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Abstract

Linking human behavior to environmental quality is critical for effective natural resource

management. While it is commonly assumed that environmental conditions partially explain

variation in visitation to coastal recreation areas across space and time, scarce and incon-

sistent visitation observations challenge our ability to reveal these connections. With the

ubiquity of mobile phone usage, novel sources of digitally derived data are increasingly

available at a massive scale. Applications of mobile phone locational data have been effec-

tive in research on urban-centric human mobility and transportation, but little work has been

conducted on understanding behavioral patterns surrounding dynamic natural resources.

We present an application of cell phone locational data to estimate the effects of beach clo-

sures, based on measured bacteria threshold exceedances, on visitation to coastal access

points. Our results indicate that beach closures on Cape Cod, MA, USA have a significant

negative effect on visitation at those beaches with closures, while closures at a sample of

coastal access points elsewhere in New England have no detected impact on visitation. Our

findings represent geographic mobility patterns for over 7 million unique coastal visits and

suggest that closures resulted in approximately 1,800 (0.026%) displaced visits for Cape

Cod during the summer season of 2017. We demonstrate the potential for human-mobility

data derived from mobile phones to reveal the scale of use and behavior in response to

changes in dynamic natural resources. Potential future applications of passively collected

geocoded data to human-environmental systems are vast.

Introduction

Environmental degradation is increasingly recognized as having harmful social and economic

consequences. Capturing the mode and magnitude of these consequences relies on measure-

ment of human behavior, but the methods of measurement have constrained the ability to

reveal the impacts of environmental quality [1, 2]. Environmental characteristics like aesthetics
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and weather are commonly associated with influencing the demand for coastal recreation;

however, the spatial heterogeneity of water resources combined with the lack of visitor counts

for coastal access points makes the quantification of visitor behavior especially challenging for

this setting [3, 4].

Degraded coastal water quality is a pervasive issue and an important factor in the availabil-

ity and quality of coastal visits. To protect water quality for swimming purposes, coastal recrea-

tion waters in the United States are monitored seasonally for bacterial contamination and

subsequently closed to swimming when levels surpass established thresholds. It has been dem-

onstrated that closures can lead to economic and social losses for coastal communities [5–8]

and that coastal recreation is sensitive to physical characteristics and changes in climactic con-

ditions [3, 9]. However, few studies have empirically demonstrated the impacts of environ-

mental quality on recreational activity at high spatiotemporal resolution across an entire

region. This is largely because of the lack of large-scale, consistent, and ongoing visitation data

collections. While effective, visual counts and surveys can be time-consuming and expensive,

leading to work that is necessarily constrained across space and time and limited in reproduc-

ibility [10–12].

Passively collected geocoded data derived from cell phones provide the digital footprints of

human activity. Using this form of data to study the spatiotemporal dynamics of human

mobility has garnered considerable attention in recent years and is promising as a measure-

ment instrument to assess the distribution of populations in space and time [10, 11, 13–16].

Cell data from a single service provider can quickly accumulate the activities of millions of

people, especially in densely populated urban areas [17]. Newer forms of cell data are increas-

ingly robust, as most cell phones contain GPS units that track locational data far more fre-

quently than calls and texts are performed. This means that location data, in the form of

latitude and longitude, are generated each time a device interacts with a network, which hap-

pens when a device connects to WiFi, GPS, Bluetooth, and mobile applications, in addition to

calls or texts. Given the near universal adoption of mobile phones, cell data presents a compel-

ling data source for investigating and understanding human mobility at a global scale, with

much potential for understanding human interaction with natural resources [14, 18–20].

Cell data has been extensively used to analyze transportation infrastructure and commuting

patterns [10, 11], human mobility [14, 16, 21–24], transportation mode inference [25], and

tourism dynamics and human behavior during special events [26–28]. Only a few studies have

used cell data to understand human interaction with natural resources. Yu et al. [29] and

Nyhan et al. [30–32] conducted some of the few examples of this type of study, using cell data

to estimate exposure to ambient air pollution in urban areas. AirSage, in partnership with the

U.S. Forest Service and National Park Service, piloted a project to assess monthly visitation to

national forests and national parks using AirSage’s proprietary data [33]. Merrill et al. [13],

Kubo et al. [34], and Monz et al. [35] provided the first uses of cell data to quantify visitation to

natural areas across entire regions and for extensive timeframes. While these projects demon-

strate the growing use of cell data for understanding general human mobility trends, there has

yet to be research which employs cell data to analyze variations in human mobility patterns in

response to changes in the quality of coastal resources. To date, no research has used cell data

to investigate behavioral responses to water quality changes.

This paper presents an application of human-mobility data derived from mobile phone

locations (hereafter referred to as cell data) to estimate the effects of beach closures bacteria

exceedances on visitation to 565 coastal recreation areas in New England, USA, 465 of which

are on Cape Cod, MA. Merrill et al. [13] demonstrated the viability of cell data to provide

extensive and detailed visitation data to natural areas, showing how the data can replicate visi-

tation estimates produced by observational counts, but with a much higher spatial and

PLOS ONE Water quality and coastal visitation on Cape Cod, MA, USA

PLOS ONE | https://doi.org/10.1371/journal.pone.0263649 April 27, 2022 2 / 16

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0263649


temporal resolution and larger geographic extent. Using a dataset derived from cell phone

location data which estimates visitation to 565 coastal recreation areas in New England across

the summer season of 2017 (June-September), combined with EPA data on beach closures

from bacterial contamination, this paper estimates visitation totals and the behavioral impacts

of closures for coastal recreation areas on Cape Cod, MA, USA, as well as across New England.

Our work demonstrates the potential for cell data to reveal behavioral patterns in response to a

dynamic natural resource.

Materials and methods

Study area

Cape Cod is a peninsular land mass that protrudes into the Atlantic Ocean from Massachu-

setts’ southeastern shoreline. The coastline is roughly 560 miles long and contains a range of

water recreation areas from marine bathing beaches to estuarine waterways and inland ponds.

These water recreation areas on Cape Cod are major attractions and provide significant eco-

system services for both visitors and residents alike [36]. The nature of water recreation in

New England creates an element of significant seasonality; visitors flood to Cape Cod in the

summer months, driving high rates of second-home ownership and residential dependence on

a tourism-based economy. In 2015, the Cape Cod Commission estimated that roughly 5 mil-

lion people visited Cape Cod, more than half of which were sometime between Memorial Day

and Labor Day [37]. Given the significance of Cape Cod’s water resources to both its seasonal

visitors and permanent residents, beach closures from bacterial contamination are a primary

concern for local and state environmental managers. While our research is primarily focused

on Cape Cod, we include an additional analysis on a smaller sample of coastal recreation areas

across the New England states of Maine, New Hampshire, Massachusetts, Rhode Island, and

Connecticut. The purpose of this additional analysis was to test how generalizable our results

from Cape Cod were across a more diverse range of coastal recreation areas.

Data

Cell phone data. We purchased cell data to estimate visitation for a comprehensive set of

465 public coastal access points on Cape Cod (Fig 1) during the summer season of 2017 (June,

July, August, and September). Our sample of 465 coastal access points on Cape Cod represents

all public ways to water which includes monitored and unmonitored freshwater and saltwater

recreation areas. These recreation areas vary in type from small inland ponds to large coastal

bathing beaches. Monitored recreation areas refer to coastal access points that were routinely

(often weekly) examined for bacterial contamination by beach managers, municipalities, or

state departments of health. We selected this complete set of public access points to maximize

the opportunity for understanding variations in visitation within a socially and economically

significant region with water quality concerns and to have comprehensive information for an

entire region. Additionally, we purchased data for a set of 100 coastal access points with water

quality monitoring histories in the New England states of Maine, New Hampshire, Massachu-

setts, Rhode Island, and Connecticut. The sample across New England’s coastal states are a

mix of saltwater beaches and public access points to saltwater areas that vary in size, type, rec-

reational attributes, and water quality histories.

We purchased data from Airsage, Inc. Airsage is one of many companies that sells a range

of data products derived from raw cell phone locations, which are collected by cellular service

providers and application developers. The specific product provided to EPA by Airsage was

developed using GPS locational information captured by smartphone applications. This data is

then anonymized, cleaned, and packaged using proprietary methods to transform the raw cell
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data generated by smartphone application-level GPS information into anonymized estimates

of visitation, which we aggregated into daily totals.

Through a comparison to a series of observational counts, Merrill et al. [13] determined

that the cell data provided by Airsage overestimates the quantity of visitation to the specified

geographic areas, especially when aiming to quantify visits that are uniquely recreational.

Monz et al. [35] found that calibration of raw cell data was important for park areas in Califor-

nia, as Merrill et al. [13] did for water recreation areas in New England. The Airsage product

used in this study was calibrated to observational visitation counts following the process

described in Merrill et al. [13] to create daily visitation estimates to all coastal access areas for

the duration of the study. Across the entire 2017 summer season, there were 7.5 million dis-

tinct visits to the 465 sampled coastal access points on Cape Cod (Fig 2), and 4.3 million visits

to the sampled set of 100 coastal access points across New England.

Beach closure data. In the United States, non-point source pollution is the most common

cause of contaminated water [38]. The specific causes of impairments vary based on location

and waterbody type, but most coastal impairment listings are the result of pathogens, specifi-

cally bacterial contamination [39]. Bacterial contamination is typically from fecal sources, both

Fig 1. The comprehensive set of sampled water recreation areas on Cape Cod, Massachusetts. This includes all public ways to water, from inland freshwater

ponds, to estuarine inlets, to large marine swimming beaches. Many of the coastal marine beaches are monitored for bacterial contamination, while freshwater

ponds are unmonitored. Closed beaches refer to any beach that was closed, even once, during the summer in 2017. Base map and data from OpenStreetMap

and OpenStreetMap Foundation.

https://doi.org/10.1371/journal.pone.0263649.g001

PLOS ONE Water quality and coastal visitation on Cape Cod, MA, USA

PLOS ONE | https://doi.org/10.1371/journal.pone.0263649 April 27, 2022 4 / 16

https://doi.org/10.1371/journal.pone.0263649.g001
https://doi.org/10.1371/journal.pone.0263649


point and non-point. The pathways through which these organisms travel are often sewage

(leaking sewer pipes, combined sewer overflows, leaching septic systems, etc.), stormwater

runoff, or human and animal waste discharged directly into the water. The bacterial pathogens

that cause contaminated waters are directly linked to waterborne illnesses that are harmful to

humans (such as gastrointestinal illness or respiratory illness) [39]. Given the risk posed to

humans who are exposed to these pathogens, federal and state regulations require many

coastal recreation areas (mainly popular state saltwater bathing beaches and select freshwater

ponds) to be monitored for potential contamination.

The EPA’s Beaches Environmental Assessment and Coastal Health (BEACH) Act of 2000

provides states with funding (through BEACH Act grants) to monitor their waterbodies for

impairment [40]. The EPA is tasked with providing the data resulting from the states’ monitor-

ing efforts to the public. To do this, the EPA developed the Beach Advisory and Closing Online

Notification (BEACON) system as a publicly accessible database [41] that aggregates states’

beach monitoring data to a national scale. This resource provided the dataset that details 2017

beach closures in New England for our analysis. Beach closure data is readily available and rea-

sonably consistent at a national scale, whereas other water quality measures are not.

On Cape Cod there were 173 water recreation areas monitored for bacterial contamination

in 2017. Across the summer season, there were eight closure events at eight (5%) recreation

areas resulting in 20 closure days. There were over 800 coastal access points monitored for bac-

terial contamination across New England in 2017, 251 (nearly 30%) of which were locations

that either closed or posted advisories due to water quality testing results surpassing bacterial

thresholds. The closures at these 251 locations resulted in 713 closure or advisory days across

New England. Further detail on closures across New England is described in the supplemen-

tary information.

Fig 2. Total visits to the 465 coastal access points on Cape Cod in 2017.

https://doi.org/10.1371/journal.pone.0263649.g002
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Weather data. Our model also included a single set of weather parameters collected by

the National Oceanic and Atmospheric Administration (NOAA) at the Hyannis, Barnstable

Municipal-Boardman Airport weather station which is located centrally on Cape Cod and rep-

resentative of the weather conditions across our sample locations. NOAA provides daily sum-

maries of precipitation, windspeed, and temperature, which we accessed and downloaded

through NOAA’s online weather data download portal [42].

Model. To understand how closures due to impaired water quality affect visits to New

England coastal recreation areas, we developed a model that explains the variation in daily visi-

tation to our set of 565 New England coastal access points. Once a representative model was

established, we could then interrogate what effect, if any, closures have on visitation to these

coastal access points. The closure dataset was incorporated into the behavioral model to deter-

mine if closures were significant in explaining the daily variation in visitation across the 2017

summer season conditional on other factors influencing visitation.

The unique size and structure of the visitation data, which includes 51,511 daily visitation

estimates, allowed us to apply a panel regression model to understand which factors explain

coastal visitation. Taking advantage of the panel structure of our data (location of interest x

days), we created a fixed effects regression model to estimate daily visitation as a function of a

set of explanatory variables and a coastal access point specific constant:

Yit ¼ ai þ βWWt þ βMMt þ βDDt þ βHHt þ bCCit þ eit

where,

Yit—visits to coastal access point i on day t derived from cell data

αi—intercept for each coastal access point i
βWWt—vector product of coefficients βW and daily weather conditions Wt (temperature,

precipitation, and rainy-day dummy variable)

βMMt—vector product coefficients βM and month dummy variables Mt

βDDt—vector product of coefficients βD and day of the week dummy variables Dt

βHHt—vector product of coefficients βH and dummy variables for weekends (including

holiday weekends) Ht

βCCit—product of coefficient βC and dummy variable for each day t a beach i had a closure

posted Cit

eit—within beach error term

A fixed effect specification controls for any non-time-varying attributes of the coastal recre-

ation areas and points of interest, such as site size, facilities and any other non-varying envi-

ronmental and site quality features [43]. While the specification controls for these factors in

estimating the other marginal effects of interest, it did not allow us to distinguish the individ-

ual effect of these non-time varying factors on visitation. Our water quality attribute of interest

varied over time, as a time series of open or closed statuses for each coastal access point.

We specified different functional forms of the model: linear, log-linear and log-log. We

inferred that all the covariates, such as weather or day of the week, would not explain visitation

linearly across differently sized or types of locations, meaning the effect of changes in covari-

ates were not additive but more likely multiplicative. Based on this logic and the structure of

the errors post estimation, we chose a log-linear regression model, which fit the data best. A

percent change in visitation (Y) resulting from a change in one of the explanatory variables,

holding all others constant, was calculated as 100 • (ebi � 1). Therefore, the effect can be inter-

preted as the percent fewer people visiting the access point that day than would have been visit-

ing with no closure.
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We ran the regression described above for the set of coastal access points on Cape Cod

(n = 465) [45]. In addition, considering the diverse physical and spatial characteristics of the

access points in our sample, we elected to stratify the sample into categories (Fig 3) to test two

hypotheses: 1. assuming variation in physical and spatial characteristics drives differences in

visitor type (and therefore recreational use type), our model would likely explain visitation dif-

ferently for various categories of water recreation areas; and 2. given the variation in visitation

type, we would also expect to capture closures’ effect differently for these categories. So, in

addition to running the regression on the sample set for Cape Cod, we also ran the regression

on spatially large access points on Cape Cod (3rd quartile area m2, n = 185) and on only access

points monitored by the Barnstable County Department of Health and Environment for bath-

ing beach quality (bacteria) on Cape Cod (n = 174). Lastly, to investigate how generalizable the

results are to access points across New England we also ran the regression on a set of 100 water

recreation areas across New England (i.e., off-Cape access points).

Results

Results from our models can be seen in Table 1 and in the expanded results in the supplemen-

tary information. Our initial regression included the entire set of 465 access points on Cape

Fig 3. The four groupings of access points by category. We ran regressions on each set of coastal access points consisting of (clockwise from top left)

all Cape Cod access points (n = 465), all large Cape Cod access points (3rd quartile area m2, n = 185), all off-Cape access points, and all monitored Cape

access points (n = 174). Access points with closures in 2017 are indicated in red. Base map and data from OpenStreetMap and OpenStreetMap

Foundation.

https://doi.org/10.1371/journal.pone.0263649.g003
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Cod across the summer season of 2017. Daily precipitation and temperature had a substantial

effect on visitation, with one centimeter of precipitation reducing estimated visitation by 24

percent and an increase in one-degree centigrade resulting in an 8 percent increase. Daily aver-

age wind speed (wind), and dummies for months and days of the week were also significant in

affecting visitation.

When executing the regression for all Cape Cod access points, spatially large access points

on Cape Cod, and monitored access points on Cape Cod, the closure variable was negative and

significant (p<0.01). According to our model, a closure at any Cape Cod access point would

reduce visitation to that location by 18 percent for that day, while a closure at a large access

Table 1. Fixed effect regressions for beach closures.

Dependent variable: Log of visits

All Cape Access Points Big Cape Access Points Monitored Cape Access Points Off Cape Access Points

Temperature 0.080��� 0.100��� 0.097��� 0.090���

(0.001) (0.002) (0.001) (0.002)

Wind 0.004��� -0.003 -0.001 0.005�

(0.001) (0.002) (0.002) (0.002)

Precipitation -0.217��� -0.274��� -0.112��� -0.100���

(0.010) (0.020) (0.003) (0.004)

June -0.217��� -0.274��� -0.263��� -0.167���

(0.010) (0.020) (0.016) (0.021)

July -0.140��� -0.145��� -0.120��� -0.089���

(0.011) (0.023) (0.019) (0.024)

August -0.226��� -0.238��� -0.230��� -0.192���

(0.011) (0.023) (0.018) (0.023)

Tuesday -0.034��� -0.062��� -0.068��� -0.032�

(0.009) (0.018) (0.014) (0.019)

Wednesday 0.074��� 0.170��� 0.105��� 0.116���

(0.010) (0.020) (0.016) (0.021)

Thursday 0.042��� 0.028� -0.003 0.018

(0.009) (0.017) (0.014) (0.018)

Friday 0.095��� 0.103��� 0.102��� 0.131���

(0.009) (0.018) (0.014) (0.019)

Saturday 0.263��� 0.273��� 0.278��� 0.263���

(0.010) (0.020) (0.016) (0.020)

Sunday 0.316��� 0.415��� 0.386��� 0.447���

(0.009) (0.018) (0.014) (0.019)

Closed -0.164
��

-0.253
��

-0.180
��

0.015

(0.074) (0.100) (0.083) (0.027)

Observations 29,141 8,565 13,360 8,196

R2 0.49 0.55 0.533 0.510

Adjusted R2 0.478 0.538 0.526 0.503

F Statistic 1,179.208��� (df = 23; 28701) 439.217��� (df = 23; 8437) 653.605��� (df = 23; 13164) 365.458��� (df = 23; 8073)

�p<0.1

��p<0.05

���p<0.01.

Note: Regressions include fixed effects for each beach. The effect of beach closures is significant for the Cape beaches and more-so for larger beaches over 56,926 m2 in

size. Each fixed effect regression contains lags of visitation for 10 days to correct for serial correlation in the error term.

https://doi.org/10.1371/journal.pone.0263649.t001
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point on Cape Cod would reduce visitation by 29 percent, and a closure at any monitored

access point would reduce visits by 20 percent. In 2017, there were eight coastal access points

that had closures from bacterial contamination resulting in 20 days closed to water-based

activities. This resulted in approximately 1,800 lost visits for these access points across 20 clo-

sure days in the season, shown as the lighter shaded area below the dotted line in Fig 4.

Closure events vary in duration and geographic effect. Looking at individual beaches illumi-

nates the varying effects of closures. Certain events, like the closure at Dyer Street Beach (Fig

5), closed the recreation area for four days, but the closure was isolated to the single beach.

Other closure events were minimal in duration, like the event on July 26 and 27, 2017, but

affect groups of access points as opposed to isolated locations likely due to regionally high rain-

fall and runoff events (Fig 6).

Despite the closures being significant and negative for coastal access points on Cape Cod,

this result did not generalize to our sample of 100 coastal access points across New England.

While there is certainly room to improve upon our model of visitation to more accurately esti-

mate the variation in visitation at each beach, there are several other reasons why effects of clo-

sures may not have been detected when running the regression on that set of 100 coastal access

points across New England. The beaches where we detected the effect of a closure historically

close less frequently (0.4 days per year on average in the last five years for monitored beaches

on Cape Cod). Locations that had closures in 2017 where closures were not detected as a signif-

icant driver of variation in visitation on average close more often (3.3 days per year on average

in the last five years for the set of 100 coastal recreation areas across New England). Certain

Fig 4. Total visits to Cape Cod access points with at least 1 closure in 2017. Red areas beneath the line represent date ranges that have at least one closed

beach. We project the total visits if there was not a closure in light red, but the difference is quite small except for the closure in late July.

https://doi.org/10.1371/journal.pone.0263649.g004
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locations like Wollaston Beach, MA, had five-year closure averages surpassing 30 days annu-

ally. We hypothesize that for beaches where closures were detected as significant, the closure

was a rarity and resulted in more disruption of assumed quality and water-based activities. For

beaches where closures were more frequent, a closure might not have affected the plans of

those individuals visiting because the intended activities were not water-based or did not

involve direct water contact. Furthermore, those visiting beaches with historically frequent clo-

sures may have been aware of that beach’s closure reputation and planned their water-contact

accordingly. In general, coastal recreation activities on Cape Cod may be more water contact

based, where coastal recreation across greater New England may favor activities with little

direct water contact. It is difficult to prove this using cell data alone, as there is no straightfor-

ward way to stratify visits by activity type. Regardless, these findings point to the limits of

using a single general scale of an impact of a beach closure, out of sample, for places where we

do not have visitation or recreational behavior information. The use of cell phone locational

data allows for vastly more beach-specific visitation data in many more places, limiting the

need for applying mean effects from different studies, regions, or beaches.

Another critical driver of our ability to detect the impact of water quality on visitation is the

closure dataset itself. While the dataset provides a crucial indicator of water quality at a

national scale, the nuances of beach closures vary at the regional, state, and municipal levels.

Certain states (like Maine, New Hampshire, and Rhode Island) post “advisories” that are sug-

gestions to beach-goers to avoid contact with water. These states’ laws contain provisions

where beach postings are the responsibility of local jurisdictions [44, 45]. Other states (such as

Fig 5. Visits to Dyer Street beach in 2017. Red area beneath the line shows the range of dates when the beach was closed. We project the total visits if there

was not a closure (i.e., lost visits) in light red below the dotted line.

https://doi.org/10.1371/journal.pone.0263649.g005
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Massachusetts) have it written into law that swimming or bathing are prohibited when water

quality does not meet requirements [46]. In New Hampshire and Maine, local beach managers

and boards of health retain the right to keep a beach open or state a beach is closed using their

own discretion [45, 47]. Across New England, beach closures and swimming advisories do not

prohibit the use of a beach for land-based activities (walking, sports, etc.) [48]. Additionally,

the methods of sampling and testing water quality often take at minimum 24 hours to process,

creating a potential delay between the beach closure and the quality event.

The aggregation of this ambiguity in the mechanisms employed to measure, close a given

beach, and communicate that closure to the public create practical challenges to using beach

closures as a proxy for water quality. For example, the impact being measured in this paper is

the impact of the whole chain of events from sample to implementation of the policy threshold

to communication with the public, through to the closure announcement, signage, and

enforcement. The effects being measured in this paper may be distinct from the impact of

water quality alone in absence of a closure management system built around it. Other mea-

sures of coastal water quality exist (dissolved oxygen, chlorophyll a, Secchi depth, etc.) but they

are not collected comprehensively near the recreational areas of interest at a fine time resolu-

tion and are not often communicated and shared with the public. These other metrics may

also have less of a direct impact on people’s day to day decisions around beach water quality

than bacteria conditions, given the health implications.

One of the benefits of using more comprehensive datasets of visitation to water recreation

areas, as in this study, is quantifying the total use and the number trips protected by town,

Fig 6. Seasonal total visits to 333 Commercial Beach, Atlantic Avenue Beach, Ryder Street Beach, and 593 Commercial Street Beach. Highlighted in red is

the July 26 and 27 closure that impacted all four of these beaches. These four simultaneous closure events resulted in the most displaced visits in 2017 of all

closure events and were likely directly tied to the same specific rain event.

https://doi.org/10.1371/journal.pone.0263649.g006
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regional, and state health departments sampling and closure programs. For Cape Cod, the moni-

toring program was protective of 4.2 million trips in one summer alone. As coastal recreation

continues to grow in its economic influence and cultural value, so should the efficacy of these

methods and the funding that is allocated to the organizations responsible for performing them.

Discussion

This study used cell data to estimate the effects of beach closures from bacteria exceedances on

visitation to coastal access points on Cape Cod and in New England, USA for the summer sea-

son of 2017. Using a model of daily visitation combined with the dataset on bacterial closures,

we were able to detect the impact of closures for coastal access points on Cape Cod. Our find-

ings represent geographic mobility patterns for over 7 million unique visits and suggest that

beach closures resulted in approximately 1,800 displaced visits on Cape Cod beaches during

the summer season of 2017. However, we were unable to detect this effect for our broader New

England sample.

Although there has been significant progress made towards understanding the biological

and physical implications of water quality degradation, capturing both market and non-mar-

ket damages of pollution, especially for water quality degradation, has remained a challenge

for researchers. Linking changes in environmental systems to socioeconomic, behavioral, and

human health outcomes is a crucial step in valuing the benefits of scientific progress and

assessing the damages of environmental degradation [49]. In order to accomplish this, it is

necessary to develop methods that reveal the scale of use and behavior in response to changes

in dynamic natural resources. As coastal recreation is increasingly recognized as a primary

driver of economic activity both across New England and nationally [50], accurate visitation

estimates are crucial in enabling novel research methodologies to advance [12].

Cell data offers a promising tool in approaching and resolving spatiotemporal mobility

problems in the environmental sciences. Whereas the use of cell data for investigating human

interaction with natural resources is still emerging as a body of literature, the last decade has

seen substantial growth in volume and velocity of geographically coded data products [19].

With the growing availability of this type of data, many applications complementary to ours

are appearing within social sciences research, urban planning, and public health [32, 33, 35].

As these data types become more accessible and accurate, so will the ability of researchers to

open new lines of inquiry and derive novel understanding of human-environmental systems.

Despite its promise as an instrument for measuring human behavior around natural resources,

cell data is not a panacea. The utility in a spatiotemporally resolved dataset like that provided by

mobile devices is in its ability to understand a sample population’s behavior. However, it does lit-

tle to help with understanding the motivations behind decision making. While cell data does well

with estimating aggregate daily visitation, this estimate is based on a sample of cell phone users.

Thus, we do not know the specific effect of closures on different demographic groups, or the

implications of the demographics of the cell data sample on this specific measure of the impact of

water quality and beach closures. To understand these nuanced implications, traditional field-

based methods of social science are still required. Evaluated independently, cell data lack nuance

and context, leading to premature and one-size-fits-all assumptions. Instead, employing methods

of research that reveal motivations are more necessary than ever.
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