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There is now clear evidence that species across a broad range of taxa harbor extensive heritable variation in dispersal. While studies

suggest that this variation can facilitate demographic outcomes such as range expansion and invasions, few have considered the

consequences of intraspecific variation in dispersal for the maintenance and distribution of genetic variation across fragmented

landscapes. Here, we examine how landscape characteristics and individual variation in dispersal combine to predict genetic

structure using genomic and spatial data from the Glanville fritillary butterfly. We used linear and latent factor mixed models to

identify the landscape features that best predict spatial sorting of alleles in the dispersal-related gene phosphoglucose isomerase

(Pgi). We next used structural equation modeling to test if variation in Pgi mediated gene flow as measured by Fst at putatively

neutral loci. In a year when the population was recovering following a large decline, individuals with a genotype associated with

greater dispersal ability were found at significantly higher frequencies in populations isolated by water and forest, and these

populations showed lower levels of genetic differentiation at neutral loci. These relationships disappeared in the next year when

metapopulation density was high, suggesting that the effects of individual variation are context dependent. Together our results

highlight that (1) more complex aspects of landscape structure beyond just the configuration of habitat can be important for

maintaining spatial variation in dispersal traits and (2) that individual variation in dispersal plays a key role in maintaining genetic

variation across fragmented landscapes.

KEY WORDS: Dispersal, eco-evolutionary dynamics, fst, gene flow, genetic structure, intraspecific variation, landscape genetics,

landscape matrix, metapopulation.

Impact Summary
Understanding how fragmentation affects dispersal

and gene flow across human-modified landscapes has

long been a goal in evolutionary biology. Growing

evidence suggests that individuals of the same species

can vary considerably in their dispersal and movement

traits. While the effects of this individual dispersal

variation on range expansions and invasions have been

well characterized, knowledge of how it might mediate

genetic responses to landscape fragmentation are almost

entirely lacking. Here, we demonstrate that individual

variation in dispersal is key to the maintenance of
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genetic variation during recovery following a large

decline in a butterfly metapopulation. We further show

that spatial variation in dispersal is not maintained

by the configuration of habitat patches alone, but by

a more complex genotype–environment interaction

involving the landscape matrix (i.e., landscape features

found between habitat patches). This challenges the

simplified landscape representations typically used in

studies of dispersal evolution that ignore heterogeneity

in the landscape matrix. More broadly, our results

highlight the interplay of adaptive and neutral processes

across fragmented landscapes, suggesting that an

understanding of species vulnerability to landscape

fragmentation requires consideration of both.

Introduction
Dispersal is key to the maintenance of genetic variation and adap-

tive potential in fragmented landscapes. Differences in species

ability to maintain genetic diversity in fragmented landscapes

can, in part, be explained by interspecific differences in dispersal

capacity (Steele et al. 2009; Peterman et al. 2015). However,

there is now clear evidence that many species across a broad

range of taxa harbor extensive heritable variation in dispersal

(Saastamoinen et al. 2018) and that this variation can facilitate

demographic outcomes such as range expansion (e.g., Duckworth

and Badyaev 2007; Ochocki and Miller 2017) and invasions (e.g.,

Phillips et al. 2006; Elliott and Cornell 2012; Cote et al. 2017).

In comparison, few studies have considered the consequences

of intraspecific variation in dispersal for genetic outcomes such

as the maintenance and distribution of genetic variation across

fragmented landscapes (Cheptou et al. 2017). This is an important

gap given that the genetic makeup of populations can drive the

trajectories of both ecological and evolutionary processes (Rius

and Darling 2014; Szucs et al. 2017; Wagner et al. 2017).

This gap comes partly from a lack of integration of intraspe-

cific variation into fields like landscape and spatial genetics

(Edelaar and Bolnick 2012; Pflueger and Balkenhol 2014). Stud-

ies in these fields emphasize that gene flow across fragmented

landscapes is strongly constrained by population configuration,

habitat quality, and matrix heterogeneity (i.e., the landscape

features intervening populations), but typically assume that

dispersers respond to the landscape in the same way (Manel et al.

2003; Holderegger and Wagner 2008). However, fragmentation

itself can exert strong selective pressures on dispersers, in some

cases leading to the maintenance of multiple dispersal strategies

across the same landscape (Cheptou et al. 2017; Cote et al. 2017;

Legrand et al. 2017). This variation might change expectations

of spatial genetic structure and mask landscape genetic relation-

ships, yet empirical tests of this are lacking (but see McDevitt

et al. 2013). For example, using simulations, Palmer et al. (2014)

showed that distance-based connectivity metrics underestimated

the number of migrants arriving into isolated populations when

individuals were allowed to vary in their dispersal ability, with the

effect most severe when dispersal was rare. This spatial sorting

of good dispersers into more isolated populations is expected

to also impact the distribution of genetic variation, for example,

by increasing genetic neighborhoods beyond expectations drawn

from mean dispersal distances (DiLeo et al. 2014). Because

dispersal traits often co-evolve with other aspects of morphology,

physiology, and behavior (Clobert et al. 2009; Cote et al. 2017),

individuals might also interact with, and respond to, the landscape

matrix in different ways (Merckx and Van Dyck 2007; Delgado

et al. 2010). This could mean that the effects of landscape on

gene flow might be missed if intraspecific variation is ignored.

Intraspecific variation thus has the potential to play an im-

portant, but so far unexplored role in structuring species genetic

response to landscape fragmentation. The maintenance of several

dispersal strategies across a single landscape might allow wide-

spread gene flow to be maintained under a broad set of ecological

conditions. We test this in a model species, the Glanville frit-

illary butterfly (Melitaea cinxia) in the Åland Islands, Finland.

Importantly, individuals vary in their dispersal ability: butterflies

heterozygous or homozygous for the “c” allele in a SNP associ-

ated with the gene phosphoglucose isomerase (Pgi) have higher

flight metabolic rate, which translates to substantially increased

dispersal propensity and dispersal distance in the field, especially

at cooler temperatures (reviewed in Niitepõld and Saastamoinen

2017). Evidence for this comes from laboratory experiments link-

ing flight metabolic rate to Pgi genotype (Niitepõld 2010), and

from a study linking dispersal distances of butterflies tracked

in the field to Pgi genotype (Niitepõld et al. 2009). The butter-

fly persists in a highly dynamic metapopulation with frequent

colonizations and extinctions, and we focus on a 2-year period

representing extremes of fluctuations experience by the butterfly:

the year 2011 when populations had extremely low connectivity

because of a large decline in the previous year, and 2012 when

populations had high connectivity following the recovery of pop-

ulations in the year prior (Ojanen et al. 2013). Recent work sug-

gests that Pgi plays a central role in metapopulation persistence by

maintaining high recolonization rates despite drastic population

fluctuations (Hanski et al. 2017). However, we do not yet know

to what extent Pgi also contributes to the maintenance of neutral

genetic variation, which is important given that genetic diversity

can affect persistence independently of demographic processes—

e.g., populations founded by genetically diverse individuals have

been observed to have higher chances of successful establishment,
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population growth rates, and persistence, independent of founder

population size (Ahlroth et al. 2003; Szucs et al. 2017). Specifi-

cally, we ask: (1) what landscape factors drive spatial sorting of

genotypes that vary in their dispersal ability? And (2) does this dis-

persal variation mediate the genetic response to landscape struc-

ture and population fluctuations? While previous work has found

that more isolated patches have higher frequencies of good dis-

persers (Haag et al. 2005, Hanski and Saccheri 2006; Zheng et al.

2009), we further predict that dispersers will respond differentially

to heterogeneity in the landscape matrix. We also predict that the

good dispersers will facilitate genetic admixture; population with

higher frequencies of the Pgi-c allele should be less genetically

differentiated than populations with low frequencies. Finally, we

predict that the effects of Pgi will be context dependent. Mod-

eling predicts that the dispersive genotype will have the largest

advantage when there are many open patches to colonize (Zheng

et al. 2009), and thus we expect the association between landscape

structure, Pgi, and genetic structure to be highest in 2011.

Methods
STUDY SPECIES AND SAMPLING

In Finland, the Glanville fritillary butterfly is only found in the

Åland Islands where it persists in a metapopulation encompassing

over 4000 meadows (hereinafter ‘patches’) that contain one or

both of its host plants, Plantago lanceolata and Veronica spicata.

In late summer, females lay clutches of 150–200 eggs, which

develop into larvae that live gregariously until the last larval instar

in the following spring (Boggs and Nieminen 2004). Before

winter diapause, larvae spin nests at the base of host plants, and

every fall since 1993 the number of nests have been counted

in all patches in Åland allowing the quantification of long-term

population dynamics (see Ojanen et al. 2013 for survey methods).

In the majority of cases nests are composed of single full-sib

families, although multiple families on the same host plant can

also occur (Fountain et al. 2018). In any given year, only about

20% of patches on average are occupied, with frequent local

recolonizations and extinctions, and large variation in the number

of total larval nests (Fig. 1). Our study focused on the period

2010–2012, which is characterized by a large population decline

in 2010 due to poor weather conditions, followed by a population

recovery. The major recovery occurred in 2011 where a record

number of re-colonizations were documented (Fig. 1B). In 2012,

there were fewer colonizations but a large increase in population

density, with a record number of larval nests (Fig 1A).

In 2011 and 2012, three larvae per nest were col-

lected from patches across Åland and were genotyped at 40

neutral markers and five putatively function markers from

candidate genes related to flight or dispersal traits includ-

ing Pgi (Mc1:1687:14486), Mc1:1687:14486, Mc1:1873:36910,

Mc1:1124:71239, Mc1:752:33517 (Orsini et al. 2009; Kvist et al.

2013; Ahola et al. 2014; Kvist et al. 2015; Wong et al. 2016;

Duplouy et al. 2017; Supporting Information Appendix A and

B). Full details of genotyping and quality control are given in

Supporting Information Appendix A. After excluding any SNP or

individual with a call rate <95%, 34 neutral markers and all of the

functional markers remained, and total sample sizes were 3365

larvae representing 1504 nests in 250 patches in 2011, and 8229

larvae representing 2999 nests in 322 patches in 2012. We only

had a few samples from the extreme south of our study region in

Lemland. As these samples were clear outliers with low connec-

tivity and frequencies of Pgi-c (Figs. S1 and S2), we excluded

them from downstream analysis. We further excluded 98 patches

in 2011 and 129 in 2012 with only a single larval nest where the

effects of genetic drift are expected to be especially strong, giving

a sample size of 152 patches (74 old, 78 new) in 2011 and 193

patches (138 old, 55 new) in 2012.

DEVELOPMENT OF LANDSCAPE CONNECTIVITY

HYPOTHESES

To test the effects of landscape on neutral and functional genetic

variation, we developed a set of landscape resistance surfaces re-

flecting the permeability of the intervening landscape matrix to

dispersing butterflies. We assigned each landscape feature a value

representing its resistance to a dispersing M. cinxia individual—

either a value of 1 (not resistant to movement) or 10 (restricts

movement), generating a total of 20 surfaces with different com-

binations of resistant and nonresistant features (Table S1). Patches

were always given a value of 1 as patches represent suitable habi-

tat for the species, and continuous urban areas were always given

a value of 10. For each of these surfaces, we calculated pairwise

resistance distances between M. cinxia patches using the pro-

gram CIRCUITSCAPE (McRae 2006). This program uses circuit

theory to calculate effective distances among patches by taking

into account the relative permeability of the intervening land-

scape. Further details of the landscape classifications are given in

Supporting Information Appendix A.

For each of the landscape hypotheses, we calculated an in-

dex of connectivity for each occupied patch using the incidence

function model (Hanski 1994):

Si =
∑

i �= j

exp
(−αdi j

)
N j

where dij is either the geographic distance (in km) or resistance

distance (from CIRCUITSCAPE) between focal patch i occupied

in year t and source patch j occupied in the previous year (t – 1),

and Nj is the number of M. cinxia nests found in source patch j in

year t – 1. The constant α scales the dispersal kernel and should be

equal to 1/mean dispersal distance of the species, which has been

estimated to be 1 km (Fountain et al. 2018). Because resistance
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Figure 1. Yearly variation in the number of nests (A) and colonizations (B) in the Åland Islands (C). The period of study from 2010 to

2012 is highlighted in (A) and (B), and (C) shows the major land cover types across the study region. Data for population trends come

from annual surveys described in detail in Ojanen et al. 2013.

distances are unit-less, mean dispersal distance for each land-

scape resistance hypothesis was chosen as the resistance value

that roughly translated to 1 km in Euclidean distance units, which

was then used to calculate α (Table S1). We did this by taking the

predicted value of the resistance distance at a Euclidean distance

value of 1 km using a simple linear model, after first linearizing

relationships with log transformations. Many of the connectivity

variables calculated from alternative landscape resistance surfaces

were highly correlated, because some landscape features were

only present in small proportions in our study region and thus did

not have large effects on the calculations of resistance distances.

For our main analyses we settled on five uncorrelated variables

of landscape connectivity: Simetapop, which is scaled by Euclidean

distance among patches but assumes that the intervening land-

scape does not restrict dispersal, Siwater, Siforest, and Siagriculture,

which assume that water, forest, and agriculture restrict dispersal,

respectively, and Siroads, which assumes that roads facilitate dis-

persal. The five connectivity variables had pearson correlations

below 0.6 and variance inflation factors in linear models under 2

(Table S2).

ASSOCIATIONS BETWEEN LANDSCAPE

CONNECTIVITY AND Pgi

Our first objective was to test which landscape connectivity

hypotheses best predicted the distribution of the Pgi-c allele.

Based on previous work, we expected an interactive effect of

patch age; good dispersers are expected to be at the highest

frequency in newly colonized (hereinafter “new”), isolated

populations and at the lowest in old, isolated populations because

dispersive individuals also have high emigration rates (Zheng

et al. 2009). We conducted model selection on mixed effect

models including all connectivity variables and their interaction

with patch age (i.e., new or old population) as fixed effects, and

genetic cluster membership as a random effect. Frequency of

the Pgi-c allele in each patch was used as the response variable.

Genetic cluster membership represents groups of individuals

or populations that share a common demographic history (i.e.,

share common historical population dynamics and/or ancestry),

and was determined for each year separately using BAPS6 (see

Supporting Information Appendix A; Fig. S1; Corander et al.

2008; Cheng et al. 2013). Mixed models were run for each year

separately and we applied log transformations to Simetapop and to

Siroads, and exponential transformations to Siwater and Siagriculture

to linearize relationships. Each variable was scaled and mean

centered. Models were implemented in the lme4 library (Bates

et al. 2015) and validated graphically by plotting residuals against

fitted values and normality assumptions were checked with QQ

plots. For model selection, we retained a candidate set of models

with high support for further analysis and interpretation. A model

was included in the candidate set based on two conditions: (1) the

model was within �AICc < 2 of the top model and (2) the model

was not simply an embellishment of a higher ranked model (i.e.,

did not contain uninformative parameters; Arnold 2010). All

predictors appearing in the resulting candidate model set were
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considered as potentially important in their effects on Pgi and

were subject to downstream analysis (see below). We used this

approach since alternatives such as model averaging and summing

akaike weights can lead to flawed interpretation of effects when

variables are even weakly collinear (Galipaud et al. 2014; Cade

2015).

The residuals of the top model for both 2011 and 2012

showed evidence of spatial autocorrelation. To test that this did

not bias our results, we compared models with and without spa-

tial random effects implemented in r-inla (Lindgren & Rue 2015;

Supporting Information Appendix A). In one case, we found the

sign of a weak main effect changed in the spatial compared to

the nonspatial model (from 0.006 to –0.003; Table S3). However,

the major effect of this variable manifested as an interaction with

a strong negative association in new populations, and the direc-

tion and strength of this interaction did not change. We found

very little difference in all other estimates between the spatial and

nonspatial models, and thus did not pursue spatial models further

(Table S3).

As a second step, we used gene–environment association

analysis (Rellstab et al. 2015) using latent factor mixed models

(lfmms; Frichot et al. 2013) implemented in the LEA library

(Frichot and François 2015) to confirm associations identified

as significant in the linear mixed effect models. While the linear

mixed model approach controlled for potential effects of neutral

genetic structure by including genetic cluster membership (calcu-

lated from the 34 neutral loci) as a random effect, the latent factor

mixed models explicitly considers all loci (Pgi and neutral loci)

simultaneously. This applies a stronger control of background

genetic structure, particularly when structure is complex and

hierarchical (de Villemereuil et al. 2014), and also allowed us to

confirm that we only see associations between connectivity and

allele frequencies for Pgi and not for other loci. A drawback is

that it cannot incorporate additive or interactive effects, and thus

we used it only to confirm results in the partitions of the data that

were found to be significant in linear mixed effect models (e.g.,

new populations). In addition to testing the individual Si variables

identified as important in the mixed models, we explored potential

additive effects by testing for association between loci and Si

variables that incorporated the resistance of two or more of the

landscape features. For example, the additive effects of Siwater and

Siforest were included in the model as the predictor Siwater+forest

(Table S1). Supporting Information Appendix A describes

how the latent factors were specified starting from knowledge

of the number of k genetic clusters identified from BAPS6.

Loci included in each analysis were Pgi, 34 neutral markers,

and four additional markers previously identified as being

outliers in fragmented vs. continuous landscapes or from flight

induced gene expression differences (Kvist et al. 2015; Fountain

et al. 2016).

DIRECT AND INDIRECT EFFECTS OF LANDSCAPE

STRUCTURE ON GENETIC STRUCTURE

Our second objective was to test if intraspecific variation at the Pgi

locus mediates the effect of landscape on the distribution of neutral

genetic variation. We hypothesized that landscape structure will

influence neutral genetic structure either directly (i.e., by limiting

dispersal of all individuals in the same way), or indirectly through

its effect on the spatial distribution of individuals with contrasting

Pgi genotypes.

Direct effects were tested using linear mixed effect mod-

els with neutral genetic differentiation as a response variable. A

patch-specific measure of genetic differentiation was calculated

by taking the average pairwise Weir and Cockerham unbiased Fst

(Weir and Cockerham 1984) for each patch following Pflueger and

Balkenhol (2014). Prior to calculation of Fst, the data were subset

to include only a single individual per nest, and a maximum of 50

nests per patch as there was large variation in sample sizes. Al-

though Weir and Cockerham’s unbiased Fst accounts for unequal

population sizes, calculations are biased at very low sample sizes

(Willing et al. 2012), and so we limited analyses to patches with

more than two nests, excluding 43 patches in 2011 and 37 patches

in 2012. Models were run for each year separately with the five

connectivity metrics and population age as fixed predictors, and

genetic cluster membership as a random factor. We did not find

evidence for an interactive effect of population age and so only

included it as a main effect. Predictor variables were transformed,

centered, and scaled, and model selection was implemented as de-

scribed above (see ‘Association between landscape connectivity

and Pgi’).

We next tested for indirect effects of landscape structure on

genetic differentiation in the partitions of data where we found

strong association between connectivity and Pgi using structural

equation modeling (SEM) implemented in the lavaan library

(Rosseel 2012). Originally developed by Sewall Wright (1934),

SEM allows the evaluation of complex a priori-defined relation-

ships among variables that potentially involve direct and indirect

effects. It is thus an ideal framework for testing the relative ef-

fects of connectivity vs. Pgi on genetic structure, while controlling

for directed or residual relationships between them. We modeled

two pathways: (1) connectivity directly affects genetic differentia-

tion, and (2) connectivity indirectly affects genetic differentiation

through its effects on the frequency of the Pgi-c allele. Connec-

tivity was included in the model as a latent variable – i.e., a con-

struct that is not easily measured directly but can be indicated by

a number of observed, and potentially correlated, variables that

have some level of measurement error (Grace et al. 2012). We

included connectivity as a latent variable, with the five connec-

tivity hypotheses Simetapop, Siwater, Siforest, Siagriculture, and Siroads

as indicators. We estimated model parameters using maximum

likelihood and assessed model fit with chi-square tests, where a

5 4 8 EVOLUTION LETTERS DECEMBER 2018



LANDSCAPE, DISPERSAL VARIATION, AND GENE FLOW

P-value > 0.05 indicates the model-implied covariance fits the

observed covariance well (Grace et al. 2012). The relative effects

of paths were evaluated from standardized path coefficients and

individual significance of paths.

Results
ASSOCIATIONS BETWEEN LANDSCAPE

CONNECTIVITY AND Pgi

For data from 2011, selection on mixed effect models identified 10

models with �AICc <2 (Table S4). All of these models included

Siforest and Siwater, and seven of the models were embellishments of

higher ranked models—i.e., they were the same as a higher ranked

model but included uninformative parameters with little effect on

model fit (Arnold 2010). We thus retained three models for further

analysis and interpretation: the top model including an interaction

of Siforest and age and main effects of Siwater and Siagriculture, a model

including an interaction of Siforest and a main effect of Siwater, and

a third model including an interaction of Siwater and main effects of

Siforest and Siagriculture (Table 1). All variables showed negative as-

sociations with Pgi-c, with Siforest and Siwater having the strongest

effects in new populations (Table 1). The effect of water and for-

est in new populations remained significant in latent factor mixed

models as evidenced by a significant association of Siwater+forest

with Pgi-c but no other loci (Fig. S3). In contrast Siwater showed

a significant association with a putatively neutral locus but not

Pgi-c, Siforest showed a significant association with both Pgi-c

and a different putatively neutral locus, and Siwater+forest+agriculture

and Siagriculture showed no significant associations with Pgi-c or

any other locus (Supporting Information Appendix A; Fig. S3).

The negative association between Pgi and connectivity in

new populations switched in linear mixed models in 2012, and

the effect of Siforest disappeared (Fig. 2; Table 1). Model selec-

tion identified six models with �AICc <2 (Table S5). All of these

models included an interaction of age and Siroads, and either a main

or interactive effect of Siwater. Four of the models were embellish-

ments of higher ranked models. We thus retained two models for

further analysis and interpretation: the top model containing in-

teractions between of both Siroads and Siwater with patch age, and

a lower ranked model with an interaction between Siroads and age

and a main effect of Siwater (Table 1). Siroads showed a strong pos-

itive association with Pgi-c in new populations, whereas Siwater

showed a negative association with Pgi-c in old populations but

only a weak or nonexistent relationship in new populations in the

top model (Table 1; Fig. S4). Neither Siroads nor Siwater were found

to have significant associations with Pgi-c or any other loci in la-

tent factor mixed models (Supporting Information Appendix A;

Fig. S3). Details on the calibration of the latent factor mixed mod-

els, including reports of genomic inflation factors can be found in

Supporting Information Appendix A and Table S6.

DIRECT AND INDIRECT EFFECTS OF LANDSCAPE

STRUCTURE ON GENETIC STRUCTURE

For 2011, selection on mixed effect models testing for direct effect

of connectivity and age on Fst identified a model containing only

the random intercept as the most likely model (Table S7). We also

tested the model after removing a single patch that had a very high

Fst value. This led to the selection of a model including Siwater as

the best, however it explained only 3% of the variation in Fst, and

the random intercept-alone model remained in the candidate set

with �AICc <2 (Table S8). We thus conclude that there is no, or a

very weak, direct effect of connectivity on genetic differentiation

in 2011. For 2012, eight models had a �AICc <2, however five of

them were embellishments of higher ranked models (Table S9).

We thus retained three models: the top model including equal

effects of Simetapop and Siwater, a model with just Simetapop, and a

model with equal effects of Siwater and Siroads (Table 2).

Pgi showed a significant association with connectivity only

in new populations in 2011, and thus we only tested for indirect

effects of connectivity on Fst (mediated by Pgi) in this parti-

tion. The full structural equation model including all five land-

scape connectivity indicator variables showed poor fit as indicated

by a significant deviation of the observed covariance from the

Table 1. Standardized regression coefficients showing the effects of connectivity and population age on the population frequency of

the Pgi-c allele for the year 2011 and 2012. Candidate models with �AICc <2 and excluding uninformative parameters are shown (see

Methods, and Table S4 and S5 for results of model selection). Variances explained by fixed effects (R2
m) and jointly by fixed and random

effects (R2
c) are shown.

Standardized regression coefficients

Year (intercept) Age Siwater Siforest Siagriculture Siroads Age:Siwater Age:Siforest Age:Siroads R2
m R2

c AICc �AICc

2011 0.23 –0.01 –0.06 –0.05 –0.04 –0.13 0.15 0.18 –148.5 0
0.23 –0.01 –0.06 –0.04 –0.12 0.13 0.16 –147.7 0.82
0.24 –0.01 –0.06 –0.06 –0.05 –0.12 0.14 0.17 –146.5 1.97

2012 0.24 0.006 –0.05 0.02 0.08 0.11 0.10 0.10 –216.4 0
0.24 0.003 –0.05 0.02 0.13 0.08 0.09 –215.2 1.17
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Figure 2. Scatterplots showing the relationship between the frequency of the Pgi-c allele and a patch connectivity metric incorporating

forest and water as barriers to dispersal for the year 2011 when the metapopulation was recovering from a population decline (A) and

2012 when the metapopulation was at high density (B). Points represent local populations and old and new populations are shown in

contrasting colours. Lines show predicted values of fixed effects from linear mixed models including Siwater+forest as a fixed predictor and

genetic cluster as a random effect. See Fig. S2 for scatterplots showing variation across genetic clusters.

Table 2. Standardized regression coefficients showing the direct effects of connectivity on genetic differentiation (Fst) for the year 2011

and 2012. Candidate models with �AICc < 2 and excluding uninformative parameters are shown (see Methods, and Table S7 and S9 for

results of model selection). Variances explained by fixed effects (R2
m) and jointly by fixed and random effects (R2

c) are shown.

Standardized regression coefficients

Year (intercept) Simetapop Siwater Siroads R2
m R2

c AICc �AICc

2011 0.08 0.02 –464.5 0
2012 0.07 –0.01 –0.01 0.11 0.16 –713.3 0

0.07 –0.01 0.08 0.16 –712.2 1.1
0.07 –0.01 –0.01 0.10 0.14 –711.4 1.8

model-implied covariance (χ2 = 37.4, df = 13, P < 0.001). Be-

cause Simetapop did not have strong effects in our earlier models,

we removed it as an indicator variable. This model fit the data

well as indicated by no significant deviation of the observed and

modeled-implied covariance (χ2 = 11.94, df = 8, P = 0.15). The

removal of Simetapop did not affect the strength or significance of

associations. Siwater and Siforest were the strongest and only sig-

nificant indicators of connectivity (Fig. 3). Our model supported

a significant negative effect of connectivity on Pgi-c, and a sig-

nificant negative effect of Pgi-c on genetic differentiation, but no

significant direct effect of connectivity on genetic differentiation

(Fig. 3; Fig. S5).

Discussion
Here, we show that patch connectivity metrics incorporating

landscape matrix best predicted the distribution of a dispersal

polymorphism during a population recovery in the Glanville

fritillary butterfly. In particular, newly colonized populations that

were isolated by water and forest matrix had significantly higher

frequencies of an allele associated with increased dispersal ability

(Pgi-c allele). We further found that patch connectivity alone did

not predict genetic differentiation at neutral markers, but rather

the effect of landscape on genetic structure was mediated through

individual variation in the Pgi locus; populations with higher

frequencies of the Pgi-c allele had lower Fst. In the following year

when the density of populations increased, these relationships

disappeared, suggesting that good dispersers only have an

advantage when there are many empty patches to colonize.

Together our results suggest that both individual variation in

dispersal traits and landscape matrix heterogeneity are important

for predicting spatial patterns of genetic variation.

LANDSCAPE MATRIX PREDICTS INDIVIDUAL

VARIATION IN DISPERSAL

We found that spatial sorting of individuals based on their Pgi

genotype was best explained by a connectivity metric that incor-

porated the effects of water and forest matrix in 2011. Importantly,

the basic metapopulation model did not show a significant asso-

ciation with the frequency of Pgi-c. While previous work showed
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Si

Siwater Siforest Siroads

Pgi-c
R
2
=0.45

Fst
R
2
=0.11

-0.67
(0.1)***

0.77
(0.1)***

-0.45
(0.2)*

-0.33
(0.2)

Siagri

0.58
(0.1)***

-0.27
(0.1) -0.05

(0.2)

Figure 3. Results from a structural equation model test for direct

and indirect effects of patch connectivity (Si) on genetic structure

(Fst) for new populations in 2011. Arrows show tested unidirec-

tional relationship among variables. Connectivity (Si) was included

as a latent variable described by four observed indicator variables,

Siwater, Siforest, Siagriculture, and Siroads. Standardized coefficients

and associated standard errors are shown beside their respective

paths, and significant paths are marked with asterisks. Variance

explained is shown in the boxes of the endogenous variables,

Pgi-c and Fst

that metapopulation connectivity predicted the spatial sorting of

individuals based on their Pgi genotype (Haag et al. 2005; Han-

ski and Saccheri 2006; Zheng et al. 2009), our results suggest

that more complex processes are at play. There are a number of

potential reasons why previous work was able to capture spatial

sorting of Pgi with Simetapop while we could not. We found evi-

dence for a negative relationship between the frequency of Pgi-c

and metapopulation connectivity for new populations, however,

this relationship was "not" supported within individual genetic

clusters (Fig. S2). In contrast, the association between Pgi and

Siwater+forest held true even within genetic clusters (Fig. S2). This

suggests that Simetapop might, at least partly, be confounded with

geography, whereas Siwater+forest captures connectivity at scales

more relevant to dispersal. Our sample size is also much larger

and we were thus able to capture a larger amount of variation in

landscape structure. In comparison, previous work selected pop-

ulation extremes (e.g., extremely low and high connectivity), and

geographic distance might have been sufficient to capture pat-

terns. It should also be noted that previous studies tested only a

single model of patch connectivity, whereas we competed several

models assuming different landscape structures.

Our results hence suggest that the Pgi dispersal poly-

morphism in the M. cinxia system in the Åland islands is not

maintained by variation in patch configuration alone (i.e., the

metapopulation model), but that the landscape matrix further

influence dispersal patterns. This is an important finding given

that studies investigating the drivers of dispersal evolution almost

exclusively use simplified landscape models that assume a

homogenous matrix (Bowler and Benton 2005; Henriques-Silva

et al. 2015). Knowledge of the importance of the landscape matrix

is thus lacking, and this is one avenue in which landscape genetic

approaches can contribute to understanding how the matrix might

modify predictions of dispersal evolution. Our results suggest

that landscape features that intervene discrete habitat patches

matter, and this is unsurprising given that dispersal traits are often

correlated with other aspects of species biology (Saastamoinen

et al. 2018). For example, Pgi shows a genotype-by-temperature

interaction in M. cinxia, where heterozygotes have higher flight

metabolic rate (and thus dispersal ability) at moderate and cool

temperatures, but individuals without a c allele fly better at very

warm temperatures (Niitepõld 2010). This might explain why

forest is an important predictor of the spatial distribution of the

dispersive allele, as it could provide a cooler environment for Pgi-c

individuals. However, it is unclear if the association between for-

est and the frequency of Pgi-c is driven by individual differences

in the use of the landscape matrix, or rather a distance effect—i.e.,

if Pgi-c individuals are able to fly further or faster through the

forest.

INDIVIDUAL VARIATION IN DISPERSAL PREDICTS

GENETIC DIFFERENTIATION

In our test of direct effects of connectivity on genetic differenti-

ation, we found no evidence that any of the connectivity metrics

predicted Fst in 2011—newly colonized patches with lower con-

nectivity did not display higher genetic differentiation at neutral

loci compared to highly connected (Table 2). Rather, patches with

higher frequencies of Pgi-c had significantly lower Fst (Fig. 3;

Fig. S5). Although Pgi explained only a small proportion of

variation in Fst, the effects of the landscape matrix on dispersal

and gene flow would have been completely missed if individual

variation at the Pgi locus was not included in our model. This high-

lights the importance for integration of intraspecific variation in

dispersal traits in landscape genetic studies. While sex differences

have recently been considered in landscape genetic models (e.g.,

Paquette et al. 2014; Bertrand et al. 2017), to our knowledge, only

two papers have integrated non-sex related variation in dispersal

traits: DiLeo et al. (2014) found that individual variation in the

number of flowers on dogwood trees influenced spatial patterns of

gene flow beyond the effects of Euclidean distance; and McDevitt

et al. (2013) found that genetic admixture of weasels in Poland

was likely mediated by the movement of medium-, rather than

large- or small-bodied weasels. While we acknowledge that vari-

ation in dispersal traits are often hard to measure, the increasing

accessibility of genomic data will facilitate the identification of
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candidate loci relevant to dispersal in non-model organisms (e.g.,

Swaegers et al. 2015; Dudaniec et al. 2018). Because dispersal

is often controlled by multiple genes (Saastamoinen et al. 2018),

applying landscape genomic methods that can capture the effects

of polygenic adaptation will be important (e.g., redundancy and

canonical correlation analysis; Rellstab et al. 2015 and reference

therein). We further expect our approach to be relevant not only to

systems where multiple dispersal strategies exist within a single

landscape, but also the perhaps more common case of directional

selection, where dispersal might be under positive or negative

selection depending on broad patterns of landscape structure

(Cheptou et al. 2017). An increasing number of studies have

reported variability in landscape genetic relationships across repli-

cate landscapes (e.g., Bull et al. 2011; Dudaniec et al. 2012; DiLeo

et al. 2013; Balbi et al. 2018), and it will thus be interesting to see if

divergent selection on dispersal genes might be a hidden source of

variation contributing to these patterns (e.g., Peterson and Denno

1997).

Our study highlights the role of a single gene on the

maintenance of gene flow across the landscape, and also joins

a growing list of evidence that Pgi in particular has large effects

on ecological processes in M. cinxia (reviewed in Niitepõld and

Saastamoinen 2017). However, it is unlikely that Pgi is acting

alone. For example, work by Wheat et al. (2011) showed that

Pgi may epistatically interact with other genes, such as succinate

dehydrogenase (Sdhd); an allelic combination at these two loci

was associated with maximal metabolic endurance in M. cinxia.

Linkage of Pgi to other functional loci have not been resolved,

but the low frequency and fitness of individuals homozygous for

the C allele suggest possible linkage to a deleterious mutation

(Orsini et al. 2009), and that the variation in Pgi is maintained

through balancing selection via a heterozygote advantage (Wheat

et al. 2009). Further, females colonizing new populations have

been found to be divergent in a suite of life-history traits, many

but not all are associated with variation in Pgi (Hanski et al. 2006;

Saastamoinen 2008; Kvist et al. 2013; Wheat et al. 2011).

This suggest a more complex dispersal syndrome, the genomic

architecture of which remains to be characterized. We further

emphasize that Pgi explained only 10% of variation in Fst, and

clearly other processes are at play that may not have been cap-

tured by our model (e.g., temperature and condition-dependent

dispersal). Interestingly, the four other candidate loci included

in our study did not show significant associations with landscape

structure, despite being found as outliers in previous work

(Kvist et al. 2015; Fountain et al. 2016). In particular, Fountain

et al. (2016) found that three of these loci changed more than

expected under neutral expectations in contemporary vs. museum

samples. Further, they found that allele frequencies changed

in the same direction in comparisons of new, isolated vs. old

continuous contemporary Åland populations, and in fragmented

vs. continuous replicate landscapes. In our study, these three loci

(Mc1:1873:36910, Mc1:1124:71239, Mc1:1687:14486) shifted

in new, isolated vs. old, connected populations in the same

direction as reported by Fountain et al. (2016), although the

differences were subtle (Fig. S7). This suggest that these loci

may indeed be under selection, but we lack the power to detect

significance given that we have samples from very different

timescales compared to Fountain et al. (2016).

CONTEXT MATTERS

Associations between patch connectivity and variation in Pgi in

new populations in 2011 disappeared in 2012. Modeling studies

on Pgi indicates that Pgi-c individuals should have the great-

est selective advantage when there are many empty patches to

colonize (Zheng et al. 2009; Hanski et al. 2011). Thus, it was

expected that our results would be much stronger in 2011—a year

that marked the largest number of re-colonizations recorded in

Åland following a large population decline that left many empty

patches. In comparison, the metapopulation experienced a large

increase in population size in 2012 but relatively fewer colo-

nization events; all patches in 2012 had high connectivity. This

appears to be driven by the much higher number of potential

source patches and nests in sources in 2012, and less by differ-

ence in distances between sources and targets (Fig. S6). Observa-

tions from mark-recapture suggest that M. cinxia exhibit negative

density dependent dispersal (Kuussaari et al. 1996), suggesting

that there should be fewer dispersal events in the high density

year 2012 compared to 2011. Intriguingly, effects of connectiv-

ity on Pgi even appeared to switch in 2012 (Table 1; Fig. S4),

although these associations were not significant in latent fac-

tor mixed models. This might be suggestive of a more complex

interaction between individual variation and density-dependent

dispersal. Modeling work predicts that Pgi-c should rise to higher

frequencies at very high population densities where it gains an ad-

vantage by spreading genes over more patches (Zheng et al. 2009),

however this has not been empirically demonstrated. Future work

should seek to resolve the drivers of yearly differences in disper-

sal, focusing particularly on the effects of density and weather,

which may influence dispersive and nondispersive genotypes

differently.

Importantly, the association between Pgi and Fst in 2011 sug-

gests that the polymorphism plays a key role in maintaining ge-

netic variation across the landscape following perturbation. This

finding provides a more mechanistic understanding of population

persistence in this highly dynamic system. Recent work showed

that regions in Åland with higher long-term frequencies of Pgi-c

maintained higher metapopulation sizes, presumably by increas-

ing colonization rates (Hanski et al. 2017). Our results suggest

that regional persistence of the metapopulation might be further

facilitated through Pgi-mediated genetic rescue.
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MODEL UNCERTAINTY AND SAMPLING EFFECTS

While some strong associations emerged from our analysis, model

selection suffered from uncertainty with several likely, and some-

times non-nested models appearing to have similar support. This

is a common problem with variables derived from landscape mea-

sures, which are inherently correlated (Smith et al. 2009; Prunier

et al. 2015). Although our connectivity variables were well below

typical collinearity thresholds (Dormann et al. 2013), it is likely

that weak linear relationships still contributed to this uncertainty.

This might also explain why connectivity variables with strong

effects in 1 year did not emerge as important predictors in the

next year, although part of this is also likely due to differences

in spatial locations of populations sampled in the different years.

Although it is hard to say definitively which landscape features

restrict dispersal, our results make a strong case for water as it was

an important predictor across years, and forest as it had strong ef-

fects across multiple methods and different partitions of the data.

What is less clear are the effects of other variables that were found

to be important for prediction but of weak effect, with inconsis-

tent results across methods (e.g., Siagriculture in 2011). Future work

would benefit from fine-tuning landscape resistance surfaces to

better account for these potential small additive effects (e.g., us-

ing optimization; Peterman 2014), and from testing relationships

under a broader set of conditions in carefully selected landscapes

where the independent effects of landscape variables can be better

teased apart.

Future work is also required to determine the effects of Pgi

in small populations (1–2 nests), which were excluded from our

analysis because estimating Fst requires larger samples (Morin

et al. 2009). Pgi-c individuals might be especially important to

counteract drift in these small populations, and individual-based

genetic approaches (Shirk et al. 2018) could be employed in the

future to better quantify genetic structure including these patches.

However, populations founded by a single female likely contribute

little to overall population dynamics (Hanski et al. 2017), as these

populations would be prone to inbreeding depression in the fol-

lowing generation (Haikola et al. 2001; Nieminen et al. 2001),

and small, inbred populations have high observed extinction rates

in the field (Saccheri et al. 1998)

Conclusions
Our work adds to growing evidence that intraspecific variation

plays a key role in driving diverse biological processes (Bolnick

et al. 2011; Moran et al. 2016; Des Roches et al. 2018). We showed

that heterogeneity in the landscape matrix is an important predic-

tor of spatial variation in dispersal traits, and that this individual

variation mediated the effects of landscape on genetic structure.

Our results therefore highlight a need for better integration of stud-

ies on dispersal evolution and landscape genetics. While studies

of dispersal evolution may need to consider more complex rep-

resentations of landscape structure that captures heterogeneity in

the landscape matrix, landscape geneticists should consider that

key associations between landscape and genetic structure might

be missed if intraspecific variation in dispersal is ignored.
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Niitepõld, K., A. D. Smith, J. L. Osborne, D. R. Reynolds, N. L. Carreck, A.
P. Martin, et al. 2009. Flight metabolic rate and Pgi genotype influence
butterfly dispersal rate in the field. Ecology 90:2223–32.
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term metapopulation study of the Glanville fritillary butterfly (Melitaea
cinxia): survey methods, data management, and long-term population
trends. Ecol. Evol., 3:3713–37.

Orsini, L., C. W. Wheat, C. R. Haag, J. Kvist, M. J. Frilander, and I. Hanski.
2009. Fitness differences associated with Pgi SNP genotypes in the
Glanville fritillary butterfly (Melitaea cinxia). J. Evol. Biol. 22:367–
375.

Palmer, S. C. F., A. Coulon, and J. M. J. Travis. 2014. Inter-individual vari-
ability in dispersal behaviours impacts connectivity estimates. Oikos
123:923-932.

Paquette, S. R., B. Talbot, D. Garant, J. Mainguy, and F. Pelletier. 2014.
Modelling the dispersal of the two main hosts of the raccoon rabies
variant in heterogeneous environments with landscape genetics. Evol.
Appl. 7:734–749.

Peterman, W. E. 2014. ResistanceGA: An R package for the optimization
of resistance surfaces using genetic algorithms. Methods Ecol. Evol.
9,1638–1647.

Peterman, W. E., T. L. Anderson, B. H. Ousterhout, D. L. Drake, R. D. Sem-
litsch, and L. S. Eggert. 2015. Differential dispersal shapes population
structure and patterns of genetic differentiation in two sympatric pond
breeding salamanders. Conserv. Genet. 16:59–69.

Peterson, M. A., and R. F. Denno. 1997. The influence of intraspecific variation
in dispersal strategies on the genetic structure of planthopper popula-
tions. Evolution. 51:1189–1206.

Pflueger, F. J., and N. Balkenhol. 2014. A plea for simultaneously consider-
ing matrix quality and local environmental conditions when analysing
landscape impacts on effective dispersal. Mol. Ecol. 23:2146–2156.

Phillips, B. L., G. P. Brown, J. K. Webb, and R. Shine. 2006. Invasion and the
evolution of speed in toads. Nature 439:803–803.

Prunier, J. G., M. Colyn, X. Legendre, K. F. Nimon, M. C. Flamand. 2015.
Multicollinearity in spatial genetics: separating the wheat from the chaff
using commonality analyses. Mol. Ecol. 24:263–83.

Rellstab, C., F. Gugerli, A. J. Eckert, A. M. Hancock, and R. Holderegger.
2015. A practical guide to environmental association analysis in land-
scape genomics. Mol. Ecol. 24:4348–4370.

Rius, M., and J. A. Darling. 2014. How important is intraspecific genetic
admixture to the success of colonising populations? Trends Ecol. Evol.
29:233–242.

Rosseel, Y. 2012. lavaan: An R package for structural equation modeling. J.
Stat. Softw. 48:1–36.

Saastamoinen, M. 2008. Heritability of dispersal rate and other life history
traits in the Glanville fritillary butterfly. Heredity 100:39.

Saastamoinen, M., G. Bocedi, J. Cote, D. Legrand, F. Guillaume, C.
W. Wheat, et al. 2018. Genetics of dispersal. Biol. Rev. 93:574–
599.

Saccheri, I., M. Kuussaari, M. Kankare, P. Vikman, W. Fortelius, I. Hanski.
1998. Inbreeding and extinction in a butterfly metapopulation. Nature.
392:491.

Shirk, A. J., E. L. Landguth, and S. A. Cushman. 2018. A comparison of
regression methods for model selection in individual-based landscape
genetic analysis. Mol. Ecol. Res. 18: 55–67.

Smith, A. C., N. Koper, C. M. Francis, and L. Fahrig. 2009. Confronting
collinearity: comparing methods for disentangling the effects of habitat
loss and fragmentation. Land Ecol. 24:1271.

Steele, C. A., J. Baumsteiger, and A. Storfer. 2009. Influence of life-history
variation on the genetic structure of two sympatric salamander taxa.
Mol. Ecol. 18:1629-1639.

Swaegers, J., J. Mergeay, A. Van Geystelen, L. Therry, M. H. Larmuseau,
and R. Stoks. 2015. Neutral and adaptive genomic signatures of rapid
poleward range expansion. Mol. Ecol. 24:6163–76.

Szucs, M., B. A. Melbourne, T. Tuff, C. Weiss-Lehman, and R. A. Huf-
bauer. 2017. Genetic and demographic founder effects have long-term
fitness consequences for colonising populations. Ecol. Lett. 20:436–
444.

Wagner, N. K., B. M. Ochocki, K. M. Crawford, A. Compagnoni, and T. E. X.
Miller. 2017. Genetic mixture of multiple source populations accelerates
invasive range expansion. J. Anim. Ecol. 86:21–34.

Weir, B. S., and C. C. Cockerham. 1984. Estimating f-statistics for the analysis
of population-structure. Evolution. 38:1358–1370.

Wheat, C. W., C. R. Haag, J. H. Marden, I. Hanski, and M. J. Frilander. 2009.
Nucleotide polymorphism at a gene (Pgi) under balancing selection in a
butterfly metapopulation. Mol. Biol. Evol. 27:267–81.

Wheat, C. W., H. W. Fescemyer, J. Kvist, E. V. Tas, J. C. Vera, M. J. Frilander.
et al. 2011. Functional genomics of life history variation in a butterfly
metapopulation. Mol. Ecol. 20:1813–28.

Willing, E.-M., C. Dreyer, and C. Van Oosterhout. 2012. Estimates of genetic
differentiation measured by FST do not necessarily require large sample
sizes when using many SNP markers. PLoS One 7:e42649.

Wong, S. C., A. Oksanen, A. L. Mattila, R. Lehtonen, K. Niitepõld, and
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Figure S1. Cluster membership estimated from BAPS for 2011 (A) and 2012 (B). Each point is a patch and the colour indicates membership to a particular
cluster.
Figure S2. Associations between the frequency of the Pgi c allele and two indices of connectivity (Siwater+forest and log-transformed Simetapop) for each
genetic cluster in 2011 (A) and 2012 (B).
Figure S3. Q-Q plots showing observed and expected –log10 p-values for latent factor mixed models testing for associations between 39 loci and
connectivity metrics in new populations in 2011 (A-E) and Supporting Figures – DiLeo et al. Evolution Letters 2012 (F-G).
Figure S4. Scatterplots showing the relationship between the frequency of the Pgi-c allele and a patch connectivity metric incorporating roads as a
facilitator to dispersal (A) and water as a barrier to dispersal (B) for the year 2012.
Figure S5. Scatterplots showing relationships between population-specific genetic differentiation (Fst) and the frequency of the Pgi-c allele (A), Fst and
Siforest (B) and Fst and Siwater (C) for newly colonized populations in 2011.
Figure S6. Sources of variation in patch connectivity per year. Yearly differences in connectivity for newly colonized populations, Simetapop, (A), geographic
distance between source and target patches for newly colonized populations, dij (B), number of nests in source patches, Nj (C), and total number of source
patches (D).
Figure S7. Relationships between connectivity and minor allele frequencies (MAF) of the four other candidate loci in newly colonized and old populations.
Table S1. Descriptions of landscape connectivity hypotheses.
Table S2. Pearson correlation coefficients among the five landscape connectivity variables.
Table S3. Posterior mean estimates, standard deviation, and quantiles of Bayesian nonspatial and spatial INLA models.
Table S4. Results of model selection on linear mixed effect models testing for associations between the frequency of the Pgi-c allele, population age (old
or new), and competing metrics of patch connectivity (Si) for the year 2011.
Table S5. Results of model selection on linear mixed effect models testing for associations between the frequency of the Pgi-c allele, population age (old
or new), and competing metrics of patch connectivity (Si) for the year 2012. Only the top 15 models are shown.
Table S6. Genomic inflation factors of for each value of k and each predictor tested in latent factor mixed models.
Table S7. Results of model selection on linear mixed effect models testing for associations between population genetic differentiation (Fst), population
age (old or new), and competing metrics of patch connectivity (Si) for the year 2011.
Table S8. Results of model selection on linear mixed effect models testing for associations between population genetic differentiation (Fst), population
age (old or new), and competing metrics of patch connectivity (Si) for the year 2011 with a singly outlier with a high Fst value removed. Only the top 15
models are shown.
Table S9. Results of model selection on linear mixed effect models testing for associations between population genetic differentiation (Fst), population
age (old or new), and competing metrics of patch connectivity (Si) for the year 2012.
Appendix A – Supplementary methods and results
Appendix B: Information about the 5 candidate and 40 neutral SNPs used.
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