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Abstract: The prevalence of cardiovascular disease, oxidative stress-related complications, and
chronic age-related illnesses is gradually increasing worldwide. Several causes include the ineffec-
tiveness of medicinal treatment therapies, their toxicity, their inability to provide radical solutions in
some diseases, and the necessity of multiple drug therapy in certain chronic diseases. It is therefore
necessary for alternative treatment methods to be sought. In this review, polyphenols were identified
and classified according to their chemical structure, and the sources of these polyphenol molecules are
indicated. The cardioprotective, ROS scavenging, anti-aging, anticancer properties of polyphenolic
compounds have been demonstrated by the results of many studies, and these natural antioxidant
molecules are potential alternative therapeutic agents.

Keywords: oxidative stress; cardioprotective; atherosclerosis; reactive oxygen species; anti-aging

1. Introduction

The emphasis on healthy diets and mindful eating patterns is gaining more impor-
tance among society. Until recently, concepts such as the Mediterranean-style diet, wine
consumption habits, and dietary habits such as olive oil consumption were emphasized.
Now, the word nutraceutical has begun to be added to these concepts. Nutraceuticals are
natural substances such as vitamins, polyphenols, fiber, keratinoid, prebiotics, fatty acids,
and bioactive peptides [1]. It is possible for these substances, which are defined as func-
tional foods, to be included in foods. Polyphenols in this group, which are the secondary
metabolites of plants, are found in high quantities in beverages such as tea, wine, grape
juice, as well as in various fruits and vegetables [2,3]. Vegetable sources containing high
levels of polyphenols include grape (Vitis vinifera) and red wine, mulberry (Morus rubra),
peanut (Arachis hypogaea), and onion [4–6]. In addition, red pepper, eggplant, soybean,
pear, garlic, carrot, and Ziziphus fruits are other foods that contain a significant amount of
polyphenolic compounds [7–9]. Apart from plants, marine algae have been identified as
important bioactive natural resources containing polyphenols, especially catechins, tannins
and flavanol glycosides [10].

Environmental factors such as daylight, soil type, precipitation, and agricultural
conditions have a major impact on the polyphenol content of natural products. For example,
the biosynthesis of flavonoids as one of the most familiar members of polyphenols, is
stimulated by light, and these polyphenols accumulate at different rates between the
aerial tissues and other parts of the plants, even among fruits of the same tree [11,12].
In the extraction of plant-based polyphenols, methods such as maceration (by adding
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cold water to the plant and keeping it at room temperature for a period of a few hours
to few days), percolation (passing the substances in the plants to the solvent by passing
through a column), reflux, use of Soxhlet apparatus and boiling have been commonly
used [13]. Depending on the employed methods, e.g., Soxhlet extraction, they may require
the use of different solvents and/or high amounts of organic solvents, and therefore, the
selectivity may be different for one polyphenolic component and may be high for other
polyphenolic components. Therefore, novel extraction methods that are specific for certain
polyphenolic need to be developed. Recently, supercritical fluid extraction, enzyme-assisted
extraction, solid-phase extraction, or combinations of these similar techniques can afford
some advantages [14].

Polyphenolic compounds can be in monomer, oligomer and polymer forms, or colored
or colorless depending on pH. Although aglycone forms are not stable, polyphenolic
compounds in plants are resistant to light, pH, or other conditions that can degrade them,
due to glycosylation [7].

These natural substances have antioxidant, anti-inflammatory, anticancer, and antidia-
betic properties and protective effects on cardiovascular and nervous system health [15,16].
It is thought that the consumption of foods containing polyphenolic components with a
wide variety of protective and healing properties provides an alternative area that can be
used for therapeutic purposes in many cases, including chronic diseases [17,18].

It is known that polyphenolics are closely related to the intestinal microbiota, which
plays a major role in maintaining the healthy state of individuals or preventing diseases
before they occur. Polyphenols can modulate the composition of the intestinal microbiota,
thus affecting their own metabolism and bioavailability [19].

In this review, polyphenols are classified into four main groups according to their
chemical structures. The mechanisms through which phenolic compounds act in chronic
and acute diseases and the general pathology of cardiovascular disorders are explained.
After the pathological processes are stated, the effects of polyphenols in each group are
explained with various examples.

2. Classification of Polyphenols

Polyphenols are a well-known group of phenolic systems characterized by at least
two phenyl rings and one or more hydroxyl substituents [20]. Polyphenols can be found in
all organs of plants. It is generally believed that flavonoids have weak resistance to diverse
environmental stresses (heat, light, and oxidation). Polyphenols synthesized by plants
can be simply divided into flavonoids and non-flavonoids. Polyphenols can be classified
according to their chemical structure, whether they contain sugar or not, or by whether they
are hydrolyzed or condensed. The sugar in polyphenol stabilizes the aglycone, increases
its water solubility, and enhances its bioavailability and biocompatibility [21]. They can
even be classified according to their resolution. Moreover, it can be classified based on its
solubility or origin, for example, based on the plant or mammals that provide it [22]. As
shown in Figure 1, polyphenols fall into four groups based on their chemical structure:
phenolic acids, flavonoids, stilbenes, and lignans.
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Figure 1. Schematic presentation of classification of polyphenols.

2.1. Phenolic Acids

Phenolic acids contain an aromatic benzene ring and a carboxylic acid group as
shown in Figure 1. Gallic acid, chlorogenic acid and coumaric acid are the most known
and widely used phenolic acids. They provide organoleptic properties to foods [23].
Fruits, vegetables, and beverages are good sources of phenolic acid. Adding vegetables to
people’s diet as a significant source of phenolic acids will probably bring about significant
health benefits. [23]. Phenolic acids are of interest to pharmacologists as well as food
engineers. They are recognized as components of nutraceutical products and are gaining
more and more attention every day. They are divided into two types as hydroxybenzoic
acid derivatives and hydroxycinnamic acid derivatives. Red fruits, onions, and black radish
generally contain hydroxybenzoic acids [24]. Gallic acid, protocatechuic acid, syringic acid,
and ellagic acid are examples of hydroxybenzoic acid derivatives.

Gallic acid (GA), 3,4,5-trihydroxy benzoic acid, is widely used as a reference substance
in antioxidant tests [25,26]. GA is also a natural compound, and many fruits, nuts, and flow-
ers (especially green tea and red wine) contain abundant amounts of GA [15]. GA has also
been reported for its antioxidant, anticancer, neuroprotective capacity, anti-inflammatory
properties, cardiovascular protective, hepatoprotective and gastroprotective activities [27].
GA has also been studied for anticancer properties [28] and for an antidiabetic effect [29].
Tannic acid is the most widely researched hydroxybenzoic acid. It is abundant in acorn
and is inexpensive. Tannic acid hydrolyzes in acidic residue to form 10 molecules of gallic
acid [30]. Due to its antimicrobial, antioxidant, anticancer properties, it is examined in
biomedical materials [30]. In wound dressing materials, tannic acid is used as a coagulant
because of its ability to clot blood [31].

Ferulic acid, caffeic acid, chlorogenic acid, sinapic acid, rosmarinic acid, isoferulic acid,
and coumaric acid are included in the hydroxycinnamic acid subgroup. Prune and coffee
are the source of phenolic acids.

Rosmarinic acid (RA) is an example hydroxycinnamic acid. It is a known for its antiox-
idant and antidiabetic properties and is found in many plants including mint, rosemary,
and basil [32]. There many research reports that detail the use of RA as a biomedical
compound for treatment of organ injuries and in ocular delivery [33]. For type 2 diabetes
mellitus, it has an effect on reducing the amount of glucose in the blood, as it inhibits the
work of α-glucosidase and α-amylase enzymes that are involved in the breakdown of dis-
accharides [34]. RA also fights the complications of diabetes resulting in progressive organ
damage via its anti-inflammatory and antioxidant activities [33]. The chemical structures
and some of the subgroups of polyphenols are given in Table 1.
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Table 1. Chemical structure of polyphenols and some examples of subgroups of polyphenols.
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2.2. Flavonoids

The 15-carbon skeleton is the structural basis of polyphenolic compounds called
flavonoids [35]. Rutin, quercetin, naringin, myricetin, catechin hesperidin, naringenin,
isosakuratenin, and heridictyol are the other examples of flavonoids [36].

Naringin (NR) is the form of naringenin that is substituted with two glucose moi-
eties [21], and the chemical structure is given in Figure 1. The sugar serves to stabilize
the aglyocone, increasing the biocompatibility [21]. NR is abundant in grapefruit and is
one of the components that gives grapefruit a bitter taste. NR exhibits antioxidant, anti-
inflammatory, anti-apoptotic, anticancer, antimutagenic, and redox protective properties. It
also reduces cholesterol levels, relieves neurodegenerative disorders, improves patients
with diabetes mellitus, reduces osteoporosis, and alleviates rheumatoid arthritis [37].

Myricetin, 3,5,7-Trihydroxy-2-(3,4,5-trihydroxyphenyl)-4H-chromen-4-one is a flavonol.
It is found in vegetables such as tomatoes, fruits such as oranges, nuts, berries, tea, and
red wine. Flavonoids are divided into subclasses such as anthocyanins, flavonols, flavones,
and anthocyanidin [20].

Plants contain color flavonoids called anthocyanins, which are commonly found in
flowers. In addition to pollination and seed dispersal, plants display pollination and
seed dispersal in their fruits and flowers. These components are also involved in a host
of defense mechanisms against pathogens and herbivores while also contributing to the
photosynthesis process. Pelargonidin, cyanidin, peonidin, delphinidin, petunidin, and
malvidin are the most common anthocyanidins found in plants [35]. It is commonly
studied to determine the total anthyocin amount of plants or some composite fabricated by
extraction from plants [38]. During storage, anthocyanins’ colors change depending on pH,
protonation, and hydration reactions. Cyanidin, malvidin, and chalcones are well-known
and studied antocyanin structures [38].
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2.3. Stilbenes

Two aromatic rings are linked by an ethylene ring in the stilbene, which has a backbone
of C6–C2–C6 [39]. Resveratrol and oxyresveratrol are some samples of the stilbenes [40].
Oxyresveratrol has been shown to have inhibitory activity on Trichophyton rubrum, which
causes fungal infections such as tinea pedis, and it has been emphasized that it has the
potential to reduce the use of antibiotics as adjuvant therapy with its antimicrobial activ-
ity [40]. The skin of grapes, blueberries, raspberries, mulberries, and peanuts is the source
of stilbenes. Resveratrol is widely found in red wine and grape juice.

2.4. Lignans

Lignans represent a nonflavonoid class featuring two propylbenzenes. Lignans are
found in legumes, grains, seeds, and vegetable oils; they are mainly found in their free
forms. Flaxseeds are excellent sources of lignans. Lignans are structures that protect plants
against herbivores. They are generally insoluble. Sesamin and sesamolin are kinds of lignin
molecules found in sesame seeds. The other known plant sources of lignans are secoiso-
lariciresinol, podophyllotoxin and hydroxymatairesinol. Hydroxymatairesinol is a lignan
found in Norway spruce [41]. Hydroxymatairesinol has been observed in Parkinson’s
disease, which is a chronic neurodegenerative disorder, to slow down its progression in rat
models [41]. It has been determined that it has anticancer properties in prostate cancer [42].
Pinoresinol is another lignan molecule that has hepatoprotective effects [43].

3. Cardioprotective Effects of Polyphenolic Compounds

Cardiovascular diseases (CVD) are a group of disorders that are characterized by
heart and blood vessels and include coronary heart disease, cerebrovascular disease, con-
gestive heart failure, rheumatic and congenital heart diseases. transient ischemic attack,
or stroke, and carry a mortality and morbidity rate [44]. According to the calculations
of the World Health Organization in 2016, CVD constitutes approximately 30% of death
causes worldwide [45] and is considered to be the first cause of chronic, non-communicable
deaths in adults. Deaths due to heart attacks and stroke constitute a large part of this
calculated percentage [44]. The dramatic changes in the frequency of symptoms of CVDs
in different age groups, both genders, and all races have been alarming in recent years.
Although mortality rates vary according to income distribution, demographic population,
diet, and lifestyle, it is among the diseases with the highest prevalence and incidence all
over the world [46,47]. Risk factors for the development of CVD include long-term smok-
ing, diabetes mellitus, unhealthy diet, intense stress, presence of CVD in family history,
arterial hypertension, abnormal blood lipids, sudden paralysis, high cholesterol, obesity,
and sedentary life [44,48]. It is known that multiple factors affect pathogenesis, but it is
generally caused by atherosclerosis, which is known to occur as a result of oxidative stress
and chronic inflammatory conditions [48].

Atherosclerosis is a degenerative process of the arteries characterized by thickening
and hardening of the innermost intimal layer of the arterial walls. It is the most common
pathological factor involved in the development of CVD. The healthy endothelial cells
release nitric oxide (NO) to induce vasodilation, and contain anticoagulants, antiplatelet
receptors, and structures that prevent thrombus formation, thus preventing unwanted
aggregation of platelets and regulating vascular tone [49]. Nitric oxide is known to prevent
the oxidation of LDL cholesterol, and if there is endothelial dysfunction, decreasing pro-
duction of NO and impaired NO activity leads to consequences promoting atherosclerosis
and is present in conditions such as vasoconstriction, smooth muscle cell proliferation, and
oxidative stress.

Atherosclerotic plaque develops with an “active biological environment” such as
interaction of endothelial dysfunction, vascular smooth muscle cell migration, lipid deposi-
tion (LDL oxidation), calcification, matrix turnover, immune response and inflammatory
responses [47,50,51]. Hypertension, or high blood pressure, is one of the leading causes of
cardiovascular diseases [52]. Hypertension affects both the cardiovascular and cerebrovas-
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cular systems. It has been reported that the incidence of hypertension increases with age
and, if not controlled, leads to the risk of heart attack and stroke in patients [53].

Cardiovascular diseases and general factors involved in their pathology are given
in Figure 2.
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Figure 2. Schematic presentation of cardiovascular diseases and general factors involved in
their pathology.

Figure 2 demonstrates several genetic-based factors and many environmental factors
involved in the pathological process that results in the emergence of cardiovascular system
diseases. Many of these risk factors can be regulated by changes in the lifestyles of individ-
uals [54,55]. Natural-based compounds are of interest in disease-prevention approaches
and in the regulation of patients’ lifestyles, whose cardioprotective properties have already
been proven or are currently being tested for effectiveness [55,56].

In addition to factors that cannot be changed, such as gender, genetic predisposition,
and age, cardiovascular diseases also affect many external factors that can be controlled. The
most important behavioral risk factors of cardiovascular diseases are unhealthy diet and
physical inactivity. Among these, the way of nutrition and efforts to improve lifestyle habits
sometimes provide a high protective effect against cardiovascular disease [54,55,57–59].
Alternative treatment methods are being developed for CVD, which has a high prevalence
and incidence, and the consumption of functional foods and supplements has been on the
agenda of clinical institutions in recent years [54].

As an example of the relationship between diet and CVD, excessive saturated fat diet
increases the plasma LDL levels and subsequent risk of atherosclerosis [58]. Interest in new
areas in the field of pharmaceutical and dietary strategies has started to minimize CVD risk
as much as possible. Epidemiological studies have indicated that a high flavonoid content
diet is positively related to lower incidence of coronary artery disease, hypertension, stroke,
and other vascular diseases [60–63].

The protective effect of polyphenols on the cardiovascular system is due to their
ability to delay the development and progression of early atherosclerotic lesions [54,57,58].
Another important mechanism of action is thought to be the regulation of NO release and
antioxidant and anti-inflammatory properties of polyphenols [54,60].

The Mediterranean diet includes vegetables, fruits, bread, and other cereals, legumes
and oilseeds, a moderate amount of alcohol consumption, and olive oil with a high content
of polyphenolic compounds. It has been noted that this type of diet has a clear effect on
reducing CVD risk factors and preventing cardiovascular diseases. The advantages of
increased plasma HDL-C and decreasing LDL oxidation were seen through the controlled
consumption of red wine [54,55,59]. In one of the studies evaluating the relationship be-
tween the Mediterranean diet and the risk of CV events, an inverse relationship was found
between total polyphenol intake and CVD risk [64,65]. The effects of an herbal preparation
consisting of procyanidin, daidzein, genistein, flavone, resveratrol on atherosclerosis in
postmenopausal women without cardiovascular disease was investigated [66]. It was
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found that this preparation significantly suppressed the formation of atherosclerosis in
individuals and could be a potential agent to slow the progression of existing plaques [66].

3.1. Phenolic Acids

An herbal combination with high polyphenol content composed of caffeic acid, chloro-
genic acid, p-coumaric acid, and ferulic acid was administered to rabbits with myocardial
cell damage, and it was emphasized that it could be used as an alternative treatment due
to its synergistic cardio-protective potential [67]. In the study comparing the efficacy of
administering a ferulic acid and aldose reductase inhibitor, which is the standard treatment,
proved to alleviate insulin resistance and hypertension and mediated the restoration of
endothelial-dependent relaxation by improving the bioavailability of NO [68]. Cardiac and
kidney lesions, including oxidative stress, inflammation, vascular occlusion, and erosion
of epithelial cells, were observed in rats that had been given the endocrine-disrupting
chemical Bisphenol A (BPA). The addition of gallic acid into the BPA was found to mitigate
the toxicity caused by the BPA [69].

The cardioprotective effects of tannic acid are thought to be mainly due to the reduction
of myocardial oxidative stress, inhibition of inflammation, reduction of apoptosis, and
increase in NO levels [70–73]. The potential cardioprotective properties of tannic acid
were investigated in rabbits in a case of isoproterenol-induced myocardial ischemia [70].
Tannic acid has been proven to effectively heal ischemic damage. This therapeutic effect has
been associated with inhibiting inflammation, providing endothelial protection, scavenging
reactive oxygen species, reducing cell apoptosis and many other properties [70]. Tannic acid
can reduce collagen accumulation on isoproterenol-induced myocardial tissue morphology,
thereby reducing and healing myocardial mitochondrial damage [71]. It has been proven
that tannic acid can target elastin stabilization in cardiovascular implants, rendering it
enzymatically resistant [72]. Tannic acid at a concentration of 0.05% has been found to have
minimal cytotoxic effect after 4 weeks of infarction, increasing the collagen content and
significantly reducing infarction dilation. This treatment may attenuate adverse cardiac
remodeling after acute myocardial infarction [74].

Another phenolic acid, caffeic acid, has cardioprotective properties, and relevant
utilization and function from the literature are given in Table 2. During hypoxia or when
exposed to uremic toxins, caffeic acid increased proliferation and angiogenesis as well as
inhibited leukocyte adhesion and endothelial cell apoptosis [75].

3.2. Certain Cardioprotective Effects of Flavonoids

The most common flavonoids found in grapes are anthocyanins, flavonols, flavanols,
dihydroflavanols, and proanthocyanidins. The study has shown that proanthocyanidins
in grape seeds have the capacity to reduce or remove reactive oxygen radicals in the
reperfused myocardium after ischemia, thereby leading to a recovery of the damage caused
by reperfusion, a decrease in the incidence of arrhythmia, and a significant improvement
in postischemic cardiac function [76]. Another study reported that the administration of
grape polyphenol concentrate to rats with doxorubicin-induced cardiotoxicity resulted in
a cardioprotective effect, possibly due to the increased level and activity of antioxidant
enzymes [77]. In a study conducted in people at risk for type 2 diabetes, it was concluded
that consumption of blueberry juice tends to improve systolic blood pressure through nitric
oxide production [78].

The effect of a long-term quercetin diet on inflammation and physiological heart perfor-
mance in dystrophic hearts were investigated [79]. According to the results, a quercetin-rich
diet intake can be a potential treatment option for the complications of cardiac dystrophy.
A medicinal plant, Thraatchathi Chooranam, containing various highly polyphenolic com-
pounds such as gallic acid, quercetin, ellagic acid, galangin and naringenin provided a
stabilizing, radical scavenging and protective effect on the cardiac membrane [80].

Epigallocatechin-3-gallate (EGCG), which is an important polyphenolic component
also found in green tea, is thought to be cardioprotective against ischemia-reperfusion
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due to its antioxidant properties [81–83]. EGCG contributed to the heart’s adaptation
to excessive pressure loading during the hypertrophy phase [84]. For this reason, it has
been stated that EGCG can be a potential agent that can prevent heart failure due to
cardiac hypertrophy [81]. EGCG can inhibit apoptosis by activating a certain pathway
and shows a cardioprotective effect against ischemic damage [85]. Oral epigallocatechin-3-
gallate pretreatment is thought to be an alternative cardioprotective application to prevent
perioperative cardiac dysfunction during surgery [83].

The study examined increased cardiac toxicity associated with exposure to air pol-
lution, and reported that feeding the rats that were exposed to air pollution for a long
time dark chocolate containing high polyphenols downregulated myocardial inflammation
genes and increased antioxidant and cardioprotective genes [86]. After consuming a fatty
diet, drinking cocoa resulted in an increase in HDL and a decrease in LDL [87]. In addition,
cocoa has been found to alleviate the effect of inflammation.

A dietary supplement containing the flavonoids of apigenin, kaempferol, and luteolin
improved glucose tolerance and fat accumulation, as well as plasma triglyceride and total
cholesterol levels, and reduced heart damage [88]. Limonin has been found to significantly
lower the level of apolipoprotein B(Apo-B), a potential marker for coronary artery disease,
and this effect is greater than that of other citrus flavonoids [89].

Myricetin contributes to the vitality of human vascular smooth muscle cells and
the function of enzyme activity [90]. Furthermore, dihydromyricetin exerts an anti-
inflammatory effect by reducing the release of interleukins, which are inflammatory agents,
and prevents increases in the harmful effects of reactive oxygen species in the process
of atherosclerosis [91,92].

3.3. Stilbenes

The effects of resveratrol and red wine in vivo (in hypercholesterolemic rabbits) and
in vitro (on platelets isolated from normotensive healthy male volunteers) were investi-
gated. It has been reported that resveratrol can inhibit platelet aggregation both in vitro
and in vivo, possibly due to the cardioprotective effects of the polyphenol [93]. There was
a significant increase in lipid levels in rabbits fed high-cholesterol diets, and they stated
that hypercholesterolemia increases the susceptibility to platelet aggregation and has a risk
of playing a role in myocardial infarction. The polyphenolic compounds found in red wine
decreased intracellular cholesterol levels [94]. In an experimental study on hypertensive
rats, a significant increase in HDL levels and a decrease in blood pressure were found [95].

Many studies show that resveratrol is a potential cardioprotective agent [96–99]. The
effect of resveratrol on LDL oxidation and the free radical scavenging activity of the
compounds on rat hearts was evaluated, and astringinin showed stronger cardioprotective
activity than resveratrol in ischemia-reperfusion injury, and they thought that this was due
to its high water solubility [97]. Ungvari et al. (2007) confirmed that resveratrol partially
exerts antioxidant effects and plays a regulatory role in the vascular expression of some
enzymes [96]. They stated that enzyme regulation shows antiapoptotic activity in the
cardiovascular system in case of ischemia-reperfusion pathology. Resveratrol preserved
cardiac function, suppressed the expression of inflammatory response-initiating genes,
and had a significant ameliorating effect on myocarditis [98]. Resveratrol treatment was
found to attenuate induced cardiomyocyte apoptosis and reduce toxicity on the heart
by suppressing stress-induced overexpression [99]. In addition, resveratrol can protect
the heart from doxorubicin damage with its antioxidant properties [100]. A significant
reduction in gene conjugate required for autophagic expansion and termination in the
group receiving resveratrol supplements was found. During myocardial stress, autophagy,
an adaptive process in which damaged cellular components are removed or recycled, is
cardioprotective. Resveratrol supplementation has been found to regulate autophagy and
prevent endothelial dysfunction and cardiac remodeling in ischemic myocardium [101].

Resveratrol provides regulatory effects on free fatty acid oxidation, glucose home-
ostasis, glucose utilization, myocardial metabolic enzymes, and energy metabolism [102].
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Resveratrol can exert a protective effect by inhibiting endoplasmic reticulum stress and
reversing apoptotic pathway proteins’ expression in cardiomyocyte hypertrophy. Partially
beneficial effects of resveratrol, which may be a new strategy for the treatment of cardiac
hypertrophy, have also been reported in studies [103]. The curative effect of resveratrol in
cardiac hypertrophy is through expression regulation as a result of breast cancer type 1
sensitivity protein inhibition [104].

In ischemia-reperfused rats, piceatannol slows the inactivation of I(Na) and inhibits
arrhythmias [105]. Piceatannol can prevent cardiomyocyte cell damage caused by oxidative
stress by activating superoxide dismutase, decreasing creatine kinase, and reducing lactate
dehydrogenase production [106].

3.4. Lignans

Cardiotoxicity was induced in rabbits pre-treated with flaxseed, and the myocardium
was examined histopathologically. A decrease in myocardial necrosis and inflammation
as well as improvement in hemodynamic and biochemical markers were detected in
the flaxseed-fed group. The antioxidant effect of flaxseed was found to contribute to
its cardioprotective effect [107]. A similar result was obtained in the study, and it was
suggested that the cardioprotective effect was due to the alpha-linolenic acid content [108].
It has been proven that lignan concentrate (flax lignan concentrate (500 mg/kg) and omega-
3-fatty acid (1 mL/kg)) provide an antihyperlipidemic effect by normalizing lipid levels,
and exerts an anti-inflammatory anti-apoptotic effect by affecting many parameters such
as tumor necrosis factor-α level [109]. In another study, rats with experimental renal
hypertension were divided into groups and administered angiotensin converting enzyme
inhibitor (ACE inhibitor) or flax lignan concentrate. Flax lignan concentrate was observed
to significantly reduce arterial blood pressure, similar to the standard ACE inhibitor. In
addition, its antioxidant activity was shown to reduce histopathological damage in heart
and kidney and to restore abnormal lipid profiles [110]. In addition, the consumption of
lignan containing flaxseed and flax oil in moderate amounts causes a significant decrease
in LDL cholesterol levels, which play a role in the pathogenesis of atherosclerosis [111].
Therefore, they may have an important role against ischemic heart disease. The protective
effects of natural products containing polyphenolics on cardiovascular system health are
given in Figure 2.

As can be seen in Figure 3, consumption of foods containing polyphenols has a
boosting effect on cardiovascular health and plays a role in the regulation of heart rhythm
and blood pressure against many factors such as aging.
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Table 2 summarizes some of literature details on the application of some of polyphenols
for cardiovascular diseases.

Table 2. Some of the polyphenol efficacies, working concentration, and target of each substance on
cardiovascular diseases.

Study Design Outcomes Ref.

Caffeic acid (100 nM and 1 µM) human umbilical
vein-derived endothelial cells (HUVEC)

Caffeic acid increased proliferation and angiogenesis,
inhibited leukocyte adhesion and endothelial cell

apoptosis under hypoxia or by the uremic
toxins’ conditions

[111]

Caffeic acid phenethyl ester (CAPE) 30 mg/kg/day
administered by oral gavage for 6 weeks.
Streptozotocin induced diabetes-induced

atherosclerosis in rat model

CAPE abolished the diabetes-associated
atherosclerotic changes by improving important

functional and structural disorders in vessels. CAPE
alleviated the elevation in systolic and diastolic BP

[112]

High fructose (HFCS) induced diabetic rats’ subacute
CAPE administrations (50 µmol/kg/day

intraperitoneally for 2 weeks

CAPE ameliorated the elevation in blood pressure,
vascular damage, and it increased eNOS levels. CAPE

lowered homocysteine and cholesterol levels
[113]

Atherogenic diet (Ath)-induced rat model
administrations with caffeic acid 50 mg/kg, p.o.

CA ameliorated lipid profile and reduced the
oxidative stress level. In aorta revealed reduction of

the atherosclerotic lesions
[114]

Dietary 10% flaxseed content 1.37 mg/g SDG, (the
lignan secoisolariciresinol diglucoside) LDL

receptor-deficient mouse (LDLrKO) fed a
cholesterol-supplemented diet and an increase in

atherosclerotic plaque formation

Flaxseed lowered plasma cholesterol levels and
saturated fatty acids, increased plasma ALA levels,

and inhibited plaque formation in the aorta and
reduced the inflammatory markers (IL-6, mac-3,

and VCAM-1)

[115]

A 40 g/day of ground flaxseed administered Sixty-two
men and post-menopausal women (LDL-C between

130 and 200) mg/dl 10 weeks

Flaxseed lowered LDL-C short lived and did not affect
inflammation or oxidative stress [116]

Low-density lipoprotein receptor knockout
(LDLR−/−) mice with 170 g/kg sesame oil diet 3

months of feeding

Reduced atherosclerotic lesion formation, plasma
cholesterol, triglyceride, and LDL cholesterol levels.
Anti-inflammatory property (reduced inflammatory

cytokines, such as MCP-1, RANTES, IL-1a, IL-6,
and CXCL-16)

[117,118]

Sesamol 50 mg/kg orally for 6 weeks
(DOCA)-salt-induced hypertensive rats

Decreased systolic and diastolic blood pressure and
lipid peroxidation and enhanced the antioxidant

activity. Hypertensive rats showed cardiac muscle
fiber rupture and mononuclear infiltration, but

Sesamol 50 mg/kg group heart showed to
near-normal architecture

[119]

Isoproterenol treated myocardial infarcted rats,
pretreated with gallic acid (15 mg/kg) daily for a

period of 10 days

Prevented the changes in the activities of cardiac
marker enzymes (CK-MB and LDH), reduced the

levels of lipid peroxidation products (LPO),
glutathione and lysosomal membrane damage

[120]

Rats were infused with AGEs (advanced glycation end
products play a role development of cardiovascular
disorders) and then treated with gallic acid (GA) by
oral gavage daily at a dose of 25 mg/kg BW/day for

30 days

AGEs induced cardiac fibrosis and augmented
oxidative stress in the heart tissues. GA prevented the
upregulation of pro-fibrotic genes and ECM proteins

(↓TNF-α, TGF-β, MMP-2 and -9 expression). GA
treatment effectively prevented cardiac remodeling

[121]

NG-nitro-L-arginine methyl ester (L-NAME)-induced
hypertensive mice treatment with gallic acid 100

mg/kg per day by daily intraperitoneal injections 3 or
8 weeks

GA attenuated cardiac fibrosis and remodeling,
reduced the expression of histone deacetylase 1

(HDAC1) and 2 (HDAC2). GA lowered the
elevated SBP

[122]
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4. Protective Effects of Polyphenolic Compounds on ROS-Induced Oxidative Stress

Reactive oxygen species (ROS) are molecular oxygen byproducts that occur as a result
of normal metabolism (such as oxidation–reduction reactions) in mitochondria and other
cell organelles [123,124]. Disruption of the balance between these radicals and antioxidant
molecules (endogenous-exogenous) in biological systems describes the state of oxidative
stress. After prolonged oxidative stress, physiological impairments such as peroxidation
(oxidation of unsaturated molecules) of membrane lipids occur. In addition, highly active
organic molecules change important structural proteins non-enzymatically. The increase in
ROS in tissues causes changes in the functions of intracellular proteins, resulting in DNA
structural damage and cell damage [123–125]. In addition to the fact that ROS can occur
due to natural factors (such as aging), ischemia-reperfusion damage, exposure to ionizing
radiation and chemical agents negatively affect this process [126,127].

It is known that oxidative stress and the DNA damage caused by it play an important
role in the formation process of diabetes, cancer, atherosclerosis, heart attack, stroke and
inflammatory disorders [128]. Reactive oxygen species (ROS) causing oxidative stress,
low-density lipoprotein (LDL) oxidation and atherosclerotic plaque formation are given
in Figure 4.
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Figure 4. Reactive oxygen species (ROS) causing oxidative stress, oxidized low-density lipoprotein
(OxLDL) and atherosclerotic plaque formation (adapted from ref. [129]).

Toxic effects caused by free oxygen radicals, which are produced in significant amounts
at the cellular level, are normally tried to be eliminated by the antioxidant defense system
in the body. In cases where the antioxidant defense is insufficient, oxidative stress occurs,
and Figure 4 shows the pathological process characterized by hardening in the arteries.

Diet has a great effect on the antioxidant balance of the body. Pathological condi-
tions can occur when the body’s defense mechanisms are destroyed due to nutritional
deficiencies [130]. The effects of a diet rich in polyphenolic compounds, which are natural
antioxidants, have been examined in various studies, and it has been observed that it
reduces oxidative DNA damage [131,132]. As shown in Figure 5, polyphenols react with
ROS stoichiometrically to form stabilized radicals [133].
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Figure 5. Removal of hydrogen, extinction of ROS, and formation of stabilized polyphenol radicals.

Antioxidant activity depends on the existence of hydroxyl groups, which both provide
removal of unstable hydrogen and augment the stability of the radical formed.

4.1. Phenolic Acids

Various in vivo and in vitro studies have shown that ferulic acid can reduce cell
damage by reducing ROS production and regulating antioxidant enzyme activity, and
can also regulate the activation of various cell protective genes against oxidative stress,
improve lipid peroxidation and has cardioprotective effects [134]. Aldose reductase (AR)
is nicotinamide adenine dinucleotide phosphate (NADPH) as a coenzyme. NADPH is
known to play a critical role in the emergence and progression of various oxidative stress-
related diseases. Ferulic acid has shown protective effects with its antioxidant and anti-
inflammatory properties by acting as an AR inhibitor in the formation of cardiovascular
and diabetic complications [68]. The protective effects of gallic acid against oxidative stress
appear by regulating lipid peroxidation and NO production and increasing its antioxidant
capacity [135]. Gallic acid may be a new generation agent that can be used to combat
cellular toxicity caused by arsenic and its metabolite.

4.2. Flavonoids

Quercetin is attracting much attention for its potential to prevent cardiovascular,
neoplastic and neurodegenerative diseases in which oxidative stress plays a role [136–138].
A study investigating the passage of quercetin through the blood–brain barrier (BBB) has
shown that oral administration of quercetin to rats exposed to chronic forced swimming
alleviates the increased oxidative stress in the brains of the rats through its antioxidant
activity [139]. The antioxidative activities of quercetin and catechin were examined in cocoa
liquor, and it was stated that quercetin offered higher antioxidant activity than quercetin
glycosides [140]. Furthermore, clovamide showed more activity than other components
due to the catechin group [140]. The antioxidant properties of coffee have been attributed
to both the effect on plasma uric acid and direct absorption of coffee polyphenols [132]. The
chlorogenic acid in the composition of coffee showed therapeutic properties by inducing
selective anticancer effects in lung cancer cells and leukemia cells at certain concentrations.
In contrast, this polyphenolic component has been reported to induce cellular DNA damage
at a low millimolar range [141].

Delphinidin, an anthocyanidin, has been found to act as a topoisomerase inhibitor
in human colon carcinoma cells [142]. In a different study, cyanidin-3-glucoside-rich
blackberry extract (at a concentration of 76,000 µg/g) was reported to reduce the growth of
HT29 (a human colon cancer cell line widely used in biological and cancer research) cells.
In addition, it has been shown that by pre-treatment of HT29 cells with blackberry extract,
the complex formation of topoisomerase poisons with DNA is suppressed [143]. Shih et al.
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(2007) did not detect any toxicity after 24 h of treatment with anthocyanin at 50 µM
concentration [144]. Among the anthocyanin compounds they studied, malvidin, cyanidin,
kuromanin, delphinidin compounds exhibited higher antioxidant activity. Achieving high
expression of phase 2-detoxification enzymes and other antioxidant enzymes was effective
in this activity.

4.3. Stilbenes

Regarding the cellular defense properties of resveratrol as a direct antioxidant agent,
resveratrol has been demonstrated to be a very effective scavenger of a variety of oxidants;
the inhibition of ROS/RNS production by intracellular systems exhibited inhibitory effects
on the lipid peroxidation and protective effect against protein oxidation intracellular antiox-
idant defense systems. There are antioxidant defense mechanisms of resveratrol through
regulation of signaling pathways. 5′adenosine monophosphate-activated kinase (AMPK)
is regulated under metabolic stress and plays an important role in energy homeostasis.
Resveratrol increases cell viability against ROS-induced oxidative damage on the myoblast
cell line and shows cell protection by enabling AMPK activation [145]. In the case of oxida-
tive stress, resveratrol treatment reduces the protein loss of myoblasts in a dose-dependent
manner but cannot prevent the loss completely [146]. In addition, caspase-9 activity, which
is a marker of the mitochondrial apoptotic pathway, ceased after 6 h of treatment with
resveratrol [146]. Resveratrol exerts a therapeutic effect by activating the protein, an en-
dogenous transcription factor called NRF-2 (the nuclear factor erythroid-derived 2-like),
which is associated with antioxidant response [147]. As summarized in Table 3, resveratrol
reduces SOD activity and inhibits ROS formation caused by ox-LDL [148].

Table 3. Some of the information regarding polyphenols efficacies, working concentration, and target
of each substance on ROS-induced oxidative stress.

Study Design Outcomes Ref.

A stock solution of resveratrol at a concentration
of 200 mg/mL in human umbilical vein

endothelial cell (HUVEC); cell culture study

When treated with resveratrol following administration to
HUVECs ox LDL, it has been shown that resveratrol inhibits
increased ROS formation and lipid peroxidation caused by
ox-LDL and reduces SOD activity. Resveratrol effectively
inhibited endothelial cell apoptosis through inhibition of

mitochondrial pathway and inhibition of oxidative damage. It
has been reported that resveratrol may be effective in the

treatment of atherosclerosis

[148]

Rosmarinic acid with antioxidant properties with
different test methods

RA was determined 67.5 ± 1.68 (µg/mL). Total phenol content
in terms of gallic acid equivalency, 1.62 ± 0.41 TEAC value (mM

trolox equivalent/g), 806.7 ± 39.5 quercetin eq for total
flavonoid test. It was specified 15 µg dry weight RA reduced

366.2 ± 9.9 µmol Fe (III) ions

[32,34]

Administration of resveratrol 50 mg/mL to
healthy rats in drinking water for 3 weeks

It shows that resveratrol can improve the capacity of endothelial
function and oxidative stress under physiological conditions [149]

Prunan from prunes alleviates inflammation and
oxidative stress during

lithium/pilocarpine-induced epileptic seizures

Comparing 50 mg/kg b.w. pinoresinol-4-O-d-glucopyranoside
to pilocarpine-treated animals, this compound reduced

malondialdehyde levels by 24.2% and increased catalase
activity by 44.4%

[150]

4.4. Lignans

The effect of flaxseed oil and a flaxseed lignan glucoside derivative in metabolic syn-
drome disease (characterized by hypertension, increased triglyceride levels, and decreased
HDL cholesterol levels) was examined, and it has been determined that oral administration
of herbal compounds containing lignans reduces oxidative stress biomarkers such as lipid
peroxidation and carbonyl levels [151]. It was stated that the heme oxygenase-1 enzyme,
which plays a role in heme catabolism and which is known as a stress-response protein, is
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induced by the application of lignan-derived compounds, and the lignan derivatives have
hepatoprotective and antioxidant properties [152]. Oxidative stress damage in the cerebral
cortex recovered in a dose-dependent manner as a result of pretreatment with pinoresinol-
4-O-β-D-glucopyranoside, a lignan glycoside has also been reported. It was also noted that
this lignan derivative significantly reduced the oxidative stress marker malondialdehyde
level and increased catalase activity by about 44% at the specified dose [150,153]. This
lignan glycoside is thought to be a potential antioxidant agent in the treatment of hepatic
damage, oxidative damage, and diabetes [150].

5. Polyphenols on DNA and Cancer

In cases where the density of free radicals increases in living cells, structural defects
occur in important functional structures such as proteins and nucleic acids. It has been
suggested that carcinogenesis, age-related degenerative diseases, and chronic diseases occur
when antioxidant defense systems are not sufficiently effective against ROS, which is formed
as a result of both biochemical reactions and external factors. In addition, strong findings
indicate ROS in both the initiation and the increase in multistage carcinogenesis [154,155].

Oxidative stress causes DNA damage, which triggers multiple cellular responses.
Mutations occur by the division of damaged cells that have not been repaired at all or
repaired incorrectly. In case of mutations in vital genes such as oncogenes or tumor
suppressor genes, cancer initiation and progression processes can be seen [155,156].

The DNA damage response involves the activation of multiple cellular activities that
repair DNA lesions and have crucial importance in preventing tumor formation [157].
There is a potential loss of DNA damage repair abilities in the advanced stages of carcino-
genesis [155,156]. Cancer cells usually have specific abnormalities in the DNA damage
response system; however, chemotherapeutics also have toxicity and persistent side effects
on normal cells. With the trial of chemotherapeutics in combination with polyphenols,
recent therapeutic strategies such as chemoprevention are gaining importance [158].

Polyphenols are among the natural products that are on the agenda as anti-cancer
and cancer-curative agents [159]. Dietary polyphenols can influence and modulate many
different pathways and processes involved in carcinogenesis. Additionally, they can act
as biological response modifiers that support the immune system and protect living cells
from damage by free radicals. For example, polyphenolic natural products have anticar-
cinogenic properties such as modulating cell proliferation, tumor growth, angiogenesis,
metastasis, inflammation and apoptosis [16,159]. Polyphenols are reported to protect the
body against the effects of reactive oxygen species on DNA integrity but do so reliably only
at low concentrations [160].

5.1. Phenolic Acids

Ferulic acid may exhibit anticancer properties against tumors that may occur as
a result of conditions such as apoptosis mechanisms activated by various endogenous
and exogenous pathways [161]. Ferulic acid can prevent oxidative stress from causing
permanent damage to any tissue by downregulating related proteins in the mitochondrial
apoptosis-promoting protein family [161].

Gallic acid protects against oxidative stress and acute toxicity that may occur in the
heart in a study performed on Wistar rats [135]. Thus, it contributes to the protection of
kidney and heart health, and it is promised that it can prevent possible cancer formation.
Research has shown that gallic acid can inhibit the proliferation of tumor cells in cell
cultures by causing apoptosis and/or cell cycle arrest [162]. It has also indicated that the
GA induces apoptosis in human lung cancer cells, as well as suppressing DNA damage
and provoking DNA repair in prostate cancer cells [163,164].

5.2. Flavonoids

In a study involving a large population (over 8000 individuals), high green tea con-
sumption was shown to delay the onset of cancer in patients with premenopausal Stage I
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and II breast cancer [165]. It has also been found that a lower recurrence rate is observed in
breast cancer patients [165]. Ellagitannins, flavonoids, ellagic acid and ellagic acid glyco-
sides in the fruit content show anticancer activity in human colorectal carcinoma cells [166].

Epigallocatechin-3-gallate has been shown to provide anticancer activity through
many mechanisms such as cell cycle arrest, regulatory role in carcinogenic metabolizing
enzymes, inhibition of mitotic signal transduction, antioxidant effect and DNA inhibition.
In addition, it regulates the p53 protein, which is one of the transcription factors that
regulates the cell cycle [167,168].

Naringin’s anti-tumor effects were studied in thyroid cancer as given in Table 4. For 24,
48, or 72 h at 37 ◦C, Naringin (6, 12, and 25 g/mL) was applied to two cancer cells, TPC-1 and
SW1736. In MTT assays, naringin inhibited TPC-1 and SW1736 cell proliferation in a dose-
and time-dependent manner [169]. In another study, when Naringin was combined with
atorvastatin, it synergistically inhibited prostate cancer cells, PC-3, and LNCaP cells [170].

Quercetin is effective in ovarian cancer by enhancing the antioxidant defense mech-
anism by suppressing ROS-induced damage [171,172] and in eye cancer by inhibiting
the expression of signal proteins produced by hypoxia-induced angiogenesis-stimulating
cells [171–173]. Furthermore, quercetin shows anticancer properties through different
mechanisms in breast, gastric, bone, blood, lung, prostate, brain, skin, colon, thyroid and
kidney cancers [174].

In the study of Schantz and coworkers (2010), intracellular ROS level and oxidative
DNA damage significantly decreased after 24 h of application of anthocyanin-rich bilberry
extract in colon tumor cells [175]. Anthocyanins such as cyanidin and delphinidin in
purple tea offer antioxidant, anticancer, and immune system stimulating properties by
regulating caspase-3/7 activity and expression levels of certain reductase enzymes [176].
Blueberry anthocyanins and anthocyanin–pyruvic acid adduct inhibited the invasion of
matrix-degrading proteinases associated with tumor angiogenesis in breast cancer cell
lines [177]. In addition, these two components prevented cell migration by creating a
negative chemo-signal and showed an anticarcinogenic effect by preventing metastasis.

Another effective flavonoid, catechin, has anti-cancer properties according to MC38
colon cancer cells [178]. Cancer cell proliferation can be significantly inhibited by catechin
concentrations of 250 to 1000 mg/mL, and there is a 50% inhibitory concentration at
250 mg/mL, which is the IC50 value, within an incubation period of 24 h, as given in Table 4.
A cell’s death increases levels of triggered cancer cells sharply, and a 72 h incubation time
was used with an IC50 value of 142 mg/mL.

5.3. Stilbenes

Resveratrol reduces the expression of matrix metalloproteinase, which destroys ex-
tracellular matrix components and is responsible for metastasis [179–181]. Resveratrol
can exhibit both pro-oxidant and antioxidant properties depending on the dose and the
cell type it affects [182]. Resveratrol can cause growth arrest and/or cell death in various
cancer cells, but its anticancer mechanism of action is not fully known. The anticancer
activity of resveratrol has been demonstrated in human colon cancer cells by increasing the
level of intracellular ROS and inducing apoptosis through autophagy [183]. Resveratrol
presents anticancer properties in lung cancer cells by selectively increasing the expression
of a certain group of transmembrane enzymes (NADPH oxidase-5) and thus inducing
ROS production [184].

5.4. Lignans

The effect of a lignan derivative, schisandrin B, on cardiotoxicity caused by doxoru-
bicin, a cancer chemotherapeutic, was studied, and pretreatment with this compound
significantly prevented doxorubicin-induced loss of cardiac function (based on results at 6
and 12 weeks) [185]. Arctigenin induces only inhibition in tumor cells, that is, selectivity
between normal and cancerous cells [186]. Another study has concluded that lignan extract
induces cytotoxicity, reduces tumor formation in estrogen receptor-positive breast cancer
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cells, has anti-estrogenic and antioxidant effects, especially at low doses, and may have
antitumor components that could prevent chemically induced breast cancer in rats [187].
Some of the research details on the applications of polyphenols on DNA and cancer were
presented Table 4.

Table 4. Some of the information regarding polyphenols efficacies, working concentration, and target
of each substance on DNA and cancer.

Study Design Outcomes Ref.

Naringin’s anti-tumor effects on thyroid cancer were
studied. For 24, 48, or 72 h at 37 ◦C, Naringin (6, 12,
and 25 g/mL) was applied to two cancer cells, TPC-1

and SW1736.

In MTT assays, naringin inhibited TPC-1 and SW1736 cell
proliferation in a dose- and time-dependent manner. [167]

Naringin was combined with the drug, atorvastatin.

The IC50 of naringin was determined as 196.2 µM in PC-3
and 117.2 µM in LNCaP cells. However, naringin and statin
drug atorvastatin synergistically inhibited prostate cancer

cells, PC-3, and LNCaP cells.

[168]

Catechin was studied on MC38 colon cancer cells.

The proliferation of cancer cells can be significantly
inhibited by catechin concentrations between 250 and

1000 mg/mL, and the IC50 value is 250 mg/mL during a
24 h incubation period. Incubation time was 72 h, and IC50

was 142 mg/mL after triggering cancer cells.

[176]

An anticancer effect of gallic acid on non-small cell
lung cancer cells A549.

The viability of A549 cells was determined by MTT assay
after treatment with GA (0–52 g/mL) for 24 h. There was a
dose-dependent decrease in viability after treatment with

GA (0–52 g/mL). When compared with control cells,
12 g/mL GA significantly decreased cell viability.

[188]

6. Polyphenols on Aging

ROS plays an important role in the aging process as well as being one of the underlying
causes of many chronic diseases [189]. ROS are the normal byproducts of the metabolism
of cells responsible for physiological and pathological functions, and considering the dual
role of ROS in cells, an antioxidant defense system must be present to neutralize the over-
production of such reactive compounds. The cellular antioxidant defense system consists
of endogenous antioxidant enzymes and peptides, as well as polyphenolic compounds,
vitamins, and polyunsaturated fatty acids obtained from food sources. The antioxidant
defense system gradually deteriorates in time, resulting in oxidative stress and the inability
to cope with ROS production, which contributes to the aging process and the onset of
age-related diseases. ROS is not only a direct mediator of aging, but also a regulator of the
more fundamental aging process [190,191].

Under normal conditions, the skin has highly effective defense mechanisms such
as antioxidant enzymes. However, it is known that these mechanisms are insufficient to
sustain their effects due to the aging process [192].

In addition to being one of the underlying causes of many chronic diseases, ROS
also plays an important role in the aging process [193]. Natural antioxidants are used in
pharmaceutical and cosmetic formulations to delay the skin aging process and improve
skin aesthetics [194].

Due to various physical factors (such as aging, prolonged exposure to UV radiation), a
decrease in the number and activities of fibroblast cells is observed in the aging process.
Decreased fibroblast activity is accompanied by decreased collagen synthesis. As a result,
the activities of collagen proteins to protect the natural structure, moisture and elasticity of
the skin are hampered. Wrinkles, roughnesses and hardness appear in the skin, which is
seen as “aging” in the physical sense, and natural active ingredients that support fibroblast
cell proliferation come to the fore in dermo-cosmetic areas [195,196].
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Poplar bud extract containing many polyphenolic compounds such as pinocembrin,
galangin, quercetin, kaempferol and apigenin has been studied by creating a special human
fibroblast aging model. A two-fold increase in catalase gene expression was found in the
group treated with this antioxidant herbal extract [192]. Mohammad et al. (2018) confirmed
that the emulsion cream formulation, which also contains bark extract from a natural plant
rich in flavonoids, has a skin-rejuvenating effect [197]. This extract also provided increased
elasticity and hydration and enriched the skin nutritionally. The fruits of a plant containing
polyphenolic components such as chlorogenic acid, catechin quercetin, gallic acid, and
cinnamic acid were clinically evaluated, and the tested formulation reduced wrinkles and
roughness of the skin by over 10% [198]. Green tea polyphenols were found to greatly
support fibroblast cell proliferation and have high moisture retention ability [195].

6.1. Phenolic Acids

Directly, phenolic acids are antioxidants. Through indirect effects, they stimulate
endogenous protective enzymes and signaling pathways. Phenolic acids show antioxidant
properties due to the hydroxyl substitution in the aromatic ring and the reactivity of the
phenol moiety [24]. In cases where oxidative damage causes tissue degeneration, ferulic
acid shows cell proliferation and rapid wound healing properties due to its antioxidant
and anti-inflammatory properties [68].

6.2. Flavonoids

The antioxidant capacity of anthocyanins varies depending on various modifications
such as glycosylation and hydroxylation [199,200]. Among the anthocyanins, it obtained
the highest antioxidant activity in the cyanidin-3-glucoside compound, which was even
higher than a vitamin E analogue [200]. Auto-fluorescent pigment, an aging marker, was
studied to evaluate anti-aging activity [201]. The results showed that plant extract, the
main component of which is cyanidin-3-rutinoside, has a strong radical-scavenging effect,
reducing the level of endogenous ROS and reducing oxidative stress. Anthocyanins have
proven to be effective in the modulation of stress-response genes as well as decreasing
ROS accumulation. Anthocyanins have proven to be involved in the modulation of stress-
responsive genes, to reduce the accumulation of ROS, to delay aging-related markers, and
to show anti-aging activities [201].

Aging is a risk factor for most neurodegenerative diseases that significantly affects
quality of life and cognitive levels. The analyses show that anthocyanin might act as an
aging suppressor. Anthocyanin was administered to the rats whose aging was accelerated
experimentally in order to investigate the effects of anthocyanin on brain aging. When the
cognitive and non-cognitive components of behavior were examined after 8 weeks, the use
of anthocyanins was shown to reduce DNA damage levels and inflammation accumulation
in the brain, prevent age-related cognitive decline and aging, and be a potential approach
to maintain thinking and memory. Treatment with 30 mg/kg of anthocyanin improved
brain–liver functions in aged model mice with significant deterioration of brain and liver
indicators [202]. In addition, atrophy was prevented by preventing changes in brain and
liver weight with this treatment.

To summarize, the anti-aging effects of anthocyanin and its derivatives are: (1) regu-
lation of protein expression associated with DNA damage response; (2) stress-response-
related gene expression; (3) stimulating the expression of longevity-related genes [200–202].

6.3. Stilbenes

It has been proven that resveratrol and pterostilbene provide antioxidant and anti-
inflammatory effects by activating various signaling pathways and thus have important
properties in modulating age-related and chronic diseases [203]. Resveratrol has skin
whitening and anti-aging properties. Suppressing or inhibiting the activity of tyrosinase,
a limiting enzyme to control melanin production, and ROS scavenging mechanisms play
a role in delaying the complications of aging [204]. In a study on flies, the application
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of resveratrol-rich food alone did not have a lifespan prolonging effect, but it provided
improvement in aging-related dysfunctions such as eye degeneration and locomotor dis-
orders [205]. Increased ROS leads to the formation of toxic peroxynitrite and the release
of nitric oxide radical, which causes vascular oxidative stress. It was found that increased
nitric oxide concentration in cardiomyocytes due to the aging process was significantly
reduced even 2 months after resveratrol treatment [206]. Buonocore et al. (2012) applied a
nutraceutical 60-day treatment containing phenolic compounds such as resveratrol and
procyanidin on 50 healthy middle-aged individuals (who have signs of aging in their
skin) [207]. As a result, the antioxidant capacity of the stratum corneum, which is a very
important layer of the epidermis, has increased, and skin hardness has been improved [207].
Endothelial dysfunction due to aging is an important risk factor for the development of
cardiovascular disease, and alternative treatments are needed. Decreased bioavailability of
nitric oxide (NO), vascular damage, autophagy, poor repair processes, and oxidative stress
present positive feedback mechanisms. The addition of resveratrol to the treatment in the
elderly is reported to be likely to improve vascular functions by causing the regulation of
oxidative balance in the endothelium [208].

6.4. Lignans

The study with an experimental aging model with rats has concluded that the state
of metabolic dysfunction can be regulated with amino acid, lipid and energy metabolism
when lignan extract is administered, and that metabolic dysfunction is partially ameliorated
by downregulation of some transcription factors. It has been stated that Lignan extract can
be used in the prevention and treatment of aging [209].

Superoxide dismutase activity, which is produced as a byproduct of oxygen metabolism
and causes cell damage if not regulated, significantly improved after lignan extract treat-
ment. Therefore, it was concluded that lignans can be used clinically as an agent that
will exhibit an antiaging function by the regulation of oxygen metabolism and protein
expression [210].

Therefore, gel and other kinds of formulations containing the extract of a plant rich in
polyphenols can be a promising, anti-aging natural source in the cosmetic field.

7. Conclusions and Future Respects

The prevalence of cardiovascular diseases, oxidative stress-related complications and
chronic aging-related ailments is very high and is increasingly common worldwide. These
ailments make the lives of patients difficult and in some cases require the use of multiple
drugs, and sometimes they cannot be fully treated. It is a fact that when preparing treatment
schemes for certain diseases, alternative therapeutic agents with fewer side effects, low
toxicity and high patient compliance are needed. By providing appropriate diets, a positive
response is obtained against most diseases before the disease is caught or in the early
period of the disease. At this point, polyphenolic compounds with antioxidant, anticancer,
antidiabetic, anti-inflammatory, and cardiovascular health-protective properties have been
the subject of the agenda. Many experimental studies support the view that polyphenols
and their sub-group flavonoids slow down the development of atherosclerosis and protect
the cardiovascular system from oxidative damage that may result from LDL oxidation. In
addition, due to the long-term consumption of foods and beverages with rich polyphenolic
content, the formation of cardiovascular diseases is delayed.

The antioxidant properties of polyphenols are important besides their protective and
life-enhancing properties on the heart. There are many studies in the literature that these
natural antioxidant compounds reduce the oxidative stress caused by ROS and thereby
reduce the risk of cancer formation. In addition, it has been discovered that they can delay
the emergence of some diseases by slowing down the aging process that will occur due
to many factors such as oxidative stress. Therefore, the importance of consuming foods
containing appropriate amounts of polyphenolic compounds should not be underestimated.
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In addition to these, the mechanism of action of many polyphenolic bioactive compo-
nents in the body or which metabolites of these components affect the pathways have not
been fully elucidated. Natural antioxidant polyphenols will appear more frequently in the
new period experimental studies under the name of nutraceuticals and will take their place
in the field as candidates for alternative therapeutic agents.

The polyphenolic contents and amounts for the same compound are different de-
pending on the source. In this review, we examined the effect of certain polyphenols as
therapeutic or supportive agents in the treatment of certain diseases. In addition, it was
attempted to draw attention to the nutraceutical use of polyphenols by considering their
disease-protective effect. However, the positive effects of many polyphenolic structures
that have not been researched or entered the literature are waiting to be investigated. One
type of feeding should be avoided as much as possible, and diets containing polyphenols
should be given more priority. The contents of polyphenolic structures of local plants,
which are not well known, should be investigated, and their effects on diseases should
be investigated.

Antioxidant, anti-inflammatory, hypotensive, glucose- and lipid-lowering activities
and cardioprotective effects of polyphenols have been demonstrated in many in vivo and
in vitro studies. However, some of these observations are also supported by the results
of existing clinical trials. One of the reasons for this inconsistency is that polyphenols are
extensively metabolized in the human body, affecting their bioavailability. In this regard, it
is important to make more modifications and develop new carrier and/or delivery systems
to increase the bioavailability of polyphenols. Longer-term clinical studies with rational
design and research are needed to examine the therapeutic use of these polyphenols in
cardiovascular diseases and to evaluate the safety profile.
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