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In this article, we evaluated the variations of the brain and muscle activations while
subjects are exposed to different perturbations to walking and standing balance.
Since EEG and EMG signals have complex structures, we utilized the complexity-
based analysis. Specifically, we analyzed the fractal dimension and sample entropy
of Electroencephalogram (EEG) and Electromyogram (EMG) signals while subjects
walked and stood, and received different perturbations in the form of pulling and
rotation (via virtual reality). The results showed that the complexity of EEG signals was
higher in walking than standing as the result of different perturbations. However, the
complexity of EMG signals was higher in standing than walking as the result of different
perturbations. Therefore, the alterations in the complexity of EEG and EMG signals
are inversely correlated. This analysis could be extended to investigate simultaneous
variations of rhythmic patterns of other physiological signals while subjects perform
different activities.

Keywords: muscle, brain, EEG signals, EMG signals, complexity, walking, standing, perturbations

INTRODUCTION

Analysis of the alterations in human physiology during different locomotion is very important in
sport sciences. Due to the changes in leg muscle activation, while doing different locomotions,
many works analyzed EMG signals using various techniques (Oliveira et al., 2014; Subbu et al.,
2015; Nazmi et al., 2019; Wang et al., 2019). Besides, since brain activation also changes in
different locomotions, many studies worked on the analysis of EEG signals using various techniques
(Presacco et al., 2011; Maidan et al., 2019; Bodda et al., 2020; Tortora et al., 2020).

Since the human brain controls muscle activations in different conditions, the variations in
muscle and brain activations should be related. Therefore, we hypothesize that the characteristics
of EMG and EEG signals should be correlated.

According to the literature, some studies have focused on simultaneous analysis of EEG and
EMG signals during walking/running. These studies benefited from different techniques (e.g.,
frequency and amplitude analyses) to simultaneously analyze the alterations of EEG and EMG
signals in case of normal subjects (Petersen et al., 2012; Artoni et al., 2017) and patients with
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movements disorders (e.g., Parkinson) (Günther et al., 2019;
Roeder et al., 2020), during different types of locomotion (e.g.,
normal walking, stereotyped walking, and treadmill walking).

Besides all reported works in this area that analyzed brain and
leg muscle reactions while performing different movements, no
work has been reported that considered the complex structure of
these signals for its analysis.

The activation of muscle and brain in the form of EMG and
EEG signals have complex structures (Kumarasinghe et al., 2021;
Soundirarajan et al., 2021). In fact, complexity is a concept to
characterize the behavior of a system that contains many parts
which interacting together in a highly variable way (Steven,
2001). Therefore, we can use the fractal theory to quantify
their complex structures. Fractal objects have self-similar or
self-affine structures that are distributed on every scale inside
them. Self-similar fractals have the same scaling in different
directions. However, self-affine fractals (e.g., EEG and EMG
signals) (Namazi et al., 2021c) are not necessarily identical
in different directions. The scaling rules are characterized by
“scaling exponents” (dimension). The scaling exponent (ℵ) of
fractals is related to their topological dimension (DT) based on
Szpilrajn inequality:

ℵ > DT (1)

Many studies have worked on the fractal analysis of biological
and physiological time series [e.g., MEG signals (Namazi and
Jafari, 2019), R-R time series (Sen and McGill, 2018), GSR signals
(Namazi et al., 2021d), RNA random walks (Namazi et al.,
2021e)]. However, limited studies have been conducted on the
fractal analysis of leg muscle EMG signals while doing various
movements. For instance, the reported studies on the fractal
analysis on EMG signals which evaluated the coupling among the
complexities of leg muscle activations and walking paths (Kamal
et al., 2020), analyzed muscle reaction in patients with Parkinson’s
disease (Ravier et al., 2016), investigated the reaction of vastus
lateralis muscle during exercise routine (Garavito et al., 2016),
and investigated the fatigue in cycling exercises (Beretta-Piccoli
et al., 2018) can be mentioned.

Although the fractal theory has been widely applied in the
analysis of the complexity of EEG signals in different conditions
[e.g., external stimulation (Babini et al., 2020), detection of brain
disorders (Namazi et al., 2020)], however, based on our search,
only one reported work analyzed EEG signals during locomotion
using fractal theory. In (Mujib Kamal et al., 2020), we showed that
the variations of the complexity of EEG signals and walking paths
are correlated. In other words, the complexity of EEG signals
changes greater if a human walks on a path that is more complex.

The complexity of signals also can be quantified using
other methods (e.g., sample entropy and approximate entropy).
Sample entropy quantifies the complexity of time series, and
it is independent of the data length (Namazi, 2020). Since the
recorded signals from various participants were short (0.5–1 s in
different conditions) and had various lengths, sample entropy is
used in this study to validate the fractal analysis results. Several
works quantified the complexity of EMG signals in various
locomotions using sample entropy. For instance, the works that

investigated the effect of walking speed (Namazi, 2021) and aging
(Kang and Dingwell, 2016) on the complexity of leg muscle
reaction, and classified Knee osteoarthritis (KOA) in walking at
a self-paced speed (Chen et al., 2019), can be mentioned.

Although many reported works analyzed the complex
structure of EEG signals in different conditions [e.g., response to
different stimuli (Namazi et al., 2021a), classifying brain disorders
(Simons et al., 2015)] using sample entropy, however, no reported
work evaluated the complexity of EEG signals during walking or
running using sample entropy.

Since no work has analyzed the complexity of EEG and
EMG signals simultaneously during walking/running, we utilized
fractal theory and sample entropy to evaluate the synchronization
of the changes in EEG and EMG signals at different standing and
walking conditions.

MATERIALS AND METHODS

We investigated the variations of brain and leg muscle reactions
in walking and standing while subjects received different
perturbations in the form of pulling and visual rotation. Since
EEG and EMG signals are complex, we ran fractal analysis and
computed their fractal dimension to quantify their complexity.

We used the box-counting algorithm for our analysis (Mat
Dawi et al., 2021). It uses a series of same-size (µ) boxes to
cover the time series. After that, the number of these boxes (n)
is counted. In several steps, the size of these boxes is changed,
and finally, and the fractal dimension (FD) is computed as:

FD = lim
µ→0

logn (µ)

log 1/µ
(2)

FD in the general form is formulated in eq. 3, in which,
e is the order of FD, and pi indicates the probability
(Mat Dawi et al., 2021).

FDe = lim
x→0

1
e−1

log
∑n

i = 1 pe
i

logx
(3)

FIGURE 1 | Schematics of the experiment (Peterson and Ferris, 2019).
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We also chose sample entropy to quantify the complexity of
signals. It is known that the length of data does not affect the value
of the sample entropy (Namazi et al., 2021b). Since the recorded
EMG and EEG signals from different subjects were short (0.5–1
s) and had various lengths, sample entropy helped us verify the
fractal analysis results.

For a time series in the form of {y (1) , y (2) , y (3) , ..., y(n)},
Yz (i) = {yi, yi+1, yi+2, ..., yi+z−1} is defined as a template
vector and the distance function d

[
Yz (i) , Yz

(
j
)]

(i =/ j) is to
be Chebyshev distance. Then, the sample entropy (SamEn) is
formulated as (Delgado-Bonal and Marshak, 2019):

SamEn = − log
D
E

(4)

Considering ε as the tolerance
(0.2 × standard deviation of data), D and E indicate the
number of template vector pairs with the condition in (5)
and (6):

d[Yz+1 (i) , Yz+1
(
j
)
] < ε (5)

d[Yz (i) , Yz
(
j
)
] < ε (6)

We computed the fractal exponent and sample entropy of
EEG and EMG signals to evaluate the simultaneous alterations
of the brain and muscle reactions at different perturbations while
subjects stood and walked.

FIGURE 2 | (A) EEG signals and (B) EMG signals. The filtered EEG and EMG signals and their periodogram PSD estimate.
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FIGURE 3 | The box plots for the fractal dimension of EEG signals in walking and standing while pulling (A) and rotating (B).

FIGURE 4 | The fractal dimension of EEG signals in walking and standing
while pulling (A) and rotating (B). Error bars indicate standard deviation.

Database and Analysis
In this research, we used the open-access database provided by
Peterson & Ferris which is available in Mobile Brain (2021).
Their study has been approved by the University of Michigan

TABLE 1 | Comparison of the fractal dimension of EEG signals between walking
and standing in case of pulling and rotating.

Comparison p-value

Stand pull vs. Walk pull 0.0004

Stand rotate vs. Walk rotate 0.0463

Health Sciences and Behavioral Sciences Institutional Review
Board. All subjects provided written informed consent before
commencing the experiment.

This database includes the simultaneously recorded EEG,
EMG, EOG, and sacrum/head position data for 30 healthy
subjects (15 M, 15 F, 22.5 ± 4.8 years). The lower leg
EMG signals (Vicon, Los Angeles, CA) were recorded at
1000 Hz from four electrodes attached to each leg of subjects
including LTA (left tibialis anterior), LSOL (left soleus), LMG
(left medial gastrocnemius), LPL (left peroneus longus), RTA
(right tibialis anterior), RSOL (right soleus), RMG (right
medial gastrocnemius), and RPL (right peroneus longus). The
approximate locations of EMG electrodes are shown in Figure 1.
The EEG signals (BioSemi Active II, BioSemi, Amsterdam, NL,
United States) were recorded at 512 Hz from 128 channels.

In the experiment, participants walked at 0.22 m/s or stood
on a 2.5 cm tall by 12.7 cm wide balance beam mounted to
a treadmill. Figure 1 shows the schematics of the experiment.
As can be seen in this figure, subjects wore a body-support
harness for safety. Before starting the experiment, subjects
were introduced to the experiment. Subjects were avoided from
looking around and rotating across their body’s longitudinal axis.

Subjects were presented with two types of sensorimotor
perturbations including a side-to-side pull at the waist, and a 20-
degree field-of-view rotation (Figure 1). Two rotational motors
on the sides of subjects were used for the side-to-side pull. As
shown in Figure 1, subjects were pulled using a bar (connected to
subjects through a wire) that was connected to one motor. This
perturbation lasted for 1 s. At the end of perturbation, the motor
rotated back to its starting position. Peterson & Ferris used virtual
reality (VR) headset with an attached webcam to rotate the field of
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FIGURE 5 | The box plots for the fractal exponent of EMG signals in walking and standing while pulling (A) and rotating (B).

FIGURE 6 | The fractal exponent of EMG signals in walking and standing
while pulling (A) and rotating (B). Error bars indicate standard deviation.

view of subjects. In fact, the perturbations included rotating the
view of subjects 20◦ clockwise or counterclockwise through VR
experience. The rotation of view lasted for 0.5 s before the view
returned to its starting position.

Therefore, four conditions were applied on subjects as the
combination of the two perturbation types and two physical tasks.
It should be noted that each condition lasted 10 min, and subjects
experienced 150 perturbations (75 per side, randomized). Please
refer to Peterson and Ferris (2019) for more information
about the experiment.

Peterson and Ferris (2019) synchronized the EMG and EEG
data using a 0.5 Hz square wave. Initially, they downsampled EEG
signals to 256 Hz, and then applied a high-pass filter (1 Hz) to
the data. They also merged the EEG data across all conditions,
referenced to the median channel value for each time point, and
removed 60 Hz line noise. They also applied a 1 Hz high pass
filter to EMG signals. For understanding the full steps for the pre-
processing of signals, please refer to (Peterson and Ferris, 2019).

Figures 2A,B show sample filtered EEG and EMG signals and
their frequency information for a participant. These figures show
10 s of EEG data and 3 s of EMG data for better visibility.

We calculated the fractal dimension and sample entropy of
filtered signals in the case of both legs in various conditions.
The box-counting algorithm was run with the box sizes of
1
2 , 1

4 , 1
8 , 1

16 ,. The smallest box size was chosen in the algorithm
(Box Counting Algorithm, 2021). The length of the template
vector was equal to the embedding dimension (=2). MATLAB
R2020b was chosen for our analysis.

The Anderson-Darling test was chosen for checking the
normality of results. The test’s result indicated the normal
distribution of data. We compared the changes in the complexity
of signals between standing and walking while pulling and
rotating by running the student t-test (α = 0.05).

RESULTS

Figure 3 shows different box plots (with whiskers) for the fractal
exponent of EEG signals in walking and standing while pulling
and rotating. As shown in the case of each plot, the box plot
includes a violin element that indicates the probability density
of the data at different values. Besides, we also added the jitter
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TABLE 2 | Comparison of the fractal exponent of EMG signals between walking
and standing in case of pulling and rotating.

Comparison p-value

Stand pull vs. Walk pull 0.0025

Stand rotate vs. Walk rotate 0.0001

TABLE 3 | Comparison of the sample entropy of EEG signals between walking
and standing in case of pulling and rotating.

Comparison p-value

Stand pull vs. Walk pull 0.0001

Stand rotate vs. Walk rotate 0.4382

elements to each plot to show the distribution of the data. As it is
clear in these plots, only five outliers were identified (in the case
of walk pull and walk rotate) which demonstrates the suitability
of recorded data for inclusion in the analysis.

Besides, the averaged fractal exponent in walking
and standing while pulling and rotating are shown in
Figures 4A,B, respectively.

As Figures 4A,B illustrate, in the case of pulling and rotating,
the fractal exponent of EEG signals has bigger values in walking
than standing. Therefore, we can state that pulling and rotating
of subjects while walking had bigger effects on the changes in
the complexity compared to pulling and rotating while subjects
stand. Since while walking there are more cognitive loads on
subjects, the complexity of their EEG signals increased.

Table 1 lists the results of the student t-test which indicates
the significant alterations in the fractal exponent among walking
and standing conditions in case of pulling and rotating. In other
words, walking caused a significant increase in the complexity of
EEG signals in pulling and rotating. Besides, pulling of subjects
caused a more significant alteration in the complexity of signals
among walking and standing than rotating of them.

Figure 5 shows different box plots (with violin and jitter
elements) for the fractal exponent of EMG signals in walking

and standing while pulling (a) and rotating (b) in the case of
different subjects. As it is clear in these plots, only four outliers
were identified (in the case of stand rotate) which demonstrates
the suitability of recorded data for inclusion in the analysis.

Figures 6A,B, respectively, illustrate the averaged alterations
of the fractal exponent of EMG signals in walking and standing
while pulling (a) and rotating (b).

As Figures 6A,B illustrate, in the case of pulling and rotating,
the fractal exponent of EMG signals has bigger values in
standing than walking. Therefore, we can state that EMG signals
of subjects had lower complexity in walking than standing
while pulling and rotating. Comparing these results with the
presented results in Figures 4A,B indicate reverse trends.
In other words, although the complexity of brain reactions
increases in walking than standing, the complexity of muscle
reaction decreases.

We also compared the alterations in the fractal exponent
among walking and standing (in pulling and rotating) using the
student t-test, and the results are brought in Table 2. As shown
in Table 2, the results indicate significant alterations in the fractal
exponent among walking and standing conditions in the case of
pulling and rotating. In other words, walking caused a significant
decrease in the complexity in pulling and rotating conditions.
Comparing the results in Tables 2, 3 indicates that brain and leg
muscles show significant differences in their reactions between
walking and standing.

As was mentioned previously, we also computed the sample
entropy of EEG and EMG signals to verify the results of fractal
analysis. Figure 7 shows different box plots (with violin and
jitter elements) for the sample entropy of EEG signals in walking
and standing while pulling (a) and rotating (b) in the case of
different subjects. As it is clear in these plots, only six outliers were
identified (in the case of stand pull, walk pull, and walk rotate)
which demonstrates the suitability of recorded data for inclusion
in the analysis.

Figures 8A,B, respectively, illustrate the variations of the
sample entropy of EEG signals in walking and standing while
pulling (a) and rotating (b).

FIGURE 7 | The box plots for the sample entropy of EEG signals in walking and standing while pulling (A) and rotating (B).

Frontiers in Human Neuroscience | www.frontiersin.org 6 October 2021 | Volume 15 | Article 749082

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-749082 October 4, 2021 Time: 16:29 # 7

Pakniyat and Namazi Analysis of Brain and Muscle Reactions

FIGURE 8 | Sample entropy of EEG signals in walking and standing while
pulling (A) and rotating (B). Error bars indicate standard deviation.

As shown in Figures 8A,B, in the case of pulling and rotating,
the entropy of EEG signals has bigger values in walking than
standing. In other words, pulling, and rotating of subjects while
walking caused bigger changes in the complexity compared

to pulling and rotating while subjects stand. Comparing
these results with the presented results in Figure 4 indicates
that the result of analysis of entropy verified the fractal
analysis results.

We also computed the p-values using the student t-test for
comparing the variations in the sample entropy among walking
and standing conditions in case of pulling and rotating. As
brought in Table 3, there is a significant alteration in the sample
entropy among walking and standing while pulling of subjects.
However, the alterations in the entropy among standing and
walking while rotating are not significant. Besides, similar to the
results in Table 1, pulling of subjects caused a more significant
change in the complexity among walking and standing than
rotating of them.

Figure 9 shows different box plots (with violin and jitter
elements) for the sample entropy of EMG signals in walking and
standing while pulling (a) and rotating (b). As it is clear in these
plots, only five outliers were identified (in the case of walk pull
and stand rotate) which demonstrates the suitability of recorded
data for inclusion in the analysis.

Figures 10A,B, respectively, show the variations of the sample
entropy of EMG signals in walking and standing while pulling (a)
and rotating (b).

As Figures 10A,B illustrate, the entropy has bigger values
in standing than walking in the case of pulling and rotating.
Therefore, we can state that EMG signals of subjects had
lower complexity in walking than standing while pulling and
rotating. Comparing these results with the presented results in
Figures 6A,B indicates that the result of entropy verified the
fractal analysis results. Besides, comparing these results with
the presented results in Figures 8A,B indicate reverse trends.
In other words, although the complexity of brain reactions
increases in walking than standing, the complexity of muscle
reaction decreases.

Table 4 compares the entropy of EMG signals among walking
and standing (in pulling and rotating) using the student t-test.
The results demonstrated the significant alterations in the
entropy among walking and standing conditions in case of
pulling and rotating. In other words, similar to the presented

FIGURE 9 | The box plots for the sample entropy of EMG signals in walking and standing while pulling (A) and rotating (B).
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FIGURE 10 | Sample entropy of EMG signals in walking and standing while
pulling (A) and rotating (B). Error bars indicate standard deviation.

TABLE 4 | Comparison of the sample entropy of EMG signals between walking
and standing in case of pulling and rotating.

Comparison p-value

Stand pull vs. Walk pull 0.0001

Stand rotate vs. Walk rotate 0.0001

results in Table 2, walking caused a significant decrease in the
EMG signals’ complexity in both pulling and rotating conditions.

Therefore, EEG signals have greater complexity in walking
than rotating, however, EMG signals are less complex in
walking than rotating.

CONCLUSION AND DISCUSSION

We analyzed the changes in the brain and leg muscle
reactions while subjects walked and stood and received different
perturbations (in the form of pulling and rotation) by
computing the fractal exponent and sample entropy of EEG
and EMG signals.

The results demonstrated that the fractal exponent of EEG
signals had greater values in walking than standing while subjects
received perturbations. However, the result of the analysis of

the fractal exponent of EMG signals showed a reverse trend
compared to the obtained results for EEG signals. The analysis
of the sample entropy of signals demonstrated similar results
with the fractal analysis results. EEG signals have greater sample
entropy in walking than standing whereas, the sample entropy
of EMG signals has greater values in standing than walking. The
result of statistical analysis also supported the obtained results.

Therefore, it can be concluded that the changes in brain and
muscle reactions are inversely correlated. These results indicate
the importance of complexity-based analysis for finding the
connection among brain and muscle activations.

It is known that the brain controls muscle activation through
the physiological network of the human body (Bashan et al.,
2012). When we are standing or walking, the activity of leg
muscles is controlled by the brain through the electrical impulses
to the neuromuscular junction. Accordingly, electrical signals are
converted into chemical signals allowing for muscle contraction.
Therefore, leg muscle and brain activations should be related. The
physiological aspect of the observed reverse correlation in this
research can be investigated more by simultaneously considering
the biological activation of leg muscles and the neural aspect of
the brain’s control on leg muscles.

Here, we should note that the inverse relationship among
the alterations of the complexity of EEG and EMG signals does
not affect the importance of the results. Based on the literature,
some researchers reported an increment in the EMG signals’
complexity in walking than standing (Kamal et al., 2020), whereas
some other works found a decrement in the complexity of
EMG signals as the walking speed increases (Namazi, 2021).
Besides, the observed increment in the EEG signals’ complexity in
walking is valid according to the provided results in Mujib Kamal
et al. (2020). The main important point about these findings
is that both fractal theory and sample entropy showed similar
results. The findings of this study may challenge the conclusions
drawn from other studies (Tao et al., 2015; Flood et al., 2019)
that were based on choosing only one technique to quantify
the complexity of EEG and EMG signals during walking or
other activities.

The obtained results in this study have direct benefits
in sport/physiological sciences, when we can link muscle
activations to motor control and therefore, understand how
the brain controls muscle’s activations in various movements in
different sports.

We can extend our analyses to other conditions (e.g., walking
at various speeds and inclines) to decode the correlation of
the EEG-EMG signals in those conditions. Similarly, we can
conduct our investigations for patients with various brain [e.g.,
Parkinson’s (Cantello et al., 1995)] and/or movement [e.g., motor
stereotypies (Houdayer et al., 2014)] disorders to decode the
EEG-EMG signals correlation.

The reported investigation in this study can be extended to
evaluate the changes in human physiology while doing standing
and walking (or any other movements) and receiving different
perturbations. For this purpose, we can apply the complexity-
based analysis on the related physiological signals. For instance,
since walking affects our respiration rate, we can simultaneously
analyze the variations of respiration time series and EEG signals
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at different perturbations. Since various organs are working
together within the physiological network (Bashan et al., 2012)
and are controlled by the brain, a correlation should exist among
their related physiological signals. All these analyses are very
important in physiological sciences.
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