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Organic-rich subsurface marine sediments were taken by gravity coring up to a depth of
10 m below seafloor at six stations from the anoxic Black Sea and the Benguela upwelling
system off Namibia during the research cruises Meteor 72-5 and 76-1, respectively. The
quantitative microbial community composition at various sediment depths was analyzed
using total cell counting, catalyzed reporter deposition – fluorescence in situ hybridization
(CARD–FISH) and quantitative real-time PCR (Q-PCR). Total cell counts decreased with
depths from 109 to 1010 cells/mL at the sediment surface to 107–109 cells/mL below one
meter depth. Based on CARD–FISH and Q-PCR analyses overall similar proportions of
Bacteria and Archaea were found. The down-core distribution of prokaryotic and eukary-
otic small subunit ribosomal RNA genes (16S and 18S rRNA) as well as functional genes
involved in different biogeochemical processes was quantified using Q-PCR. Crenarchaeota
and the bacterial candidate division JS-1 as well as the classes Anaerolineae and Caldilineae
of the phylum Chloroflexi were highly abundant. Less abundant but detectable in most of
the samples were Eukarya as well as the metal and sulfate-reducing Geobacteraceae (only
in the Benguela upwelling influenced sediments).The functional genes cbbL, encoding for
the large subunit of RuBisCO, the genes dsrA and aprA, indicative of sulfate-reducers as
well as the mcrA gene of methanogens were detected in the Benguela upwelling and Black
Sea sediments. Overall, the high organic carbon content of the sediments goes along with
high cell counts and high gene copy numbers, as well as an equal abundance of Bacteria
and Archaea.
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INTRODUCTION
The Black Sea and the Benguela upwelling system off the Atlantic
coast of Namibia are both represent organic carbon-rich marine
environments. Nevertheless, there are fundamental differences in
the biogeochemistry and of these two settings. The Black Sea is the
largest anoxic seawater basin on earth. It is characterized by high
biological productivity in the oxygenated surface waters (Yilmaz
et al., 2006). This and a deep anoxic water body below the chemo-
cline at 100–150 m water depth (Neretin et al., 2007) provide
suitable conditions for anaerobic microbial life and biogeochem-
ical cycling in organic carbon-rich sediments. The sediments at
water depths of 2000 m are under permanent anoxic and sul-
fidic conditions. Conversely, the Namibian continental margin
underlies one of the most productive upwelling systems in the
world. Periods of low oxygen, nitrate-rich, and sometimes sulfidic
water, also leads to enhanced accumulation of organic carbon
in the diatom-rich mud belt on the shelf. On the continental
slope and rise the organic carbon flux to the underlying sedi-
ments is also relatively high. The sediments of these two marine
areas have been well-studied for their biogeochemical processes
(Niewöhner et al., 1998; Ferdelman et al., 1999; Brüchert et al.,
2000, 2003, 2006; Fossing et al., 2000; Jørgensen et al., 2001, 2004;
Emeis et al., 2004; Neretin et al., 2004; Knab et al., 2008; Dale

et al., 2009; Goldhammer et al., 2010, 2011; Riedinger et al., 2010;
Holmkvist et al., 2011) but microbiological data are available for
surface sediments mainly (Schulz et al., 1999; Thamdrup et al.,
2000; Schulz and Schulz, 2005; Coolen et al., 2006a; Neretin et al.,
2007; Coolen and Shtereva, 2009; Schubotz et al., 2009; Julies et al.,
2010). Only few microbiological data are published for subsurface
sediments of the Black Sea and the Benguela upwelling system
(Leloup et al., 2007; Schäfer et al., 2007; Blazejak and Schippers,
2010, 2011).

Subsurface marine sediments are populated by numerous
prokaryotes mainly belonging to uncultivated phylogenetic lin-
eages (Parkes et al., 2000; Teske, 2006; Biddle et al., 2008; Fry
et al., 2008; Teske and Sørensen, 2008). The abundance of par-
ticular phylogenetic and physiological prokaryotic groups, i.e.,
Archaea and Bacteria, methanogens or sulfate-reducers, in sub-
surface sediments at various sites has been quantified based on
16S rRNA and functional gene analysis by quantitative, real-
time PCR (Q-PCR), FISH, and catalyzed reporter deposition–
fluorescence in situ hybridization (CARD–FISH; Schippers et al.,
2005, 2010; Biddle et al., 2006; Inagaki et al., 2006; Schippers
and Neretin, 2006; Engelen et al., 2008; Nunoura et al., 2009;
Webster et al., 2009; Breuker et al., 2011). While the detection
of 16S rRNA genes may not be a good indicator for an active
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microbial community, FISH and CARD–FISH analyses, targeting
intact ribosomal RNA, suggest that an active microbial commu-
nity is present. Eukaryotic DNA comprising, e.g., fungi (Edg-
comb et al., 2011) has been quantified in marine sediments at
few sites in much lower concentration than prokaryotic DNA
(Schippers and Neretin, 2006; Schippers et al., 2010). However,
eukaryotic DNA may be preserved as fossil DNA from any buried
biota and might be indicative for former biological communities
(Coolen et al., 2006a,b; Inagaki and Nealson, 2006; Boere et al.,
2011).

Sulfate-reducing microorganisms which are frequently found
in near-surface sediments (Knoblauch et al., 1999; Sahm et al.,
1999; Ravenschlag et al., 2000; Schippers et al., 2010), or
methanogenic Archaea, were rarely detected in deep sediments
(Parkes et al., 2005; Biddle et al., 2006; Inagaki et al., 2006; Teske,
2006; Teske and Sørensen, 2008; Webster et al., 2009). In addition
to 16S rRNA gene analyses, sulfate-reducers and methanogenic lin-
eages of Archaea have been detected and quantified detecting their
functional genes. Such genes encode for the dissimilatory sulfite
reductase (dsrA), adenosine 5′-phosphosulfate reductase subunit
A (aprA), and methyl coenzyme M reductase (mcrA, Parkes et al.,
2005; Schippers and Neretin, 2006; Leloup et al., 2007; Wilms et al.,
2007; Colwell et al., 2008; Engelen et al., 2008; Nunoura et al., 2009;
Webster et al., 2009; Schippers et al., 2010; Blazejak and Schippers,
2011). The frequent occurrence of genes involved in sulfate reduc-
tion and methanogenesis indicates that microbial communities
actively perform carbon and sulfur cycling under reduced redox
conditions.

Despite heterotrophy seems to be dominant in subsurface sed-
iments (D’Hondt et al., 2004; Biddle et al., 2006), autotrophy
may play a role and has scarcely been investigated. There are
different pathways of CO2 fixation, of which the Calvin–Benson–
Bassham (CBB) cycle is the best described. The cbbL gene encoding
for the large subunit of the form I “red-like” enzyme ribulose-
1.5-bisphosphate carboxylase/oxygenase (RuBisCO) occurs in
autotrophic Proteobacteria that fix CO2 via the CBB cycle (Selesi
et al., 2007; Badger and Bek, 2008). This gene was so far only quan-
tified in terrestrial (Breuker et al., 2011), but not in subsurface
marine sediments.

In this study, the quantitative microbial community composi-
tion at six marine sediment stations from the Black Sea and in the
Benguela upwelling area off Namibia at various sediment depths
up to 10 m below seafloor (mbsf) was analyzed using total cell
counting, CARD–FISH for the quantification of living Bacteria

and Archaea, and 12 different Q-PCR assays for the quantification
of particular phylogenetic or functional groups.

MATERIALS AND METHODS
SEDIMENT DESCRIPTION
Samples were collected at six marine stations during two research
vessel expeditions (Table 1). The M72-5 R/V Meteor cruise to
the Black Sea took place in May/June 2007 (Figure 1). The sam-
pled Black Sea sediments were permanently anoxic due to the
overlaying anoxic water column. Sulfate reduction and methano-
genesis are generally the predominant terminal biogeochemical
processes for organic matter degradation (Jørgensen et al., 2004;
Leloup et al., 2007). The sediments underlying the anoxic water
column had an upper layer composed of laminated coccolith ooze
with high organic carbon content, while an underlying sapropel is
characterized by even higher organic content (Brumsack, 1989).
At station 22 a sapropel layer occurred at a depth of 8 mbsf. This
sapropel deposited 130 ka ago after the Eem glacial.

The M76-1 R/V Meteor cruise to the Benguela upwelling area
off Namibia took place in April/May 2008 (Figure 2). In the coastal
upwelling area off Namibia, sediments were sampled along a tran-
sect course. This transect commenced at the deep subseafloor at
the lower continental margin at 3795 m water depth (station 8,
GeoB 12808). This first core consisted of carbonate-rich deep sea
clay, was oxic or suboxic with signs of bioturbation. The second
station was situated at the upper continental margin at 1940 m
water depth (station 3, GeoB 12803) was oxic and characterized
by foraminifera and bioturbation. The third station was held at
the shallow shelf in a mudbelt beneath a zone of high productiv-
ity (station 10, GeoB 12810) where foraminifera and dark olive
colored mud characterized the sediment. A high abundance of
Thioploca and Beggiatoa-like filaments from the surface down to
10–12 cm was found.

SEDIMENT SAMPLING
Sediment samples were taken from the near-surface sediment
down to a depth of up to ca. 0.5 mbsf employing a multicorer
(MUC). Deeper sediments down to 10 mbsf were sampled using a
gravity corer (GC). The GC cores were quickly cut into 1 m sections
onboard and immediately stored at 4˚C. For further section-wise
processing within several hours, each 1 m section was subsequently
split lengthwise into half-core sections. During sampling, the outer
surface of the core was carefully removed to avoid contamination
with seawater.

Table 1 | Sampled sediment stations and total organic carbon [TOC, data from S. Eckert and B. Schnetger (Black Sea),Y. Lin and K.-U. Hinrichs

(Namibia)].

Cruise Area Station Sampling tool Position Water

depth (m)

Sampling depth

(mbsf)

Number of

analyzed samples

TOC (%)

Black Sea 6 MUC and GC 43˚25.91′N 32˚16.48′E 2027 8.8 19 nd

M72-5 20 MUC and GC 43˚57.25′N 35˚38.46′E 2048 5.8 19 nd

22 GC 42˚13.53′N 36˚29.55′E 840 9.7 19 0.3–4.4

Benguela Mudbelt 10 MUC and GC 24˚03.19′S 14˚15.69′E 120 3.4 16 4.1–13.4

Upwelling Upper slope 3 MUC and GC 25˚45.60′S 13˚04.20′E 1940 5.4 15 3.8–8.7

M76-1 Lower slope 8 MUC and GC 26˚22.18′S 11˚53.49′E 3795 5.4 19 1–1.8
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FIGURE 1 | Black Sea sediment stations of the cruise M72-5 analyzed in this study.

FIGURE 2 | Benguela upwelling transect sediment stations off Namibia

of the cruise M76-1 analyzed in this study.

Microbiological samples for the quantification of microorgan-
isms were taken with a sterilized 5 mL syringe of which the Leur
head was cut off before. The uncontaminated center of the sed-
iment core was sampled. For total cell counts, 0.5 mL sediment
was fixed in 1 mL of a cold 4% formaldehyde–PBS [phosphate
buffered saline (ultra), 150 mM sodium phosphate, 150 mM NaCl,
pH 7.2] for 4–15 h at 4–10˚C, washed twice with cold PBS using
a mini-centrifuge (Eppendorf) at 13000 rpm for 10 min each,
and finally stored at −20˚C in 1 mL PBS–ethanol (1:1) in 2 mL
vials (Eppendorf), transported to BGR frozen with dry ice as
air-freight, and stored in BGR at −20˚C. For DNA extraction
and quantification with Q-PCR, several grams of fresh sediment
were frozen immediately after sampling at −20˚C in screw capped
vials.

TOTAL CELL COUNTS AND CARD–FISH
Total cell numbers were determined in formaldehyde fixed samples
by staining with SYBR Green® II following two different protocols.
In analogy to acridine direct counts (AODC) we use the term SYBR
Green® direct counts (SGDC). While cells were counted in the sed-
iment matrix as described by Weinbauer et al., 1998, SGDC1), cells
were detached from sediment particles before counting using the
protocol of Kallmeyer et al., 2008, SGDC2). CARD–FISH analysis
was carried out as described previously (Pernthaler et al., 2002;
Schippers et al., 2005) and filters were hybridized for Archaea and
Bacteria using probes ARCH915 or EUB338 I–III as a mixture. As
a negative hybridization control the probe NON338 was applied.

QUANTITATIVE, REAL-TIME PCR ANALYSIS
The quantitative composition of the total (active and inactive)
microbial community was analyzed using Q-PCR of extracted
DNA. High-molecular-weight DNA was extracted from 0.5 g of a
frozen sediment sample employing a modified Fast DNA Spin Kit
for Soil (Bio101) protocol (Webster et al., 2003). Sterilized quartz
sand treated in a muffle furnace for organic carbon removal was
used as negative control in the extraction procedure. Extracted
DNA was amplified by Q-PCR using the device ABI Prism 7000
(Applied Biosystems) and different master mixes from the com-
panies Applied Biosystems, Eurogentec or Invitrogen. Each DNA
extract was measured in triplicate. After each Q-PCR, melting
curves were measured for SYBR Green® I assays. The copy numbers
of the 16S rRNA gene were quantified for prokaryotes, Archaea
(Takai and Horikoshi, 2000), Bacteria (Nadkarni et al., 2002),
Crenarchaeota (Ochsenreiter et al., 2003), the JS-1- and Chlo-
roflexi-related bacteria (Blazejak and Schippers, 2010), and the
metal and sulfate-reducing Geobacteraceae (Holmes et al., 2002).
The 18S rRNA gene of Eukarya was determined as previously
described (Schippers and Neretin, 2006). Functional genes were
quantified as described elsewhere: mcrA (mcrA assay 1, Wilms
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et al., 2007; mcrA assay 2, Steinberg and Regan, 2009), dsrA (Schip-
pers and Neretin, 2006); aprA (Blazejak and Schippers, 2011), and
cbbL for (RuBisCO; Selesi et al., 2007).

RESULTS
Results of the quantitative microbial community composition in
subsurface marine sediments of the Black Sea and the Benguela
upwelling area off Namibia are shown in Figures 3 and 4,
respectively.

BLACK SEA
Total cell counts and CARD–FISH
Total cells stained with SYBR Green® were counted following two
different protocols. Depth profiles of total cell counts are shown in
Figure 3 (left). For both protocols, the maximal cell counts were
detected near the sediment surface at all three Black Sea stations.
The total cell counts sharply declined within the first meter sed-
iment depth, and slightly decreased further below. The method
comparison showed that the highest cell counts for all depths were
obtained using the protocol without detaching cells from sedi-
ment particles (SGDC1, Weinbauer et al., 1998). For this protocol,
maximum cell counts declined from 109 to 1010 cells/mL at the
sediment surface to 107–108 cells/mL below 1 mbsf. In compari-
son, the cell counts obtained from the cell detachment protocol
(SGDC2, Kallmeyer et al., 2008) were about one order of magni-
tude lower within the first 1 mbsf but showed similar values than
SGDC1 below one meter depth. An increase of cell counts could
be observed at 8–9 mbsf at station 22 where the layer of the organic
carbon rich sapropel was discovered.

Catalyzed reporter deposition – fluorescence in situ hybridiza-
tion cell counts above the detection limit of 105 cells/mL were
obtained from the sediment surface down to 2.5 mbsf for the sta-
tions 6 and 20, and in the whole sampling depth of more than
8 mbsf for station 22. Bacteria and Archaea occurred in overall
equal numbers.

Quantitative microbial community analysis by Q-PCR
Q-PCR results for 16S and 18S rRNA and functional genes at
the three Black Sea stations are shown in Figure 3 (middle and
right, respectively). The Q-PCR data on archaeal and bacterial
16S rRNA gene copy numbers matched well with the total cell
counts (SGDC1). In overall agreement with the CARD–FISH
data, Archaea were found in similar copy numbers compared with
Bacteria at all three sites. At station 22 between 2 and 8 mbsf,
Bacteria could not be detected although the bacterial candidate
division JS-1 and the classes Anaerolineae and Caldilineae of the
phylum Chloroflexi were detectable in this depth range. At the
other depths at all three stations these specific bacterial groups
occurred in similar gene copy numbers than the Bacteria (data
for station 20 from Blazejak and Schippers, 2010). Likewise, the
Crenarchaeota frequently occurred in high gene copy numbers
compared with Archaea. In some samples, the copy numbers of
Crenarchaeota were even higher than those of Archaea. Eukarya
were only detectable down to 1 mbsf at stations 6 and 22. How-
ever, they were detected throughout the whole core of station 20.
Their 18S rRNA gene copy numbers were always lower than the
prokaryotic 16S rRNA gene copy numbers.

Similar depth profiles were obtained for the functional genes
(Figure 3, right). However the investigated genes were not
detectable between 1 and 7 mbsf of station 22. Below, in the sapro-
pel layer between 8 and 9 mbsf, they were again present. This was in
good agreement with increased 16S rRNA gene copy numbers and
increased SGDC1. Genes encoding for enzymes of sulfate-reducers
(dsrA and aprA) were the most abundant (data for station 20 from
Blazejak and Schippers, 2011). The mcrA gene of methanogens
was detected at the surface of all three stations and on the bottom
of the stations 20 and 22. The cbbL gene was found only in the
near-surface sediment and in two deeper layers of the station 20.

BENGUELA UPWELLING AREA OFF NAMIBIA
The quantitative distribution of the microorganisms at the three
stations along the transect course of the Benguela upwelling area
(Figure 4) was more heterogeneous than for the three Black Sea
stations. At the Benguela upwelling sediment station 10 (Figure 4
bottom) a high abundance of Thioploca and Beggiatoa-like fil-
aments was found at the near-surface sulfidic sediment of the
shallow shelf. The other two stations on the continental slope at
about 2000 m water depth (station 3, Figure 4 top) and at about
4000 m water depth (station 8, Figure 4 middle) were oxic or
suboxic and bioturbated. The transect course followed a trend
of decreasing organic carbon content (TOC, Table 1). However
the TOC values were always above 1%, thus the sediments at all
stations can be characterized as organic-rich and eutrophic.

Total cell counts and CARD–FISH
Depth profiles of total cell counts are shown in Figure 4 (left). For
both, SGDC1 and SGDC2, the maximal cell counts were found
near the sediment surface at all three Benguela upwelling stations.
Like for the Black Sea stations, the total cell counts sharply declined
within the first 1 mbsf, and slightly decreased further below at
the stations 3 and 8. At the station 10, no further decline of cell
numbers was observed between 0.5 and 3.5 mbsf, the maximum
sampling depth of this station. The maximum cell counts in the
near-surface sediment were highest for the shelf station 10 with
1010 cells/mL and between 109 and 1010 cells/mL for the two conti-
nental slope stations. While SGDC1 remained above 109 cells/mL
at 3.5 mbsf at station 10, the numbers were about an order of
magnitude lower at the same depth for the two slope stations. The
method comparison shows that SGDC1 was always slightly higher
than SGDC2 for all three stations at all depths.

Catalyzed reporter deposition – fluorescence in situ hybridiza-
tion signals were observed at almost all stations and depths. How-
ever, Archaea were detectable in equal numbers compared with
Bacteria only in the near-surface sediment. In the deeper layers
only Bacteria (besides two samples with Archaea) were detected in
significantly lower numbers than the corresponding SGDC1.

Quantitative microbial community analysis by Q-PCR
For the Benguela upwelling sediments, Q-PCR analyses of the 16S
and 18S rRNA and the functional genes are depicted in Figure 4
(middle and right, respectively). The Q-PCR results for archaeal
and bacterial 16S rRNA gene copy numbers were in good agree-
ment with the total cell counts (SGDC1). In contrast to the CARD–
FISH data, Archaea were found in similar copy numbers compared
with the Bacteria at all three stations (as for the Black Sea results).
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The archaeal copy numbers were higher than the bacterial ones in
the deeper layers of station 10.

As found in the Black Sea sediments, the 16S rRNA gene copy
numbers of the bacterial candidate division JS-1 and the classes

FIGURE 3 | Black Sea sediment samples of stations 6 (top), 20 (middle), and 22 (bottom). Total cell counts obtained with two different methods (SGDC1
after Weinbauer et al., 1998, SGDC2 after Kallmeyer et al., 2008) and CARD–FISH numbers for Bacteria and Archaea (left), and Q-PCR quantification of 16S or
18S rRNA genes of Bacteria, Archaea, Eukarya, Crenarchaeota, and JS-1–Chloroflexi (middle) and the functional genes mcrA, dsrA, aprA, and cbbL (right).
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FIGURE 4 | Benguela upwelling sediment samples of stations 3

(top), 8 (middle), and 10 (bottom). Total cell counts obtained with two
different methods (SGDC1 after Weinbauer et al., 1998, SGDC2 after
Kallmeyer et al., 2008) and CARD–FISH numbers for Bacteria and

Archaea (left), Q-PCR quantification of 16S rRNA genes of Prokaryotes,
Bacteria, Archaea, Eukarya, Crenarchaeota, and JS-1–Chloroflexi
(middle) and the functional genes mcrA 1 and 2, dsrA, aprA, and cbbL
(right).
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Anaerolineae and Caldilineae of the phylum Chloroflexi as well as
those of the Crenarchaeota occurred in similar numbers of 106 to
109 copies/mL than the 16S rRNA gene copy numbers of Prokary-
otes, Bacteria, and Archaea. The metal and sulfate-reducing family
Geobacteraceae occurred at all three stations at all sediment depths
in lower 16S rRNA gene copy numbers. The least abundant phy-
logenetic group was the Eukarya which nevertheless occurred in
all analyzed samples.

Similar depth profiles like for the phylogenetic groups (and
SGDC1) were obtained for the functional genes. All functional
genes were detected in almost all analyzed samples. Among the
functional groups, sulfate-reducers were most abundant, especially
their functional gene aprA occurred with maximum numbers of
109 copies/mL sediment. In contrast to the Black Sea sediments,
both mcrA assays 1 and 2 of methanogens provided successful
gene amplification, and mcrA and cbbL occurred not only in the
near-surface sediment but also in the deeper subsurface sediment.

DISCUSSION
Microbial communities in the subsurface marine sediments of
the Black Sea and the Benguela upwelling area off Namibia have
been analyzed. Total cell counts, CARD–FISH data as well as
Q-PCR analysis exhibited a high abundance of prokaryotes in
the eutrophic, organic carbon-rich sediments at all six stations.
A similar high abundance of prokaryotes analyzed by the same
methods has been detected in organic carbon-rich sediments of
the Peru margin (ODP Leg 201, D’Hondt et al., 2004; Schippers
et al., 2005; Inagaki et al., 2006), gas-hydrate bearing sediments
from the Cascadia margin (ODP Leg 204; Inagaki et al., 2006),
northeast Pacific ridge-flank sediments (IODP Exp. 301; Enge-
len et al., 2008), tidal flat sediments of the North Sea (Wilms
et al., 2007), and sediments off Sumatra (Schippers et al., 2010).
Less organic carbon-rich marine sediments exhibited, as expected,
a lower abundance of prokaryotes as shown for the equatorial
Pacific (ODP Leg 201; D’Hondt et al., 2004; Schippers et al., 2005),
the Porcupine Seabight (IODP Exp. 307; Webster et al., 2009),
and the Gulf of Mexico (IODP Exp. 308; Nunoura et al., 2009).
Oligotrophic, organic carbon-poor marine sediments contain gen-
erally very low cell numbers as shown for the South Pacific Gyre
(D’Hondt et al., 2009), and the Western flank of the Mid-Atlantic
Ridge at 23˚N (North Pond; A. Breuker and A. Schippers, unpub-
lished). A compilation of mean cell numbers determined by total
cell counting, Q-PCR, and CARD–FISH in subsurface marine
sediments of various sites is given in Table 2.

In this study, a decrease of cell numbers with sediment depth
was observed for all stations as described for subsurface marine
sediments (Parkes et al., 1994, 2000; D’Hondt et al., 2004). How-
ever, in the sapropel layer at 8–9 mbsf of the Black Sea station
22, the cell as well as the gene copy numbers again increased by
more than an order of magnitude, explainable by the increased
organic carbon content of the sapropel serving as substrate for
the microorganisms. Such an increase in biomass at distinct geo-
logically different sediment layers has been described for other
sediments as well (Inagaki et al., 2003; Parkes et al., 2005), and in
particular for sapropels (Coolen et al., 2002).

In the sediments of this study, total cell counts were determined
after staining with SYBR Green® following two different protocols.
Cell numbers directly counted in the sediment matrix (SGDC1)

were verified by comparing the counts with those of the SGDC2
protocol in which the cells were detached from sediment parti-
cles before counting. The general depth trends of SGDC1 could
be confirmed with SGDC2. However, the cell detachment method
revealed somehow lower cell numbers as previously shown for sub-
surface marine sediments off Sumatra (Schippers et al., 2010) and
terrestrial sediments in the Chesapeake area (Breuker et al., 2011).
The difference in cell numbers between these two protocols was
never higher than one order of magnitude in our study. A compar-
ison of the total cell counts with the 16S rRNA gene copy numbers
of the Bacteria and Archaea obtained by Q-PCR gives a good match
for SGDC1 as well as for SGDC2, indicting a high reliability of
the data for these quantification methods. CARD–FISH cell num-
bers were always considerably lower than SGDC 1. This indicates
that either the majority of the cells was inactive, which seems to
be unlikely in the organic-rich sediments, or more likely, insuffi-
cient cell wall permeabilization in the CARD–FISH protocol and
mismatches of the archaeal CARD–FISH probe ARCH915 with
predominant environmental gene sequences (Teske and Sørensen,
2008) prevented the detection of many living cells, especially
Archaea.

The proportions of Bacteria and Archaea in marine sediments
have shown to be highly variable in different sediments and sed-
iment layers. Based on CARD–FISH and Q-PCR analyses overall
similar proportions of Bacteria and Archaea have been determined
for sediments studied here. An almost equal abundance of Bacte-
ria and Archaea has also been found for the Porcupine Seabight
(IODP Exp. 307; Webster et al., 2009), the northeast Pacific ridge-
flank (IODP Exp. 301; Engelen et al., 2008), and Sumatra forearc
basins (Schippers et al., 2010). By contrast, using Q-PCR it has
been discovered that Bacteria dominated other sediments such as
the Sea of Okhotsk (Inagaki et al., 2003), the Gulf of Mexico (IODP
Exp. 308; Nunoura et al., 2009), the Peru continental margin, and
the equatorial Pacific sediments (ODP Leg 201; Schippers et al.,
2005; Inagaki et al., 2006; Schippers and Neretin, 2006), as well as
gas-hydrate bearing sediments from the Cascadia margin (ODP
Leg 204; Inagaki et al., 2006). The dominance of Bacteria for the
Peru continental margin was confirmed by CARD–FISH (Schip-
pers et al., 2005). Unlike nucleic acid based methods (CARD–FISH
and Q-PCR), the analysis of intact polar lipids (IPL) of prokary-
otic cell membranes unveiled Archaea as prevailing prokaryotes
in deeply buried sediments (Biddle et al., 2006; Lipp et al., 2008).
These conflicting results may be explained by insufficient quan-
titative extraction protocols, or primer mismatches (Teske and
Sørensen, 2008) and/or a different preservation of DNA and IPL
in deeply buried sediments (e.g., stabilized on clay surfaces or
organic matter; Coolen et al., 2006a,b; Inagaki and Nealson, 2006;
Schippers and Neretin,2006; Boere et al., 2011). Recently,Schouten
et al. (2010) as well as Logemann et al. (2011) reported the preser-
vation of archaeal IPL biomarkers in marine sediments indicating
that IPL biomarkers do not necessarily detect living Archaea and
putting their proposed dominance in the deep biosphere into ques-
tion. Obviously, it is not yet understood which factors control the
proportions of Bacteria and Archaea in marine sediments.

Particular phylogenetic and physiological groups, inhabiting
Black Sea and Benguela upwelling sediments, were revealed by
Q-PCR in this study. The sediments were clearly dominated by
prokaryotes since the abundance of eukaryotic 18S rRNA genes
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Table 2 | Compilation of mean cell numbers (N/mL) in the depth range of 1–10 and 10–200 mbsf in subsurface marine sediments; nd, not

determined.

Expedition Total

counts

Q-PCR CARD–

FISH

Total

counts

Q-PCR CARD–

FISH

Reference

1–10 mbsf 10–200 mbsf

∼20 ODP and other sites 107–109 nd nd 106–108 nd nd Parkes et al. (1994, 2000), Bird et al. (2001),

Wellsbury et al. (2002), Inagaki et al. (2003),

Kallmeyer et al. (2008), Morono et al.

(2009), Roussel et al. (2009)

ODP Leg 201 Equatorial Pacific 107 nd 106 106–107 nd 106 D’Hondt et al. (2004), Schippers et al.

(2005)

ODP Leg 201 Peru margin 107–108 107 106 107 106 106 D’Hondt et al. (2004), Schippers et al.

(2005), Inagaki et al. (2006)

ODP Leg 204 Cascadia margin 107 107 nd 106 106 nd Inagaki et al. (2006), Nunoura et al. (2008)

IODP 301 Juan de Fuca 108–109 106–108 nd 108 106 nd Engelen et al. (2008)

IODP 307 Porcupine Seamount 106–107 105–106 105–106 Webster et al. (2009)

IODP 308 Gulf of Mexico 105–106 105–106 nd 104–105 104–105 nd Nunoura et al. (2009)

IODP 313 New Jersey Shallow

Shelf

106 105–106 nd 105–106 105–106 nd A. Breuker, S. Stadler, and A. Schippers

(unpublished)

North Sea tidal flat 107–108 107 nd Wilms et al. (2007)

SO 189 Forearc off Sumatra 107–108 107–108 nd Schippers et al. (2010)

South Pacific Gyre 103–104 nd nd D’Hondt et al. (2009)

MSM 11-1 “North Pond” 105–106 104–106 nd A. Breuker and A. Schippers (unpublished)

M 72-5 Black Sea 107–108 105–106 105–106 This study

M 76-1 Benguela Upwelling 107–109 106–108 106–107 This study

ICDP Chesapeake Bay terrestrial

sediments

106–107 106–107 106 106 106 nd Breuker et al. (2011)

comprised only 3% and <1% of the number of prokaryotic 16S
rRNA genes for the Black Sea and Namibia sediments, respectively.
This can be attributed to the small pore space in subsurface sed-
iments which impedes growth of large eukaryotic cells. Similar
Q-PCR results were obtained for the organic carbon-rich sedi-
ments off Sumatra (Schippers et al., 2010) and for Peru margin
sediments (Schippers and Neretin, 2006). In the latter sediments,
mainly fungi have been identified as dominant Eukarya (Edgcomb
et al., 2011). In the near-surface anoxic and sulfidic sediments of
the Black Sea the following eukaryotic groups were detected via
DGGE and 18S rRNA gene sequencing: copepods, rotifers, hapto-
phytes, dinoflagellates, and ciliates (Coolen and Shtereva, 2009).
Data on the composition of Eukarya in the deeper, subsurface
sediment are not available.

As previously shown for the sediments off Sumatra, the Peru
margin and the Black Sea station 20 (Blazejak and Schippers,2010),
the bacterial candidate division JS-1 and the classes Anaerolin-
eae and Caldilineae of the phylum Chloroflexi were at least as
highly abundant as the Bacteria for the other five stations of
this study as well. This confirms their dominant role in sub-
surface marine sediments (Webster et al., 2004; Teske, 2006; Fry
et al., 2008). Crenarchaeota were previously identified as dom-
inant members in the archaeal 16S rRNA gene clone libraries
(Teske, 2006; Fry et al., 2008; Teske and Sørensen, 2008). This
is consistent with our finding that this group could be quanti-
fied by Q-PCR in comparable (or higher) copy numbers than
the Archaea in subsurface marine sediments of the Black Sea and

the Benguela upwelling sediments. Moreover, uncultured Crenar-
chaeota as well as Chloroflexi have also been identified in one
subsurface sediment core (station GeoB 3703) from the Benguela
upwelling area (Schäfer et al., 2007). In many samples of our study
more Crenarchaeota than Archaea, and more JS-1 and Chloroflexi
than Bacteria were detected. This discrepancy may be explained
by PCR bias due to different PCR efficiencies for the particu-
lar Q-PCR assays, primer mismatches of the general 16S rRNA
gene primers with predominant environmental gene sequences
(Teske and Sørensen, 2008), and probably different 16S rRNA
gene copy numbers per cell which are unknown for the par-
ticular specific archaeal and bacterial groups analyzed in this
study.

Functional genes were quantified by Q-PCR to demonstrate
the importance of particular physiological prokaryotic groups.
The functional genes dsrA and aprA of sulfate-reducers and the
gene mcrA of methanogens were highly abundant in the Black
Sea as well as in the Namibia sediments. This finding is not sur-
prising because sulfate reduction, methanogenesis, and anaerobic
methane oxidation were shown to be important biogeochemical
processes in these sediments (Niewöhner et al., 1998; Ferdelman
et al., 1999; Fossing et al., 2000; Jørgensen et al., 2001, 2004;
Brüchert et al., 2003, 2006; Knab et al., 2008; Riedinger et al.,
2010; Holmkvist et al., 2011). Q-PCR based dsrA quantification
in another Black Sea subsurface sediment core also revealed that
sulfate-reducers were highly abundant throughout the whole sam-
pling depth of 4.6 mbsf (Leloup et al., 2007). A dsrA clone library
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in the same study showed mostly sequences affiliated with the
Desulfobacteraceae.

The detection of the functional gene cbbL coding for the large
subunit of the form I “red-like” RuBisCO was different for the
Black Sea and the Benguela upwelling samples. While in the latter
the gene was detected in lower copy numbers in most samples
and all depth, cbbL was mainly detectable only in near-surface
sediments of the Black Sea. Overall, autotrophy via the RuBisCO
pathway seems to play some role in these samples, despite its high
organic carbon content supporting heterotrophy as shown for the
organic carbon-rich sediments of the Peru margin (D’Hondt et al.,
2004; Biddle et al., 2006). A higher abundance of the same cbbL
gene than in this study was recently detected in the organic carbon-
poor terrestrial subsurface sediments in the Chesapeake Bay area,
VA, USA (Breuker et al., 2011). There, in agreement with the lower
organic carbon content, autotrophy seems to be more important
than in the marine sediments of this study.

CONCLUSION
The microbial communities in the subsurface marine sediments
of the Black Sea and the Benguela upwelling area off Namibia
have been quantitatively analyzed at six stations using total cell

counts, CARD–FISH and 12 different Q-PCR assays. A high abun-
dance of Prokaryotes and overall similar proportions of Bacteria
and Archaea were discovered in the eutrophic, organic carbon-
rich sediments. Crenarchaeota and the bacterial candidate divi-
sion JS-1 and the classes Anaerolineae and Caldilineae of the
phylum Chloroflexi were as highly abundant. In agreement with
the reported ongoing sulfate reduction and methanogenesis, the
functional genes dsrA and aprA of sulfate-reducers and the gene
mcrA of methanogens were highly abundant as well, suggesting
a vital microbial community performing these processes. The
detection of the cbbL gene shows the occurrence of autotrophic
microorganisms.
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