory responses locally or systemically through
the gut-organ axis. NF-kB functions as a crucial transcription factor mediating the
expression of proteins related to the immune responses. The activation of NF-kB
involves two major pathways: canonical and non-canonical. The canonical pathway has
been extensively studied and reviewed. Here, we present the current knowledge of NIK, a
pivotal mediator of the non-canonical NF-kB pathway and its role in intestinal immunity
and homeostasis. This review also discusses the novel role of NIK signaling in the
pathogenesis and treatment of inflammatory bowel disease.

Keywords: NIK, non-canonical NF-kB, intestinal immunity, intestinal homeostasis, IBD – inflammatory
bowel disease
1 INTRODUCTION

The intestine is the largest component of the human immune system (1). Intestinal immunity and
homeostasis are complex and sophisticatedly regulated by abundant innate and adaptive immune
cells, mucous associated lymphoid tissue, and trillions of commensal microorganisms (2). Because
of the complexity of intestinal immunity and its connection to the immune system, dysregulation of
Abbreviations: IBD, Inflammatory bowel disease; UC, Ulcerative colitis; CD, Crohn’s disease; NF-kB, Nuclear factor-kB; NIK,
NF-kB inducing kinase; IkB, Inhibitors of NF-kB; IKK, IkB kinase; NEMO, NF-kB essential modulator; LTbR, Lymphotoxin-
b receptor; TNF, Tumor necrosis factor; TNFR, Tumor necrosis factor receptor; TAD, Transcription activation domain; RHD,
Rel homology domain; CBP, CREB binding protein; HADC3, Histone deacetylases 3; TRAF, TNF receptor-associated factor;
cIAP1/2, Cellular inhibitor of apoptosis1/2; TBK1, TANK-binding kinase 1; M cells, Microfold cells; DCs, Dendritic cells; TLR,
Toll-like receptor; ILC3, Type 3 innate lymphoid cells; IECs, Intestinal epithelial cells; pIgR, Polymeric immunoglobulin
receptor; GP2, Glycoprotein 2; aly, Alymphoplasia; PEC, Peritoneal cavity; LP, Lamina propria; GALT, Gut associated
lymphoid tissue; SLC, Secondary lymphoid tissue chemokine; BLC, B lymphocyte chemoattractant; BAFF, B-cell activating
factor; LPS, Lipopolysaccharide; SDF1-a Stromal cell derived factor-1a; GRO-a, Growth regulated protein-a; MCP-1,
Monocyte chemoattractant protein-1; BCL, B cell lymphoma/leukemia; MIP-1a, Macrophage inflammatory protein-1a; CCL,
C-C chemokine ligand; ASC, Apoptosis-associated specklike protein containing a CARD; NLRP3, Nod-like receptor P3; TJ,
Tight junction; Tpl2, Tumor progression locus-2; MAP3K8, Mitogen-activated protein kinase kinase kinase 8; IMF, Intestinal
myofibroblast; PGE2, Prostaglandin E2; Tregs, Regulatory T cells; TCR, T cell receptor; IDO, Indoleamine 2,3-dioxygenase; PD-
L1, Programmed death ligand 1; MLCK, Myosin light chain kinase; CCR, C-C chemokine receptor; RIP1, Receptor-interacting
protein kinase 1.
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the intestinal immunity leads to local or systemic inflammatory
responses, causing impaired absorptive function or even
translocation of microbiota, and is involved in the progression
of several inflammatory diseases. Disturbances in intestinal
immunity and homeostasis emerge as the pathogenesis of
inflammatory bowel disease (IBD) and systemic immune
activation, or lead to the progression of chronic metabolic
diseases, such as diabetes mellitus (3).

Nuclear factor-kB (NF-kB) is a family of transcription factors
that serves to regulate inflammatory and immunological responses
by controlling the expression of a large number of targeted genes in
response to changes in the environment (4, 5). The activationofNF-
kB ismediated by twomajor pathways, namely canonical and non-
canonical, which mediate the signaling downstream of different
receptors, have different signaling cascade component and
implement different biological functions via activating different
subtypes of NF-kB. NF-kB inducing kinase (NIK) is a crucial non-
canonical mediator of the NF-kB signaling cascade, and mainly
responds to signals transduced by the tumor necrosis factor
receptor (TNFR) superfamily. In the past two decades, the role of
the non-canonical NF-kB signaling pathway inmucosal immunity
and homeostasis has been highlighted. Numerous research
illustrate NIK is involved in the regulation of intestinal immunity
and homeostasis through activating the development of effector T
cells and IgA secretion (6–9), stimulation of the secretion of
cytokines induced by microbiota (10), maintenance of microfold
cell function (11), and sustaining the function of regulatory T cells
(Tregs) and suppressor dendritic cells (DCs) (12, 13).Moreover, the
close relationshipbetweenaberrantNIKsignalingandpathogenesis
of IBD has been extensively studied (14, 15). Consequently, this
article reviews the signaling pathways mediated by NIK and its
relevance to the pathogenesis and treatment of IBD, including
ulcerative colitis (UC) and Crohn’s disease (CD).
2 NF-ΚB IS ACTIVATED BY CANONICAL
AND NON-CANONICAL PATHWAYS

NF-kB is a family of transcription factor, including NF-kB1 (p50/
p105),NF-kB2 (p52/p100), RelA (p65), RelB, and c-Rel inmammals,
and regulates the transcriptionof kappa chain inBcells viabinding to
kBenhancer as homodimers orheterodimers (16).NF-kBshares two
common motifs: transcription activation domain (TAD) and N-
terminalRel homologydomain (RHD).The former is responsible for
positive regulation of gene expression by recruiting coactivators and
the latter is responsible for NF-kB dimerization and DNA binding
(17). The phosphorylation of TAD facilitates the recruitment of
CREB binding protein (CBP)/p300 coactivator (18), which decreases
the levels of histone deacetylases 3 (HADC3), resulting in the
augmentation of histone acetylation and subsequent enhancement
of the transcription of target genes (19).

NF-kB, exerts immunoregulatory function by enhancing the
transcription of target genes under specific stimulations. In the
physiological state, NF-kB is sequestered in the cytoplasm and is
deprived of the nuclear translocation by inhibitors of NF-kB (IkB),
among which the most representative IkB is IkB. p105 and p100,
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as precursors of p50 and p52, respectively, also exhibit an IkB-like
structure in their C-terminal portion, and perform similar
functions as IkB (20). NF-kB activation is mediated by both
canonical and non-canonical pathways, depending on the types
of stimulus (Figure 1) (21).

2.1 Canonical Pathway
Under numerous stimuli, such as ligands for cytokine receptors,
NF-kB is activated via the canonical pathway. IkB kinase (IKK),
consists of the catalytic subunits: IKKa, IKKb, and a regulatory
subunit: IKKg, also known as NF-kB essential modulator (NEMO)
(22, 23), which plays a key role in the canonical pathway by
phosphorylating IkB, inducing its ubiquitination and proteasomal
degradation. This process promotes the nuclear translocation of
the NF-kB dimer, predominantly p50/RelA and p50/c-Rel, which
enhances the transcription of proinflammatory cytokines.

2.2 Non-Canonical Pathway
Under the stimulation of certain receptors, such as the lymphotoxin-
b receptor (LTbR) (8), TNFR superfamily, CD40 (24), and B-cell
activating factor (BAFF) receptor (BAFFR) (25), theactivationofNF-
kB is triggered by a non-canonical pathway. NIK, as a prototypical
activator of the non-canonical pathway (26) maintains a low level
without stimuli as a result of ubiquitin-dependent degradation
mediated by TNF receptor-associated factor-3 (TRAF3), which
provides ubiquitination substrate binding sites and complexes with
TRAF2 and cellular inhibitor of apoptosis1/2 (cIAP1/2) to formNIK
ubiquitin ligase (27). However, the stimulation of certain receptors
leads to the degradation of TRAF3 after ubiquitylated by cIAP1/2,
thus contributing to the accumulation of NIK (28). Since NIK is
degraded via NIK ubiquitin ligase upon synthesized, the
accumulation of NIK takes time for de novo synthesis, which
explains why the non-canonical pathway is slow and dependent on
protein synthesis compared to the canonical pathway (29).
Subsequently, NIK activates IKKa via phosphorylation and
complexation with IKKa and p100 (30) to enhance the
phosphorylation of p100 at Ser866 and Ser870 by IKKa without
the help of IKKb and IKKg subunit (31). The phosphorylation of
p100 creates sites that are bound by TrCP and induces the
ubiquitination and proteasome limited degradation, not only
producing mature p52 (NF-kB2) but also initiating nuclear
translocation of p52 (32). The mature p52 prefers interacting with
RelB. Consequently, the predominant NF-kB dimer in the non-
canonical signaling is p52/RelB.

However, upon phosphorylated by NIK, IKKa will also
phosphorylate NIK at Ser809, Ser812, and Ser815 (33), which
disturbs the stability of NIK, resulting in direct proteasome
mediated degradation independent of cIAP1/2 and ubiquitylation
(34). TANK-binding kinase 1 (TBK1), induced by anti-CD40 and
BAFF, also phosphorylates NIK at Ser862, which is located in the
degradation-determination region, and thus triggers the
degradation of excessive NIK without the involvement of NIK
ubiquitin ligase (35). Unlike TRAF-cIAP ubiquitin E3 complex
mediated physiological degradation of NIK in the unstimulated
state, both pathways mentioned above show a negative feedback of
the NIK axis after stimulation, aimed at inhibiting excessive
stimulation and thus preventing immune disorders or
June 2022 | Volume 13 | Article 895636
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oncogenesis. Impaired negative feedback of the non-canonical NF-
kB signaling is associated with autoimmune diseases, such as
systemic lupus erythematosus (SLE), and IBD (14, 36, 37) and the
sustained NIK signaling is considered as an oncogenic event in
diffuse largeB-cell lymphoma (38). In conclusion,NIK is the central
core of the non-canonical NF-kB signaling (Figure 1).
3 NIK IN INTESTINAL IMMUNITY
AND HOMEOSTASIS

3.1 NIK Modulates Adaptive Immunity
NIK is activated in several immune cells under the stimuli of
microbial invasion, functioning as an indispensable component
of adaptive immunity. It has been reported that NIK participates
in the development of T cells (39), regelation of IgA secretion (7),
microfold cells (M cells) maintenance (11) and B cells migration
(40, 41). The role of the NIK in intestinal adaptive immunity
includes different parts (Figure 2).

3.1.1 NIK Facilitates T Cells Development in Peyer’s
Patches and Intestinal Secretory IgA Production
Peyer’s Patches (PPs), as secondary lymphoid tissues (SLTs) of the
intestine, play an essential role inmaintaining themicroenvironment
and maturation of lymphocytes. NIK is believed to be indispensable
for cell mediated immunity and SLTs formation (42). The NIK
Frontiers in Immunology | www.frontiersin.org 3
signaling downstreamof LTbRplays an essential role in formation of
PPs.Micewith disrupted genes encodingLTbR lackPPs (43). Yilmaz
et al. indicated that relB-/- andnfkb2-/-mice showed rudimentaryPPs,
and they further validated that the NIK/IKKa/p52-RelB axis
mediates the development of PPs downstream of LTbR in
intestinal stromal cells (44). Recent studies have elucidated the
mechanisms by which the NIK stimulates the maturation of T
lymphocytes in PPs (7). Instead of directly functioning in T
lymphocytes, the NIK induced non-canonical NF-kB signaling
mediates IL-23 induction in DCs (6) when Toll-like receptors
(TLRs) are activated. This in turn maintains TH17 cells and type 3
innate lymphoid cells (ILC3s), both of which have the ability to
express the transcription factorRORtandsecrete IL-17andIL-22and
finally enhance the expression of polymeric immunoglobulin
receptor (pIgR) in the intestinal epithelium, leading to an increase
in IgA secretion into the intestinal lumen independent of microbiota
(7). Cytokines involved in the trafficking play a significant role in
regulating intestinal immunity and homeostasis. IL-22 and ILC3s
induced by IL-23 are thought to participate in the early phase of host
defense against Citrobacter rodentium (C. rodentium). However, the
overstimulation of NIK in DCs contributes to the exacerbation of
colitis, as a consequence of IL-17 overexpression. The contribution of
the IL-23/IL-17 axis has been recognized in the pathogenesis of IBD,
as IL-17 induced by IL-23 elicits the release of proinflammatory
cytokines, such as IL-6 and IL-8, releasing in myofibroblasts and
epithelial cells which causes the recruitment of neutrophils and
epithelial cell injury (45).
FIGURE 1 | Brief illustration of the activation and regulation of the two major NF-kB signaling pathway. The canonical pathway is induced downstream of the
stimulation of LPS and cytokines. Such stimuli mediate the activation of IKK, consisting of three subunits: IKKa, IKKb, and IKKg, which in turn phosphorylates
and elicits the ubiquitin dependent processing of IkB and p105, leading to the nuclear translocation of RelA/p50, c-Rel/p50, p50/p50 dimers and the regulation
of target gene expression. The non-canonical pathway is induced downstream of TNFR superfamily. In the absence of stimuli, NIK undergoes ubiquitin-dependent
degradation mediated by NIK ubiquitin ligase, composed of TRAF3, TRAF2 and cIAP1/2. Under stimuli, TRAF3 undergoes ubiquitin-dependent degradation, which
allows the accumulation of NIK. NIK directly phosphorylates and activates IKKa, contributing to the phosphorylation and ubiquitin dependent processing of p100 to
p52. The nuclear accumulation of p52/RelB dimers changes transcriptional activity of target genes. The excessive NIK can also be evacuated via negative feedback
mechanisms. IKKa can phosphorylate NIK, resulting in the direct proteasome-mediated degradation without the involvement of NIK ubiquitin ligase. TBK1 downstream
of CD40 and BAFF also phosphorylates NIK and induces degradation. LPS, lipopolysaccharides; IKK, IkB kinase; TNFR, tumor necrosis factor receptor; NIK, NF-kB
inducing kinase; TBK1, TANK-binding kinase 1; BAFF, B-cell activating factor belonging to the TNF family.
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3.1.2 NIK Maintains M Cell Function
Another player associated with the NIK signaling in the Peyer’s
Patches is the M cell. M cells are specialized intestinal epithelial
cell that mediates the internalization of dietary antigens and
microbiota into the mucosa, initiating antigen-specific immune
responses (46). Glycoprotein 2(GP2) expression on the apical
surface of M cells helps the recognition of type 1 pilus-containing
bacteria and the transcytosis of bacteria, which facilitates antigen
recognition and processing by immune cells (47). IgA receptors
on the apical surface of M cells also functions as receptors for IgA
coated bacteria and mediate the engulfment (48). 1 integrin is
also expressed in M cells, targeting Yersinia enterocolitica and
inducing antigen internalization (49). Consequently, M cells play
an essential role in regulating intestinal immunity and
homeostasis and are related to inflammatory responses (50).
Recent research has shown that the epithelial NIK signaling is
involved in the M-cell maintenance, as Nik-/- mice exhibit loss of
M cells in PPs (51). Ramakrishnan et al. demonstrated that
epithelial RANKL mediates M-cell differentiation in duodenal
and colon enteroids via the NIK signaling (11). Epithelial NIK
signaling also elicits IL-17 and IgA which not only protect the
intestine from colitis but also facilitate antigen uptake and
processing by M-cells via IgA coating of commensal bacteria
(11). All of these factors enhance the immunotolerance of the
intestine and reduce inflammatory conditions, contributing to
normal intestinal immunity and homeostasis. Moreover,
increased levels of circulating IL-17 and IgA also protect
against sepsis. However, prolonged stimulation of the NIK
leads to chronic elevated IL-17 and IgA levels, resulting in
intestinal injury as reviewed above. In addition, overexpression
Frontiers in Immunology | www.frontiersin.org 4
of NIK results in the ectopic expression of M cells, which worsens
intestinal inflammation (52). Clinical data shows overstimulated
NIK among patients with IBD, validating that uncontrolled
stimulation of the NIK signaling mediates the intestinal
inflammatory response (53). Consequently, intestinal
homeostasis is maintained via the balanced activation of the
NIK signaling.

3.1.3 NIK Augments Peritoneal Cavity Cell Migration
One of the classical in vivo models to investigate the NIK
signaling is the alymphoplasia (aly) mice, carrying a point
mutation in the gene encoding NIK. As a result, impaired
lymphocyte function and stromal compartment can be
observed in aly mice (54). A special feature is that aly mice
have a higher B1/B2 cell ratio in the peritoneal cavity (PEC) than
normal mice, suggesting that antigen-specific B cells in the
lamina propria (LP) are derived from PEC cells (55). Frequent
migration between PEC cells and gut-associated lymphoid tissue
(GALT) exists, as half of the IgA plasma cells of intestinal LP
were proven to be derived from PEC cells (55). Evidence also
showed that under the stimulation of secondary lymphoid tissue
chemokine (SLC), NIK signaling mediated the cell migration
from PEC to GALT in LP. Fagarasan et al. confirmed that aly
PEC cells have a lower migration rate and reduced chemotactic
activity of SLC and B lymphocyte chemoattractant (BLC) either
at rest or under the stimulation of lipopolysaccharides (LPS)
(41). Furthermore, NIK also mediates the migration of PEC cells
downstream of the SLC receptor. The stromal cells in Peyer’s
Patches are involved in the migration of PEC cells. The NIK
signaling also modulates the secretion of BLC and SLC to provide
FIGURE 2 | Mechanism of NIK signaling-mediated regulation of intestinal adaptive immunity. TLR, together with TNFRII induces NIK signaling in DCs. The nuclear
translocation of RelB/p52 enhances the expression of IL-23, which maintains the TH17 cells and ILC3s. IL-17 secreted by TH17 cells and ILC3s stimulates the
expression of pIgR on the basal surface of IECs, which increases the secretion of IgA to intestinal lumen. IL-22 secreted by TH17 cells and ILC3s also stimulates
antimicrobial peptide against Citrobacter rodentium. NIK signaling downstream of RANK on IECs mediates the maintenance and differentiation of M cells, which
facilitates the delivery of antigens to immune cells. NIK in IECs also induces IL-17 expression and IgA secretion, which enhances the intestinal immunotolerance. NIK
signaling also modulates the migration of peritoneal cavity B cells to GALTs. Under the stimulation of SLC and BLC, NIK is activated in peritoneal cavity B cells and it
mediates the migration. NIK participates in the downstream of LTbR in the intestinal stromal cells as well via upregulation of SDF-1 and BAFF, providing the
microenvironment for B cells maturation. NIK also upregulates SLC and BLC, inducing B cells migration. NIK, NF-kB inducing kinase; DCs, dendritic cells; ILC3, type
3 innate lymphoid cells; IECs, intestinal epithelial cells; M cells, microfold cells; GALT, gut associated lymphoid tissue; SLC, secondary lymphoid tissue chemokine;
BLC, B lymphocyte chemoattractant; BAFF, B-cell activating factor belonging to the TNF family.
June 2022 | Volume 13 | Article 895636
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microenvironment for B cells migration and class switch (56).
Dejardin and colleagues reported that the activated LTbR in
stromal cells can elicit the NIK/IKKa axis, resulting in the
processing of p100, a precursor of p52, which leads to the
nuclear translocation of p52. After dimerized with RelB, p52
upregulates SLC, BLC, stromal cell derived factor-1 (SDF1-a),
and BAFF (40). SLC and BLC mediate the migration of PECs to
GALT. SDF1-a and BAFF provide the microenvironment for B
cell maturation (57, 58), thus facilitating the migration of B cells.
Kunisawa et al. examined cytokines secretion related to
peritoneal B cell trafficking in aly stromal cells, and confirmed
that the NIK signaling in stromal cells facilitated B cell
emigration from the peritoneal cavity by enhancing the
expression levels of VCAM-1 and ICAM-1 on stromal cells
and regulating the balance of CXCL13 expression (59).

3.1.4 NIK Mediates Naïve B Cell Migration to
Intestinal Lamina Propria
PPs function as secondary lymphoid tissues in the gut, where
stromal cells provide microenvironment for B cells
differentiation and homing. It has been proven that the
majority of IgA plasma cells in LP are derived from PPs, and
IgA+ B cells generated in PPs prefer to migrate to the intestinal
LP (60). Suzuki et al. applied NIK deficient aly mice and showed
that the NIK signaling downstream of LTbR in intestinal stromal
cells mediates the naive B cells migration to intestinal LP.
However, NIK signaling is not involved in the migration of B
cells in PPs to LP. (61)

3.2 NIK Contributes to Innate Immunity
The intestinal epithelium contributes to the defense against
pathogen invasion, and the microbiota lying on the surface of
the intestinal lumen interacts with the epithelium, both of which
contribute to intestinal innate immunity. Here, we demonstrate
concrete mechanisms of intestinal innate immunity driven by the
NIK (Figure 3).

3.2.1 NIK Mediates Cytokine Release in the
Intestinal Epithelium
The intestinal epithelium is a single layer of cells lining on the
intestinal lumen, functioning as a barrier against pathogens and a
coordinating hub for immune defense events such as cytokine
trafficking (62). IECs are reported to upregulate several cytokines
under the stimulation of bacterial toxin. Research has also related
the NIK to the bacterial toxin-induced expression of cytokines
by IECs.

Kim et al. elucidated that theNIK signalingmediatesClostridium
difficile (C. difficile) toxin A-induced cytokines expression by IECs
(63). Upon the stimulation of C. difficile toxin A, phosphorylated
NIK activates IKKa/b. IKKa and IKKb then directly phosphorylate
serine residues on IkB, resulting in the degradation of IkB and
nuclear translocation of the NF-kB dimer, p65/p50 and p65/p65.
Proinflammatory cytokines such as IL-8, growth regulated protein-
a(GRO-a), and monocyte chemoattractant protein-1(MCP-1) are
upregulated by transcription factor p65/p50 and p65/p65 dimers,
contributing to the innate immunity of the intestinal tract (64).
Frontiers in Immunology | www.frontiersin.org 5
Theengagementofnon-canonicalNF-kB inmediatingLPS-induced
immune response is well recognized (65). It has been reported that
the NIKmediates intestinal innate immunity by transducing signals
downstream TLR4 induced by LPS in IECs. After activation by LPS,
TLR4 transduces signals by phosphorylating B cell lymphoma/
leukemia (BCL)-10 at Ser138, which phosphorylates NIK without
changing the level of NIK. This further leads to the activation of
IKKa and nuclear translocation of the RelB-p52 dimer and
subsequent induction of IL-8 secretion and inflammatory
responses (66). Banoth et al. revealed that IEC LTbR induced
NIK/IKKa signaling provided a co-stimulatory signaling to sustain
canonical RelA/NF-kB signaling by TLR4 in response to C.
rodentium (67). Researchers has shown that activation of the NIK/
IKKa signaling downstream of LTbR not only led to a rapid
augmentation of canonical NF-kB targeted pro-inflammatory
genes, including TNF, interferon inducible protein-10 (IP-10), and
macrophage inflammatory protein-1a (MIP-1a), but also sustained
the prolonged accumulation of IL-1 and C-C chemokine ligand 5
(CCL5) downstream of TLR4 after activation by LPS (67). The
canonical NF-kB component, RelA, elicits the expression of p100 as
negative feedback by utilizing its inhibitory domain to terminate
sustained activation (68) downstream of TLR4. However, p100 also
dimerizes with RelB as a precursor of non-canonical NF-kB (69),
which is utilized by the NIK signaling downstream of LTbR,
preventing the inhibitory effect of p100 as well as enhancing the
non-canonicalNF-kBsignalingandfinally formingapositive loop to
maintain proinflammatory responses to counter bacteria (67). In
agreement with previous findings, a recent publication reported that
non-canonical NF-kB signaling enhanced canonical RelAmediated
inflammatory responses in IECs and exacerbated colitis (70). They
also revealed an upregulated non-canonical NF-kB signaling in IBD
patients, indicating that uncontrolled IEC-specific NIK signaling
involves in the pathogenesis and progression of IBD (70). In
physiological state, intestinal inflammatory response is self-
limiting rather than fulminant due to the negative regulatory
function of NIK signaling. It has been reported that IKKa induced
byNIKparticipates in thenegative regulationof inflammation via its
kinase property (71, 72). Lawrence et al. elucidated that IKKa
accelerated canonical c-Rel and RelA turnover and dissociation
from promoters of pro-inflammatory genes in macrophages
through direct phosphorylation (72). IKKa also negatively
regulates apoptosis-associated specklike protein containing a
CARD (ASC) through phosphorylating at Ser193 and Ser16 and
interferes with the assembly of nod-like receptor P3 (NLRP3)
inflammasome (71). These negative regulation mechanisms in
NIK plays an essential role in the reduction of uncontrolled
inflammation and the maintenance of intestinal homeostasis.
These findings not only elucidated the correlations between the
NIK signaling and IEC-mediated innate immunity, but also revealed
the crosstalk between non-canonical and canonical NF-kB.
(Figure 3). These findings seem contradictory that NIK signaling
not only induces intestinal inflammation but also negatively
regulates inflammatory responses. Actually, NIK plays its role in
regulating intestinal homeostasis in a cell-specific way. Under the
stress of pathogen invasion, NIK signaling in IECs promotes
adaptive immunity against pathogens while macrophages inhibits
June 2022 | Volume 13 | Article 895636
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excessive inflammation through NIK signaling to protect intestinal
tissue from damage (72).

3.2.2 NIK Modulates Intestinal Tight Junction
The intestinal tight junction (TJ) plays a significant role in gut
immunity and homeostasis (73). Evidence has shown that
paracellular permeation of intestinal antigens mediated by
defective TJs can induce or propagate inflammatory responses.
Intestinal TJ permeability which is considered an etiological factor
in CD, is significantly increased in patients with CD (74). Studies
have shown that proinflammatory cytokines [e.g., TNF-a, IL-1
(75), IFN-g (76)] are related to increased intestinal TJ
permeability. TNF- a and IL-1 modulates intestinal TJ by
enhancing the expression of myosin light chain kinase (MLCK)
(77, 78). TNF-a also increases epithelial cell apoptosis (79),
whereas IFN-g manipulates TJ permeability via micropinocytosis
of tight junction proteins, such as occludin, and claudin-1 instead
of inducing apoptosis (80). Clinical research has also shown that
an increase in intestinal TJ permeability induced by TNF-a can be
observed in patients with IBD (81), and that IL-1 is also elevated in
the intestinal tissues of patients with CD (82). Recently, Al-Sadi
et al. defined the NIK signaling as being involved in TNF- a
modulation of intestinal TJ permeability, both in vitro and in vivo
(83). Research has shown that TNF causes an increase in
phosphorylated NIK, and induces the phosphorylation of IKKa
at Ser176 without the involvement of IKKa. Surprisingly, NIK
signaling is mediated by the canonical pathway NF-kB, p50-RelA
dimer, which finally results in the activation of MLCK gene and
Frontiers in Immunology | www.frontiersin.org 6
thus increasing the TJ permeability (83). MLCK was shown to
catalyze the phosphorylation of MLC, contributing to the
activation of Mg2+–Myosin ATPase, which finally results in the
contraction of the peri-junctional actomyosin filament, thus
leading to the tension-induced opening of the TJ barrier and the
increased permeability (78). However, IL-1-induced increase in
intestinal TJ permeability is mediated byMEKK-1 pathway, rather
than the NIK signaling. Recent research confirms that IL-1
induced MEKK-1/IKKa canonical NF-kB pathway, and the
activation of MLCK gene, without the involvement of NIK (84).
In conclusion, TNF-a induced the modulation of MCLK and thus
the increased intestinal TJ permeability was mediated by NIK/
IKKa axis activated NF-kB p50/RelA dimer, while IL-1 achieves
the same property via the NIK-independent canonical pathway.
These findings indicate that the selectivity of canonical or non-
canonical pathways targeting NF-kB is mediated by different
cytokines and ultimately achieves the same physiological
process: increase in intestinal TJ permeability (Figure 3).

3.2.3 NIK Rescues Intestinal Epithelium Injury
NIK signaling is activated upon IECs detachment to reduce
apoptosis and maintain intestinal homeostasis. It has been
reported that IL-1, IL-1R type II and IL-6 is upregulated upon
IEC detachment (85, 86). Yan et al. revealed that IECs detachment
activated NIK and increased IKKa phosphorylation, resulting in
the activation and nuclear translocation of p65. The p65 activation
inducedbyNIKsignaling resulted in inductionof IL-1, IL-1R type II
and IL-6 and reduced caspase activation and apoptosis (87).
FIGURE 3 | Demonstration of NIK regulates intestinal innate immunity. IECs upregulate several proinflammatory cytokines via NIK signaling. Upon the stimulation of
Clostridium difficile toxin A, IECs activates the NIK/IKKa axis, resulting in the nuclear translocation of RelA/p50, which facilitates the expression of IL-8, GRO-a, and
MCP-1. Under the stimulation of LPS, TLR4 on the IECs activates NIK by phosphorylation of BCL-10, which facilitates the nuclear translocation of RelB/p52 and
enhances the expression of IL-8. The canonical IKK complex also mediates the signaling transduction downstream of TLR4, eliciting transcription of TNF, GRO-a,
and MCP-1. In the meantime, RelA induces the expression of p100 as negative feedback to cease canonical NF-kB signaling. However, p100 can be utilized by NIK
signaling downstream of LTbR, not only evacuating the inhibitory effect of p100, but also promoting the processing of p100 to p52. After dimerized with RelB, p52
upregulates IL-1 and CCL5. These proinflammatory cytokines initiates host defense via recruitment of neutrophils and monocytes. TNF has the ability to increase
intestinal tight junction permeability through the activation of NIK/IKKa axis, which induces the nuclear translocation of RelA/p50, and activates MLCK/MLC axis,
contributing to the loss of the tight junction proteins: occludin and claudin-1. Finally, the contraction of actomyosin filament leads to the opening of tight junction.
Increased secretion of IgA induced by NIK signaling in DCs changes the microbiota. With IgA coating, evident downregulation of Enterococci and SFB can be
observed. IL-22 and IL-17 induced by NIK signaling in DCs also has an inhibitory effect on Enterococci and SFB dysbiosis respectively. The microbiota DNA also
stimulates TLR9 on IECs induces CCL20 secretion via NIK signaling. NIK, NF-kB inducing kinase; IECs, intestinal epithelial cells; DCs, dendritic cells; TNF, tumor
necrosis factor; SFB, segmented filamentous bacteria.
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Moreover, NIK signaling is activated to alleviate intestinal injuries
by facilitating regeneration (88).Tumorprogression locus-2 (Tpl2),
a mitogen-activated protein kinase kinase kinase 8 (MAP3K8)
activates NIK signaling through phosphorylation (89). Roulis
et al. demonstrated an intestinal myofibroblast (IMF)-specific
pathway mediated by Tpl2 maintained intestinal homeostasis via
promoting epithelium regenerationunder injuries (88). IMF sensed
the penetrated bacteria via TLR4. Tpl2 interacted with p105 and
mediated the phosphorylation of ERK downstreamof TLR4, which
enhanced the expression of prostaglandin E2 (PGE2) by inducing
enzymatic activityof cyclooxygenase-2 (88). PGE2plays anessential
role in intestinal proliferation by sustaining Wnt signaling of stem
cells, which rescued the injured intestinal epithelium (90). As a
result, reduced level of Tpl2 is associated with disturbance of
intestinal homeostasis and IBD pathogenesis (91).

3.3 NIK Maintains Intestinal Regulatory
Microenvironment
Intestinal homeostasis is the result of balance of pro-inflammatory
and regulatory anti-inflammatory immune cells. Consequently, the
imbalance of TH17 cells and Tregs has been considered as the
pathogenic mechanism of CD (92). The regulatory
microenvironment of intestine is maintained by IECs (93),
CD103+ suppressor migration DCs (94) and different populations
of Tregs and supported by tissue-resident macrophages (95).
Multiple studies have shown that NIK signaling sustains intestinal
regulatory microenvironment. Previous studies confirmed that the
homeostasis of peripheral Tregs is mediated by NIK signaling since
overexpression of NIK increases Tregs function (12). Researchers
also found that conditional depletion of nfkb2 in Tregs led to
increasing number of peripheral Tregs with impaired suppressive
capacity. As the result, Tregs-specific nfkb2-/- mice displayed
localized immune infiltrations in the colons with increased CD4+

and CD8+ T cells expressing IFN-g, while additional depletion of
RelB reversed thephenotype (96). Furthermechanismstudy showed
that downstream of T cell receptor (TCR), increased p100 synthesis
had an inhibitory effect of RelB. However, non-canonical NF-kB
signaling downstream of OX40 or GITR contributed to the
processing of p100 to p52 which enhanced nuclear translocation
of RelB, resulting in the impaired suppressive function of Tregs (96).
nfkb2-/- mice showed massive inflammation in colons, with other
tissues intact, for example lungs, kidney and liver.Depletionofnfkb2
in T cells selectively affected the peripheral Tregs without evident
effects on Tregs generated in thymus, indicating that NIK signaling
has specific effect on peripheral Tregs (96). In addition to Tregs-
intrinsic role, NIK is involved in the maintenance of Tregs through
modulating the secretionof IL-10. Serebrennikova et al. revealed that
deletion of Tpl2, a MAP3K8 which regulated NIK and IKKa by
phosphorylation led to impaired IL-10 expression of macrophages
and DCs via inhibition of mTOR/Stat3 signaling downstream of
TLRs. Consequently, peripheral Foxp3+ inducible Tregs failed to
achieve suppressive function without sufficient IL-10, and shaped a
pro-inflammatory microenvironment of intestinal mucosal and
accelerated intestinal inflammation and oncogenesis (97).

Several researches showed that NIK signaling mediates the
suppressive function of DCs through inducing expression of a key
enzyme, indoleamine 2,3-dioxygenase (IDO) (13). Non-canonical
Frontiers in Immunology | www.frontiersin.org 7
NF-kB signaling mediated by NIK and IKKa promotes the
expression of IDO in DCs downstream of CD40, which promotes
the differentiation of T cells with regulatory properties (98). Under
sustained exposure to LPS, increased level of IDO can be found in
DCs, which leads to overexpression of immunoregulatorymolecules,
including programmed death ligand 1 (PD-L1), PD-L2, and IL-10
andfinally inducesDCswith tolerogenic phenotype to alleviate tissue
damage or allergic reaction caused by prolonged inflammatory
response. Since the interaction between RelB and kynurenine, a
metabolite of IDO, DCs favors NIK signaling rather than canonical
NF-kB signaling downstream of TLR4 (99). Consequently, the
involvement of NIK signaling in endotoxin tolerance is mediated
by interaction with IDO signaling. Yu et al. elucidated that RelB/p52
directly bound to IDOgene promoter inmyeloid-derived suppressor
cells of breast cancer microenvironment mediated by NIK signaling
downstream of STAT3 activation (100). That is, NIK signaling is
involved in the activation of IDO, which plays a central role in the
suppression of immune responses. Far deeper mechanisms of
interactions between NIK and IDO in shaping the intestinal
regulatory immune microenvironment should be deciphered.

NIK signaling is a crucial mediator of intestinal immune
tolerance. Nik-/-, relb-/-, and nfkb2-/- mice spontaneously develop
autoimmunity (101). NIK essentially modulates immune
regulation in a tissue-specific way. Andreas et al. confirmed that
RelB deletion in DCs contributed to accumulation of tissue Tregs
and showed a protective role in autoimmune encephalomyelitis
(102). However, DC-specific deletion of RelB reduced intestinal
RORt+ Tregs leading to defective tolerance of microbiome and oral
antigens (102). In addition, DC-specific deletion of TRAF6, an
upstream regulator of canonical NF-kB impairs intestinal Tregs
differentiation, resulting in defective tolerance and aberrant type 2
allergic response after oral antigen uptake (103).

3.4 NIK and Microbiota
Gut microbiota are a large group of commensal bacteria that occur
in the gastrointestinal tract, do not exhibit pathogenicity, and
modulate intestinal immunity and homeostasis (10). The number
of commensal bacteria is ten-foldmore than the cells in the human
body.Microbiota interacts with innate immune system, not only by
creatingaprotectivebarrieron the intestinal lumen, thuspreventing
adhesion of pathogenic bacteria, but also by stimulating the
secretion of certain chemokines or cytokines to maintain
intestinal immunity (104). Currently, NIK signaling is associated
with the cytokine secretion induced by commensal bacteria. Dutta
et al. reported that both commensal andpathogenic bacterialDNA-
induced CCL20 secretion by TLR9 in colonic epithelial cells is
mediated by bothNIK/IKKa/p100 (NF-kB2) phosphorylation and
the MEK/ERK pathway (105). However, there was a temporal
difference between these two pathways. The MEK/ERK signaling
axis induces the transcription factor AP1 (cjun/cfos), which
predominantly participates in the early stage of CCL20 gene
transcription, while the NIK/IKKa signaling axis induces non-
canonical NF-kB2 (p52/RelB), which is predominantly involved in
the late phase ofCCL20expressiondownstreamofTLR9stimulated
by bacterial DNA. CCL20 is a chemokine with antimicrobial effects
against Staphylococcus aureus (S. aureus) and Escherichia (E. coli)
(106) andmodulates the trafficking of several immune cells such as
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DCs, T cells, and B cells by stimulating C-C chemokine receptor
(CCR) 6 (107). Jie et al. demonstrated altered intestinal microbiota,
with significantly elevated Enterococci and segmented filamentous
bacteria (SFB), for example, C. savagella in mice with DC specific
depletion of NIK (7). The overexpression of Enterococci leads to
opportunistic infection (108), and SFB stimulates immune cell
activation and differentiation, which may exacerbate autoimmune
responses (109). It was further illustrated that the IL-23/IL-17, IL-
22/IgA axis induced by the NIK signaling pathway in DCs
contributes to the decreased abundance of Enterococci and SFB,
in agreement with recent research showing that IL-22 derived from
ILCs inhibits Enterococci expansion (110). IL-17 regulates the
abundance of SFB, which maintains the intestinal homeostasis
and protects the intestine from inflammatory responses
(Figure 3) (111). NIK participates in the induction of secretory
IgA in both DCs and intestinal epithelial cells downstream of TLR
andRANK, respectively (7, 11). Secretary IgAprovides a coating for
microbiota and prevents the accumulation of opportunistic
pathogenic microbes under certain conditions, thus exhibiting a
protective role in infection and inflammation (112). Consequently,
the loss of NIK is related to increased susceptibility to colitis (11).
However, sustained activation of NIK leads to high IgA coating
bacteria which causes a shift to colitogenic dysbiosis and exacerbate
inflammatory responses in patients with UC and CD (112).
Increased level of IgA levels lead to IgA-coated microbiota
enrichment, which promote the TH17 dependent local or
systemic inflammation, worsening peripheral spondylarthritis, an
extraintestinal manifestation of CD (113).

3.5 NF-kB Independent Roles for NIK in
Intestinal Homeostasis
Several mechanisms has also been reported that NIK signaling
exerts its function in maintaining intestinal homeostasis without
the involvement of NF-kB. As reviewed above, IKKa, a kinase
induced by NIK interferes with NLRP3 inflammasome assembly
by phosphorylating ASC rather than activating RelB and p52,
thereby influencing intestinal homeostasis and immunity (71). It
is reported that NIK phosphorylated receptor-interacting protein
kinase 1 (RIP1) and induced tissue destruction downstream of
TNFR1 independent of NF-kB (114). Jung et al. revealed that
overstimulated NIK induced the fission of mitochondria and cell
invasion by regulation of DRP1 phosphorylation in the absence
of IKKa and NF-kB, which emerges as a novel mechanism of
oncogenesis (115). Upregulated NIK signaling is also observed in
IBD patients (70). Combined together, these studies provide us
with a possible mechanism of inflammation-cancer transition in
IBD patients.
4 ROLE OF NIK SIGNALING IN THE
PATHOGENESIS OF IBD

We have reviewed the role of NIK signaling in intestinal immunity
and homeostasis. In this part, we will summarize mechanisms of
aberrant NIK signaling in the pathogenesis of IBD through
breaking intestinal homeostasis. On the one hand, upregulated
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non-canonical NF-kB signaling is observed in IBD patients (70).
Overstimulated NIK signaling in DCs and M cells leads to
increased IL-17 secretion which plays a central role in intestinal
injury and exacerbate colitis (7, 11). Sustained activation of NIK
also shapes microbiome containing high IgA coating bacteria
which causes a shift to colitogenic dysbiosis and exacerbate
inflammatory responses in patients with UC and CD (112).
Non-canonical NF-kB signaling is reported to enhance
canonical RelA mediated inflammatory responses in IECs and
exacerbated colitis via crosstalk mechanisms (70). On the other
hand, NIK signaling participates in the maintenance of regulatory
microenvironment and intestinal tissue repair. As a result, lack of
NIK signaling also contributes to the pathogenesis of IBD as well.
Consequently, it has been shown that Tpl2, as an activator of NIK
has significantly reduced level in IBD patients (91).
5 PERSPECTIVES

Currently,NIK, as the pivotal component of the non-canonicalNF-
kB pathway, integrates significant physiological event such as
cytokine trafficking, survival signaling, and apoptosis, and has
been confirmed to maintain intestinal innate and adaptive
immune response of the intestinal tract. Depletion of NIK leads
to impaired PP and inadequate T cell development (44). However,
overstimulation of the NIK signaling pathway also contributes to
the disturbance ofhomeostasis, leading toprolonged inflammation,
which is associated with IBD pathogenesis (11). In addition, the
pathogenesis and progression of several autoimmune disease are
also related to NIK overexpression (116, 117). NIK inhibitors have
also been designed as novel therapy for SLE (118). It is the balanced
activation of NIK that maintains intestinal immunity and
homeostasis. Consequently, optimizing NIK to within the normal
range is a promising area for pharmacological discovery.

There are also questions that remain tobe resolved regarding the
NIK signaling pathway.The upregulationof the non-canonicalNF-
kB pathway has been reported in patients with IBD treated with
anti-TNF antibody, which is associated with regression of drug
efficacy (53). Patients resistant to anti-TNF treatment showed a
significant upregulation of NIK and downregulation of NLRP12, a
negative regulator of both canonical and non-canonical NF-kB
pathways (53). Consequently, whether recent targeted therapies for
IBD such as TNF-a antibody, have an effect on the NIK signaling,
how theNIK signaling pathwaymediates the resistance in the novel
medication of IBD, and what could be the salvage of resistance to
targeted therapy of IBD become major problems to be resolved.

The canonical NF-kB pathway is overstressed in mediating the
response to anti-TNF therapies such as infliximab and adalimumab
(119). However, an aberrant non-canonical pathway was
demonstrated in patients resistant to anti-TNF treatment (53),
combined with what we reviewed above, suggesting the
involvement of NIK in drug resistance. Consequently, resistance
to drug therapy may be mediated by such crosstalk mechanisms.
Savinova et al. reported a crosstalk mechanism between the
canonical and non-canonical pathways mediated by NIK (68).
Sustained canonical NF-kB signaling activation leads to negative
feedback that RelA induces the production of p100, which contains
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an inhibitory domain ofRelAand functions as an IkBprotein (120).
However, p100 also functions as the precursor of non-canonical
NF-kB, and is further processed to p52 mediated by NIK.
Consequently, cooling of the canonical NF-kB pathway is
possible to reverse downregulation through the NIK signaling via
crosstalk mechanisms. The crosstalk mechanism also reminds
investigators to use NIK inhibitors to reverse anti-TNF therapy
resistance. Unfortunately, the crosstalk mechanism between the
two pathways has not yet been fully understood and requires
further investigation.
6 CONCLUSION

NIK is the central core of non-canonical NF-kB signaling and
participates in the intestinal immunity and homeostasis. Both
excessive and impaired NIK signaling cause the disturbance of
intestinal immunity and homeostasis. NIK signaling regulates
intestinal homeostasis in a spatiotemporal heterogeneous way.
NIK signaling in different tissues and cells plays different roles
even contradictory roles. Different activation pattern of NIK
signaling can also be seen at early and late phase response to
Frontiers in Immunology | www.frontiersin.org 9
pathogens. Advanced knowledge of the NIK in the regulation of
intestinal immunity and homeostasis can provide new perspectives
on inflammatory diseases. NIK is closely related to the pathogenesis
and drug resistance of IBD, and is considered as a novel target for
treatment of IBD and carcinoma in gastrointestinal tract.
Consequently, more sophisticated molecular mechanisms of NIK
signaling in IBD are urgently needed.
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