
International  Journal  of

Environmental Research

and Public Health

Article

Simultaneous Determination of Moxifloxacin and
Flavoxate by RP-HPLC and Ecofriendly Derivative
Spectrophotometry Methods in Formulations

Mahesh Attimarad 1,* , Muhammad Shahzad Chohan 2 and Abdulmalek Ahmed Balgoname 1

1 Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University,
Al-Ahsa 31982, Saudi Arabia; a.balgoname@gmail.com

2 Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982,
Saudi Arabia; chohanshahzad@hotmail.com

* Corresponding: mattimarad@kfu.edu.sa; Tel.: +966-5532-69799

Received: 12 March 2019; Accepted: 1 April 2019; Published: 3 April 2019
����������
�������

Abstract: Simple, fast, and precise reversed-phase (RP)-high-performance liquid chromatography
(HPLC) and two ecofriendly spectrophotometric methods were established and validated for the
simultaneous determination of moxifloxacin HCl (MOX) and flavoxate HCl (FLX) in formulations.
Chromatographic methods involve the separation of two analytes using an Agilent Zorbax SB C18
HPLC column (150 mm × 4.6 mm; 5 µm) and a mobile phase consisting of phosphate buffer (50 mM;
pH 5): methanol: acetonitrile in a proportion of 50:20:30 v/v, respectively. Valsartan was used as
an internal standard. Analytes were monitored by measuring the absorbance of elute at 299 nm
for MOX and 250 nm for FLX and valsartan. Two environmentally friendly spectrophotometric
(first derivative and ratio first derivative) methods were also developed using water as a solvent.
For the derivative spectrophotometric determination of MOX and FLX, a zero-crossing technique
was adopted. The wavelengths selected for MOX and FLX were −304.0 nm and −331.8 nm for the
first derivative spectrophotometric method and 358.4 nm and −334.1 nm for the ratio first-derivative
spectrophotometric method, respectively. All methods were successfully validated, as per the
International Conference on Harmonization(ICH) guidelines, and all parameters were well within
acceptable ranges. The proposed analytical methods were successfully utilized for the simultaneous
estimation of MOX and FLX in formulations.

Keywords: determination; ecofriendly; flavoxate; HPLC; moxifloxacin; ratio first derivative;
spectrophotometry; validation

1. Introduction

Moxifloxacin hydrochloride (MOX; Figure 1A) is a broad-spectrum fluoroquinolone antibacterial
agent used in the treatment of eye, respiratory tract, lung, and urinarytract infections, and it is also
used to treat skin allergies, pneumonia, and abdominal bacterial infections. It is highly effective against
Gram-positive microorganisms and shows moderate activity against Gram-negative microorganisms
and anaerobes. [1,2]. Older fluoroquinolones are structurally modified to generate MOX, so it can
be effective against many beta lactam-resistant pathogens. MOX acts by strongly inhibiting two
enzymes: DNA gyrase and topoisomerase IV, which are essential for the replication of bacteria,
as well as for the transformation, restoration, and rearrangement of DNA, leading to bacterial
death [3–6]. Flavoxate hydrochloride (FLX; Figure 1B) is a flavone derivative that acts as a strong
smooth-muscle relaxant. Different mechanisms of action are reported for FLX, as it acts as a calcium
antagonist, phosphodiesterase enzyme inhibitor, and local anesthetic. FLX shows inhibitory action
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on the contraction of the human bladder, as produced by muscarinic receptors; thus, it is used in the
treatment of overactive bladder syndrome to relieve symptomatic pain, urinary frequency, and other
inflammatory disorders of the urinary tract [7–10].
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A literature review revealed that many analytical methods such as direct [11–13]
and derivative [14] ultraviolet-visible (UV-Vis) spectrophotometric, spectrofluorometric [15,16],
high-performance liquid chromatography (HPLC) [17–21], ultra-performance liquid chromatography
(UPLC) [22], liquid chromatography (LC)-mass spectrometry (MS) [23,24], and capillary zone
electrophoresis [25,26] methods for the determination of MOX alone and in combination with other
drugs in different formulations and in different biological samples. Bibliography data showed that
UV-Vis spectrophotometric [27], HPLC [28–34], electroanalytical [35], and capillary electrophoresis
methods [36] were reported for the determination of FLX alone or in combination with other drugs.
Only one reversed-phase (RP)-HPLC method has been reported for the concurrent estimation of MOX
and FLX in formulation [37]. However, this method does not use an internal standard and requires a
long analysis time. The UV spectra of MOX and FLX showed complete band overlap, which makes it
difficult to simultaneously determine both analytes from co-formulations without prior separation.
Hence, RP-HPLC and derivative spectroscopy methods, such as first derivative and first derivatives of
the ratio spectra, were utilized to avoid the spectral interference that results from band overlap.

HPLC is the most extensively used analytical technique for quality controlof drugs due to its
high efficiency, selectivity, reproducibility and sensitivity. Further, the current trend is to develop
simple, rapid, and ecofriendly analytical methods to save the environment. Hence, in this proposal,
an effort was made to establish a simple, fast, accurate, precise, and specific RP-HPLC method, as
well as simple, ecofriendly, derivative UV spectrophotometric procedures to simultaneously estimate
MOX and FLX from formulations. All required parameters were validated, as per the International
Conference on Harmonization (ICH) guidelines for all three methods, and they were effectively used
for the simultaneous estimation of MOX and FLX in solid dosage form.
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2. Experimental Methods

2.1. Chemicals

Pure samples of MOX hydrochloride (99.3%), FLX hydrochloride (99.5%), and internal standard
valsartan (VST; Figure 1C) were purchased from Biokemix India Ltd. (Telangana, India). Solvents and
reagents used for the experiments were either of HPLC or analytical grade. HPLC-grade methanol
and acetonitrile were purchased from Sigma Aldrich Co. (St. Louis, MO, USA). Potassium dihydrogen
phosphate and dipotassium hydrogen phosphates were purchased from Scharlau S.L. (Barcelona,
Spain). Pure distilled water prepared using Millipore was used throughout the experiments (EMD
Millipore, Billerica, MA, USA). A tablet containing 400 mg of MOX and 200 mg of FLX was purchased
from the local market.

2.2. Instruments

Chromatography was performed on an HPLC system (Shimadzu Prominence Liquid
Chromatography, Tokyo, Japan) equipped with an isocratic pump (LC-20AT), auto-sample injector
(SIL20A), UV-Vis detector (SPD-20A), and column oven (CTO-20A). Analyte peaks were monitored
using the Shimadzu software, LC solutions. The pH level of the mobile phase was adjusted using an
Omega PHH 222 (Stamford, CT, USA) pH meter.

Spectrophotometric methods were developed using a Shimadzu UV-Vis spectrophotometer (1600)
with 10 mm Quartz cuvettes. The slit width was adjusted to 1 nm and the samples were scanned at
a speed of 50 nm/min. The ratio and derivative spectra were computed using Shimadzu UV probe
software (version 2.21) (Shimadzu, Tokyo, Japan).

2.3. Preparation of Standard Stock and Working Solutions

2.3.1. HPLC Method

Standard stock solutions of MOX, FLX, and VST were arranged by individually dissolving
precisely weighed (100 mg) MOX, FLX, and VST into 50 mL of methanol using a 100 mL volumetric
flask. Further, a final volume of 100 mL was reached using methanol. Standard stock solutions
were kept in a refrigerator at 4 ◦C. Further, working standards were prepared daily by diluting these
solutions to a required concentration with the mobile phase.

2.3.2. Derivative Spectrophotometric Method

Standard stock solutions of MOX and FLX were arranged by separately dissolving exactly weighed
(20 mg) MOX and FLX into 50 mL of water using a 100 mL volumetric flask. Volumetric flasks were
sonicated for 10 min to completely dissolve the analytes; the volume was finalized up to mark
using water.

2.4. Preparation of MOX and FLX Sample Solutions using Tablets

Twenty tablets comprising 400 mg of MOX and 200 mg of FLX were weighed and the average
weight was calculated; the tablets were subsequently powdered. For HPLC, the tablet powder
corresponding to 100 mg of MOX and 50 mg of FLX was weighed and dissolved in 50 mL of methanol
present in a 100 mL volumetric flask. For spectrophotometric methods, tablet powder equivalent to
20 mg of MOX and 10 mg of FLX was weighed and dissolved in 50 mL of water present in a 100 mL
volumetric flask. Volumetric flasks were sonicated for 20 min to fully extract analytes into the solvent
and they were then filtered. The volume was increased up to the mark using methanol and water,
respectively. For HPLC, the required amount of mobile phase was added to the above solutions to
achieve a concentration in the range of the calibration curve, and an internal standard concentration
was maintained at 50 µg/mL. For spectrophotometric methods, solutions were diluted with water to
achieve a concentration in the range of the calibration curve.
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3. Procedures

3.1. HPLC Method: Chromatographic Conditions

Analytes were chromatographically separated on a reversed-phase Agilent Zorbax SB C18 HPLC
column (150 mm × 4.6 µm internal diameter with a 5 µm particle size) using methanol, acetonitrile,
and 50 mM of phosphate buffer (the pH level was adjusted to 5 with orthophosphoric acid) at a ratio
of 20:30:50 v/v as the mobile phase. The mobile phase was prepared daily, filtered using a Millipore
membrane filter (0.45 µm), and degassed before use. An isocratic method was developed with a flow
rate of 1.2 mL/min and the column temperature was kept at 25 ◦C. The detector wavelength was set to
299 nm for MOX and changed online after 2.5 min to 250 nm for FLX and the internal standard. Then,
20 µL of the analyte solution was injected into the HPLC for analysis.

3.2. Calibration Curve Construction

An essential quantity of stock solutions of MOX and FLX, as well as internal standard solutions
were transferred into 10 mL volumetric flasks. Then, the solutions were diluted with the mobile
phase to achieve a concentration of MOX and FLX in the range of 5–200 µg/mL and 2–200 µg/mL,
respectively, and to achieve a concentration of 50 µg/mL for the internal standard. In all, 20 µL of
each solution was injected and the analytes were eluted using optimized HPLC analysis conditions
in triplicate. The peak area of the analytes was recorded and a ratio of peak area of MOX and FLX
to a peak area of the internal standard was computed separately. The average peak area ratio of
MOX and FLX was plotted against the concentration of analytes to obtain calibration curves. Further,
corresponding regression equations were constructed from the calibration curves.

3.3. Application of the HPLC Method to the Formulation

The formulation sample was diluted with mobile phase to achieve concentrations of 40 µg/mL,
80 µg/mL, and 120 µg/mL of MOX and 20 µg/mL, 40 µg/mL, and 60 µg/mL of FLX. Then, 20 µL
of solution was injected after adding the internal standard solutions and eluted with the optimized
mobile phase under optimized HPLC conditions. From the ratio of the peak area, the tablet contents of
MOX and FLX were calculated using regression equations. The pre-analyzed sample solutions were
also used for recovery studies.

3.4. Spectrophotometric Method: Construction of the Calibration Curve by First-Derivative Spectrophotometry

The working standard solutions were prepared by transferring a sufficient amount of standard
stock solutions of MOX and FLX into separate 10 mL volumetric flasks. A final volume was reached
using water to obtain six different concentrations corresponding to 2, 4, 8, 12, 16 and 20 µg/mL of
FLX and six different concentrations corresponding to 1, 2, 4, 8, 12 and 16 µg/mL of MOX separately.
The UV spectra were recorded in the range of 200–400 nm using water as a blank solution. With
the help of UV probe software the absorption spectra were converted into first-derivative spectra
using 4 nm as dλ, to get a set of six spectra (dA/dλ vs wavelength) for MOX and set of six spectra
(dA/dλ vs wavelength) for FLX. The amplitude of dA/dλ peak was measured at −304.0 nm for MOX
(zero crossing of FLX) and at −331.8 nm for FLX (zero crossing of MOX); the linearity graphs were
plotted against concentration, and the corresponding regression equations were constructed from the
calibration curves.

3.5. Construction of the Calibration Curve by Ratio First-Derivative Spectrophotometry

Next, 4 µg/mL solutions of MOX and FLX were prepared separately and UV absorption spectra
were recorded in the range of 200–400 nm. Similarly, six different concentrations, corresponding to
1, 2, 4, 8, 12 and 16 µg/mL each of MOX and FLX were prepared and UV absorption spectra were
recorded. Then, with the help of UV probe software, the ratio spectra were computed by dividing each
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spectrum of mixture of MOX and FLX with the absorption of spectra for 4 µg/mL of FLX to get a set of
six ratio spectra for MOX. Similarly, the FLX ratio spectra were computed by dividing each spectrum
of mixture of MOX and FLX with the absorption of spectra for 4 µg/mL of MOX to get a set of six
ratio spectra for FLX. Then, the first-derivative spectra were figured from ratio spectra using 4 nm as
dλ to get a set of six first derivative spectra for MOX (dA/dλ vs. wavelength) and set of 5 spectra for
FLX (dA/dλ vs. wavelength) separately. The amplitude of dA/dλ peak was measured at 358.4 nm for
MOX and at −334.1 nm for FLX; graphs were plotted against concentration, and the corresponding
regression equations were constructed from the calibration curves.

3.6. Application of First Derivative and Ratio First-derivative Spectrophotometry to the Formulations

An aliquot of tablet solution was diluted with water in a volumetric flask to obtain a concentration
in the range of the calibration curve. For first-derivative spectra, the solutions were scanned to record
UV absorption spectrum in the range of 200–400 nm and converted into first-derivative spectrum
using 4 nm as dλ. The amplitude of dA/dλ peak was measured at −304.0 nm for MOX (zero crossing
of FLX) and at −331.8 nm for FLX (zero crossing of MOX); and concentration of MOX and FLX were
calculated using corresponding regression equations. For the ratio first-derivative spectra, the UV
absorption spectra were divided by the absorption spectra of 4 µg/mL of MOX and FLX separately
and resulting ratio spectra were converted into the first-derivative spectra using four nm as dλ to
get first derivative spectra of MOX and FLX separately. The concentrations of MOX and FLX were
calculated by determining the amplitude of dA/dλ peak at 358.4 nm for MOX and at −334.1 nm for
FLX; as described in the aforementioned procedure, and from corresponding regression equations.

4. Results and Discussion

4.1. HPLC Method Development and Optimization

All important HPLC conditions that induced the chromatographic separation of MOX and FLX,
along with the internal standard, were optimized to obtain high-resolution spectra with good peak
shape and accurate quantitative estimation of MOX and FLX.

To obtain good chromatographic separation and high-resolution spectra for MOX and FLX,
along with the internal standard, different RP-HPLC columns and different proportions of the most
common HPLC solvents, methanol, acetonitrile, water, or buffer as a mobile phase were tried. Good
separation of both drugs along with the internal standard was achieved by isocratic elution using
an Agilent Zorbax SB C18 HPLC column (150 mm × 4.6 mm; 5 µm internal diameter). The mobile
phase composition, along with pH level and the buffer concentration, were optimized (Supplementary
material 1). Several combinations of the mobile phase were tried to rapidly obtain complete separation.
The mobile phase consisting of methanol: acetonitrile: phosphate buffer (50 mM; pH adjusted to 5
with orthophosphoric acid) in a ratio of 20:30:50 v/v was found to be optimal for complete baseline
separation for all analytes featuring a high resolution and good peak shape with an appropriate tailing
factor. MOX demonstrated maximum absorption at a wavelength of 299 nm, whereas FLX and the
internal standard showed λmax at 250 nm in the mobile phase as a solvent; hence, the detector was
set at 299 nm to estimate MOX. After 2.5 min, the wavelength was changed online to 250 nm for FLX
and the internal standard. Flow rates of 0.5 mL/min, 0.8 mL/min, 1.0 mL/min, 1.2 mL/min, and
1.5 mL/min were tried. With a flow rate of 1 mL/min, less peak broadening was observed over a
long analysis time. With 1.5 mL/min, MOX was eluted at dead volume and the column back pressure
was high. A flow rate of 1.2 mL/min was found to be ideal for good base line separation with a short
analysis time. Figure 2 shows the typical chromatogram of analytes. All three analytes were completely
separated with a high resolution within 5 min.
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4.2. Spectrophotometric Method

Two derivative spectrophotometric methods were established for the simultaneous determination
of MOX and FLX in formulation. Both analytes were soluble in water and showed good UV absorption.
Hence, water was selected as a solvent to develop a simple, accurate, and ecofriendly analytical
method. However, UV spectra of both analytes showed complete overlap (Figure 3A), making it
difficult to estimate either of the analytes in the presence of each other without prior separation. Hence,
the derivative spectroscopy technique was adopted, as it permits the simultaneous estimation of
multicomponent formulations when absorbance was measured at the zero-crossing point. At the
zero-crossing point, one of the analytes had zero amplitude and the other showed absorbance, even
at different concentrations [38,39]. Another simple ratio derivative spectroscopic method reported
by Salinas et al. [40] for binary mixture was adopted for simultaneous determination of MOX and
FLX. In this method, the absorption spectra of mixture of analytes were divided by the absorption
spectrum of one analyte and the resulted ratio spectrum is converted into first derivative spectrum.
First derivative of the ratio spectrum allow us to measure analytical signals at different wavelengths
with several maxima and minima and determine the concentration of active components in presence
of probably interfering another drug and excipients of formulation [41].

For the first-derivative spectroscopic method, the solutions of MOX and FLX were scanned to
record UV absorption spectra using water as blank and the spectra were converted into first-derivative
spectra with the help of Shimadzu UV probe software.Wavelengths of 2 nm, 4 nm, 6 nm, 8 nm, and
10 nm were tried as dλ; 4nm dλ was found to be optimal, and 4 nm dλ was thus selected to generate
first-derivative spectra (dA/dλ vs. wavelength). The overlain first derivative spectra (Figure 3B)
of MOX and FLX showed, two minima wavelengths at −214.2 nm and −304.0 nm, where MOX
demonstrated some absorption and FLX showed zero crossing. However, the peak height of dA/dλ

spectra at −214.2 was lower compared to the amplitude at −304.0 nm. Whereas the first-derivative
spectra of FLX showed two minima wavelengths at −215.4 nm and −331.8 nm, where MOX showed
zero crossing. However, the amplitude of dA/dλ spectra at −215.4 nm was lower when compared
to the amplitude at −331.8 nm. Hence, wavelengths −304.0 nm and −331.8 nm were selected and
first derivative spectra were constructed forMOX and FLX. Figure 3C,D showed the first derivative
spectra of FlXandMOX, respectively. The amplitudes of dA/dλ spectra were measured at −304.0 nm
and −331.8 nm (Figure 3C,D) at different concentrations of MOX and FLX, respectively, and calibration
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curves were constructed. Alternatively, regression equations were computed from the calibration
curves (Supplementary material 2).
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For ratio first-derivative spectroscopy, UV absorption spectra were obtained for a mixture of MOX
and FLX in the concentration range of 1−16 µg/mL and were divided by the absorption spectra of
standard solutions of MOX and FLX, separately to get set of six ratio spectra for MOX (Figure 4A)
and six spectra for FLX (Figure 5A). Different concentrations in the range of 1–20 µg/mL were tried;
4 µg/mL was found to be optimal because the peak amplitude showed good linearity and good
recovery from the mixed sample solutions in the laboratory. The resulting ratio spectra were converted
into first-derivative spectra using 4 nm as dλ to get first derivative of ratio spectra for MOX (Figure 4B)
and first derivative of ratio spectra for FLX (Figure 5B).

The ratio first-derivative spectra of MOX (Figure 4B) showed three maxima at 256.9 nm, 281.8 nm,
and 358.4 nm, and four minima at −368.6 nm, −378.2 nm, −385.7 nm, and −302.7 nm. The ratio
first-derivative spectra of FLX (Figure 5B) showed two maxima at 237.7 nm and 307.7 nm, and three
minima at −218.0 nm, −253.6 nm, and −334.1 nm. Further, the amplitudes of dA/dλ peaks measured
at these wavelengths were proportional to the concentration. For the simultaneous estimation of
MOX and FLX from the standard solutions and formulations, wavelengths 358.4 nm and −334.1 nm
were selected, respectively, because the mean recovery of MOX and FLX in the mixed samples in the
laboratory was found to be suitable with a low standard deviation. Figures 4B and 5B showed the ratio
first-derivative spectra of MOX and FLX at six different concentrations corresponding to 1, 2, 4, 8, 12
and 16 µg/mL. The amplitudes of dA/dλ peaks were measured at 358.4 nm and −334.1 nm for MOX
and FLX, respectively, and calibration curves were constructed. Alternatively, regression equations
were computed from the calibration curves. (Supplementary Materials).
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4.4. Linearity

A calibration curve was drawn in the range of 5–200 µg/mL for MOX and 2–200 µg/mL for
FLX in the proposed RP-HPLC method (Figure 6A). Calibration curves showed perfect linearity in
this concentration range with a good regression coefficient (r2 > 0.998). In the first-derivative UV
spectroscopy, linearity was constructed in the range of 1–16 µg/mL for MOX and 2–20 µg/mL for FLX,
(Figure 6B) whereas both analytes showed good linearity in the range of 1–16 µg/mL for both MOX
and FLX in the ratio first-derivative spectroscopy with a good correlation coefficient (Figure 6C and
6D). The linearity range, regression equations, and coefficients aretabulated in Table 1. The limits of
detection and quantification were also calculated in all three methods using the 3.3 σ/s and 10 σ/s
criteria, respectively, where σ signifies the standard deviation of the response and s signifies the slope
of the calibration curve (Table 1).
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Table 1. Regression equations and validation parameters results for MOX and FLX.

Parameters HPLC First Derivative UV Ratio First Derivative UV

Drugs MOX FLX MOX FLX MOX FLX
Retention Time ± %RSD 1.77 ± 0.03 4.26 ± 0.04

Wave length [nm] 299 250 304.0 −331.8 358.4 −334.1
Linearity Range [µg/mL] 5–200 2–200 1–16 2–20 1–16 1–16

LOD [µg/mL] 0.45 0.6 0.22 0.35 0.26 0.32
LOQ [µg/mL] 1.30 1.85 0.61 0.97 0.72 0.94

Regression Equation y = mx + c

Slop [m] 0.0554 0.0242 0.0061 0.0022 0.0182 8.2964
Intercept [c] −0.0099 0.0078 −0.0008 0.0003 0.0024 −0.7119

Correlation Coefficient [r2] 0.9999 0.9998 0.9995 0.9999 0.9999 0.9999
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4.5. Precision and Accuracy

For the HPLC method, repeatability was determined by injecting 20 µL of freshly prepared
5 µg/mL, 100 µg/mL, and 200 µg/mL solutions of MOX and 2 µg/mL, 100 µg/mL, and 200 µg/mL
solutions of FLX along with 50 µg/mL of the internal standard. For first-derivative UV spectroscopy,
repeatability was determined using 1 µg/mL, 8 µg/mL, and 16 µg/mL for MOX and 2 µg/mL,
10 µg/mL, and 20 µg/mL for FLX, whereas the ratio first-derivative was determined at 1 µg/mL,
8 µg/mL, and 16 µg/mL for MOX and FLX. Analysis of all solutions was carried out in triplicate on
the same day using optimized experimental conditions. The percent relative standard deviations and
percent relative errors were calculated and found to be within acceptable ranges (Table 2).

Table 2. Precision and accuracy data.

Inter-day Intra-day

Amount of
Drug [µg/mL]

Amount found Mean
[n = 3] ± SD %RSD %RE Amount found Mean

[n = 9] ± SD %RSD %RE

HPLC Method

MOX
5 4.97 ± 0.05 1.01 −0.60 4.93 ± 0.07 1.42 −1.42

100 101.2 ± 1.04 1.03 1.18 101.11 ± 1.5 1.57 1.10
200 197.56 ± 3.25 1.65 −1.23 196.45 ± 2.33 1.19 −1.81

FLX
2 1.98 ± 0.01 0.51 −1.01 1.97 ± 0.02 1.02 −1.52

100 99.87 ± 0.7 0.97 −0.13 100.15 ± 1.93 1.93 0.15
200 196.89 ± 2.92 1.48 −1.58 197.07 ± 1.9 1.49 −1.49

First Derivative UV Spectroscopy

MOX
2 1.97 ± 0.02 0.51 −1.52 1.98 ± 0.03 1.52 −1.01

10 9.95 ± 0.14 1.41 −1.50 10.01 ± 0.16 1.60 0.10
20 19.72 ± 0.37 1.88 −1.42 19.83 ± 0.38 1.92 −0.86

FLX
1 0.99 ± 0.01 1.01 −1.01 0.98 ± 0.01 1.02 −2.04
8 7.96 ± 0.12 1.51 −0.50 7.91 ± 0.11 1.39 −1.14

16 15.87 ± 0.27 1.70 −0.81 16.03 ± 0.22 1.37 0.19

Ratio First Derivative UV Spectroscopy
MOX 1 0.98 ± 0.01 1.02 −2.04 0.99 ± 0.01 1.01 −1.01

8 7.9 ± 0.09 1.14 −1.26 7.91 ± 0.15 1.90 −1.14
16 15.75 ± 0.31 1.97 −1.58 15.76 ± 0.28 1.78 −1.52

FLX 1 0.99 ± 0.01 1.01 −1.01 1.01 ± 0.01 0.99 0.99
8 7.89 ± 0.11 1.39 −1.39 8.03 ± 0.10 1.25 0.37

16 15.77 ± 0.21 1.33 −1.45 15.82 ± 0.2 1.83 −1.14

Intermediate precision was also determined for the solutions covering the entire calibration range
and using all three methods on 3 successive days. The percent relative standard deviation and percent
relative errors were calculated and found to be within standard ranges, representing the good precision
and accuracy of the proposed methods.

4.6. Recovery Studies

A recovery study was executed using the standard addition method. For the HPLC method,
40 µg/mL, 80 µg/mL, and 120 µg/mL of MOX and 20 µg/mL, 40 µg/mL, and 60 µg/mL of FLX,
along with 50 µg/mL of the internal standard were added to the previously analyzed formulation
solution (80 µg/mL of MOX and 40 µg/mL of FLX) and analyzed using the optimized HPLC method.
The mean percent recovery of the added amount was found to be 99.28% for MOX and 98.73% for FLX.

For the first derivative, a UV spectroscopy recovery study was carried out at three concentrations
(3 µg/mL, 6 µg/mL, and 9 µg/mL) of MOX and (1.5 µg/mL, 3 µg/mL, and 4.5 µg/mL), of FLX,
which were added to the previously analyzed formulation solution (6 µg/mL of MOX and 3 µg/mL of
FLX). For the ratio first-derivative method, a recovery study was determined at 4 µg/mL, 6 µg/mL,
and 8 µg/mL of MOX and FLX, which were added to the previously analyzed formulation solution
(8 µg/mL of MOX and 4 µg/mL of FLX). The mean recovery ranged from 99.43% to 99.72% for MOX
and 98.85% to 99.48% for FLX, indicating the excellent recovery of the proposed methods (Table 3).
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Table 3. Determination of MOX and FLX from formulations and recovery studies by standard
addition method.

Parameters
RP HPLC Method First Derivative UV Method Ratio First Derivative

UV Method

Amount in
[µg/mL] % Recovery Amount in

[µg/mL] % Recovery Amount in
[µg/mL] % Recovery

Formulation [MOX] 80 98.67 6 99.18 8 101.29
Formulation [FLX] 40 99.03 3 100.89 4 98.47

Recovery of
added MOX

40 100.1 3 101.67 4 98.75
80 99.04 6 98.83 6 100.67

120 98.71 9 98.67 8 98.88
Across Mean 99.28 99.72 99.43

%RSD 0.73 1.69 1.07

Recovery of
added FLX

20 98.75 1.5 98.00 2 99.25
40 99.08 3 101.33 3 98.67
60 98.37 4.5 99.11 4 98.63

Across Mean 98.73 99.48 98.85
%RSD 0.35 1.70 0.34

4.7. Specificity

Specificity of the HPLC method was established by comparing the chromatograms of the standard
and formulation solutions. No interfering peaks were witnessed at the position of the analyte peaks.
(Figure 7) The results of the recovery studies using all three methods also indicated the absence of
formulation-excipient interference.
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4.8. Application to Formulations

The proposed methods were successfully utilized for the simultaneous quantification of MOX
and FLX from the tablet formulations. (Figures 7 and 8) The assay results of HPLC, firstand ratio
firstderivative methods were found to be 98.67%, 99.18% and 101.29% for MOX, and 99.03%, 100.89%
and 98.47% for FLX respectively. The findings from the analysis report were in good agreement with
the label claim. The validity of the developed methods was evaluated via recovery studies using the
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standard addition method. Assay results with a low percentage relative standard deviation indicated
the good accuracy and excellent precision of the proposed methods for the analysis of MOX and FLX
from the formulations (Table 3).
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