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Does EEG Montage Influence Alzheimer’s Disease
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There is not a specific Alzheimer’s disease (AD) diagnostic test. AD diagnosis relies on clinical history, neuropsychological, and
laboratory tests, neuroimaging and electroencephalography. Therefore, new approaches are necessary to enable earlier and more
accurate diagnosis and to measure treatment results. Quantitative EEG (qEEG) can be used as a diagnostic tool in selected cases.
The aim of this study was to answer if distinct electrode montages have different sensitivity when differentiating controls from AD
patients. We analyzed EEG spectral peaks (delta, theta, alpha, beta, and gamma bands), and we compared references (Biauricular,
Longitudinal bipolar, Crossed bipolar, Counterpart bipolar, and Cz reference). Support Vector Machines and Logistic Regression
classifiers showed Counterpart bipolar montage as the most sensitive electrode combination. Our results suggest that Counterpart
bipolar montage is the best choice to study EEG spectral peaks of controls versus AD.

1. Introduction

Alzheimer’s disease (AD) diagnosis is based upon clinical
history, neuropsychological and laboratory tests, neuroimag-
ing, and electroencephalography (EEG). New approaches are
necessary to earlier and more accurate diagnosis [1, 2] and to
measure treatment results [3].

EEG visual analysis can be a helpful diagnostic test in AD
[4, 5]. Background frequency displacement to delta and theta
frequencies and the dropout of central alpha rhythm are
common EEG findings in AD [6]. Accordingly, Sandmann
et al. [7] observed a direct correlation between the degree
of cognitive impairment and the power of low-frequency
electrical activity in the EEG.

Since the first quantitative EEG (qEEG) studies by
Lehmann [8] and Duffy et al. [9], spectral analysis (specA)
and statistics have been applied to EEG. Moreover, specA
has been considered from 71% to 81% sensitive to changes

[10–13] in AD EEG background. Saletu et al. [14] found a
localized temporal decrease of alpha and beta activities in
AD and slow cerebral rhythms widespread distribution in
vascular dementia (VaD) [10–13]. Pucci et al. [15] proposed
that a decrease in alpha frequency to 6.0–8.0 Hz could be an
AD marker.

Despite the knowledge grounded in this field during the
last decades, there are lots of unanswered questions that hin-
der qEEG consolidation as an AD diagnostic tool. Our objec-
tive was to study if distinct electrode montages have different
sensitivity when differentiating controls from AD patients.

2. Materials and Methods

2.1. Subjects. The dataset was composed of electroencep-
halograms (EEGs) recorded from two groups aged from 60
to 80 years: (S1) 12 normal subjects and (S2) 22 probable
AD patients (NINCDS-ADRDA criteria) [16]. AD group
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was classified as having mild to moderate symptoms (DSM-
IV-TR) [17]. Both groups were submitted to the Brazilian
version of the Mini-Mental State Examination (MMSE)
[18, 19]. AD patients scored below 26 points. All probands
did not have a history of diabetes mellitus, kidney disease,
thyroid disease, alcoholism, liver disease, lung disease, or
vitamin B12 deficiency to avoid other causes of cognitive
impairment.

2.2. Data Acquisition and Processing. The EEGs were reco-
rded with 12 bits resolution, band pass of 1–50 Hz, and
sampling rate of 200 Hz. A Braintech 3.0 (EMSA “Equipa-
mentos Médicos”) was the recording hardware. Impedance
was maintained below 10 K, and the electrodes were placed
according to the International 10–20 System [5, 20]. The
interconnected ear lobe electrodes reference (without resis-
tor) is standard in our laboratory, despite the fact that there
are controversies regarding which reference is the best [21,
22]. The EEGs were recorded during 20 minutes. Probands
were awake and relaxed, with closed eyes. Two skilled neu-
rophysiologists removed EEG artifacts (blinking, drowsiness,
muscle movements, or equipment-related artifacts) from the
recordings. Subsequently, from each EEG, 40 epochs of eight
seconds were selected by visual inspection [23].

A 512-point Hamming Fast Fourier Transform (FFT)
algorithm was used to process the epochs analysis. The
windows were 2.5 seconds long with 90% of overlap between
successive windows [23]. EEG signals were filtered using an
infinite impulse response low-pass elliptic filter with a cutoff
frequency at 50 Hz and a zero in the frequency of 60 Hz to
eliminate the interference of the power grid (60 Hz).

2.3. Feature Extraction. Feature extraction is the method
used to mining some characteristics of a particular signal
epoch producing data that can represent events [23]. The
spectral peak feature (or peak spectrum), chosen in this
work, corresponds to the frequency where the EEG spectrum
amplitude reaches its maximum value. The montages used
were

(i) Biauricular reference (Bar): Fp1-A1, Fp2-A2, F7-A1,
F8-A2, F3-A1, F4-A2, C3-A1, C-A2, T3-A1, T4-A2,
P3-A1, P4-A2, O1-A1, O2-A2;

(ii) Longitudinal Bipolar (Lbp): Fp1-F3, F3-C3, C3-P3,
P3-O1, O1-T5, T5-T3, T3-F7, F7-Fp1, Fp2-F4, F4-
C4, C4-P4, P4-O2, O2-T6, T6-T4, T4-F9, F8-Fp2;

(iii) Crossed Bipolar (Bcr): Fp1-Fp2, F7-F3, F3-Fz, Fz-F4,
F4-F8, T3-C3, C3-Cz, Cz-C4, C4-T4, T5-P3, P3-Pz,
Pz-P4, P4-T6, O1-O2;

(iv) Counterpart bipolar (Bco): F7-F8, F3-F4, T3-T4, C3-
C4, P3-P4, T5-T6, O1-O2;

(v) Cz reference (Czr): Fp1-Cz, Fp2-Cz, F3-Cz, F4-Cz,
F7-Cz, F8-Cz, T3-Cz, T4-Cz, C3-Cz, C4-Cz, T5-Cz,
T6-Cz, P3-Cz, P4-Cz, O1-Cz, O2-Cz.

Each of these electrode montages (Figure 1) had spectral
peaks calculated for delta (from 0.1 to 4.0 Hz), theta (from

4.0 to 8.0 Hz), alpha (from 8.0 to 12.0 Hz), beta (from 12.0
to 30.0 Hz), and gamma (from 30.0 to 50.0 Hz) bands [24].

2.4. Classifiers. The EEG dataset was composed of 1360
epochs (40 epochs of 34 subjects). The analysis was based on
the leave-one-subject-out process: 1320 epochs were used for
training and 40 epochs from one subject for testing. It means
that, each time, the classifier was trained with epochs from all
individuals except the one going to be tested. This procedure
was performed to test the classifiers discriminative capacity
to work with data diverse from that presented in the training
period. The leave-one-subject-out process was repeated for
all 34 individuals (34 tests each montage).

2.4.1. Support Vector Machines (SVMs). SVMs constitute a
supervised Machine Learning (ML) technique based on the
Statistical Learning Theory [25]. In this method, a training
dataset (containing known labeled data examples) is used
to draw a hyperplane with maximum margin, based on the
feature coordinates, which separates the two classes (in our
case, Controls and AD). Subsequently, the coordinates of
this hyperplane are used to test a dataset and the accuracy
of the model [26]. When classes are not linearly separable,
feature coordinates should be mapped to a higher dimension
by a Kernel function. In this new space, the classes become
linearly separable and the maximum margin hyperplane can
then be found [26].

In this experiment, the Weka tool [27] with default
values was used to the SVM induction. The regularization
coefficient of SVM was maintained in C = 1.0, while the
Kernel used was RBF [28]. The cache size was 250007, and
the gamma value was 0.01.

2.4.2. Logistic Regression (LR). Logistic regression is part
of a category of statistical models called generalized linear
models. LR is a classification tool frequently used to help
diagnosis [29]. In this method, the discriminant function
analyses the sum of the scores of each feature and then
delimitates the boundaries between the two groups [30].
Logistic regression calculates the predicted probability of
different subgroups (in our analysis) falling into a category
[30]. In LR induction, we also used Weka tool [27] with
default values. In this case, the maximum interaction value
was −1.0, and the ridge value in the log-likelihood was
configured to 1.0.

3. Results and Discussion

Table 1 shows the results of both classifiers to each electrode
montage. The columns represent, respectively, from left to
right, accuracy, sensitivity (patients correctly diagnosed as
AD), and specificity (controls correctly diagnosed as nor-
mals). The first line of each montage shows the percentage
of epoch classification (mean and standard deviations).

The second line of Table 1 presents the per subject per-
centage. The leave-one-out analysis of each subject took into
consideration the ratio between the number of epochs clas-
sified correctly and the total number of epochs. When this
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Figure 1: Spectral peaks montage maps. Lines correspond to subtractions used to calculate spectral peaks. From left to right, top to bottom:
Counterpart Bipolar (Bco), Longitudinal Bipolar (Lbp), Crossed Bipolar (Bcr), Biauricular reference (Bar), and Cz reference (Czr).

Table 1: Accuracy, sensitivity, and specificity rates for each montage. Best results in bold and worst results in italic.

Support Vector Machines Logistic Regression

Accuracy (%) Sensitivity (%) Specificity (%) Accuracy (%) Sensitivity (%) Specificity (%)

Bipolar Counterpart Bipolar Counterpart

Epochs 81,32± 28,00 89,43± 20,92 66,46± 33,84 82,13± 20,86 86,93± 17,49 73,33±24,32

Patient 85,29 90,91 75,00 91,18 95,45 83,33

Longitudinal Bipolar Longitudinal Bipolar

Epochs 72,72 ± 36,80 84,09 ± 27,52 51,88 ± 43,39 66,03 ± 35,76 75,45 ± 31,42 48,75 ± 38,04

Patient 79,41 90,91 58,33 64,71 72,73 50,00

Crossed Bipolar Crossed Bipolar

Epochs 69,19 ± 37,60 80,23 ± 32,40 48,96 ± 39,32 65,07 ± 36,09 76,59 ± 33,23 43,96 ± 32,36

Patient 64,71 81,82 41,67 67,65 77,27 50,00

Biauricular Reference Biauricular Reference

Epochs 70,07 ± 36,81 85,57 ± 23,12 41,67 ± 41,03 66,32 ± 32,50 76,14 ± 28,05 48,33 ± 33,50

Patient 76,47 95,45 41,67 67,65 81,82 41,67

Cz Reference Cz Reference

Epochs 70,22 ± 37,70 81,36 ± 31,15 49,79 ± 41,33 71,62 ± 28,37 80,45 ± 24,64 55,42 ± 28,52

Patient 70,59 81,82 50,00 73,53 86,36 50,00

ratio was over 0.5, the subject classification was considered
correct. After 34 tests, the rate of subject correct diagnosis
was calculated. In Table 1, Bco is the montage with highest
number of correct diagnosis and the lowest standard devi-
ation to all classifiers. Bco also had high specificity (correct
diagnosis of AD) and sensibility. These findings are relevant

because they validate this qEEG technique as a diagnostic
method. Therefore, it can help supporting clinical diagnosis.

It is important to note that high standard deviation (SD)
is a methodological consequence of the leave-one-subject-
out test. If an individual had bad epochs accuracy, the group
mean was low and the SD high. Bco was the montage with
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Table 2: Number of patients with epoch accuracy rates equal to 100%, exceeding or equal to 75%, less than or equal to 50%, and equal to
0% for each test. Best results in bold and worst results in italic.

Support Vector Machines Logistic Regression

= 100 ≥ 75 ≤ 50 = 0 = 100 ≥ 75 ≤ 50 = 0

Bipolar Counterpart 15 26 5 0 12 25 3 0

Longitudinal Bipolar 16 21 7 2 7 20 12 1

Crossed Bipolar 13 20 12 3 8 18 11 2

Biauricular Reference 14 19 8 2 8 18 11 0

Cz Reference 15 20 10 3 4 20 9 0

Table 3: Odds ratio to Bipolar Counterpart LR test. In bold the significant ones (>1).

delta theta alpha beta gamma

F3-F4 0,371 ± 0,063 2,496± 0,575 0,969 ± 0,230 1,188± 0,101 0,913 ± 0,052

F7-F8 128,806± 50,806 2,580± 0,958 0,728 ± 0,221 1,543± 0,126 0,659 ± 0,045

C3-C4 0,693 ± 0,176 3,667± 1,213 0,734 ± 0,191 2,229± 0,275 0,975 ± 0,047

T3-T4 0,753 ± 0,182 0,177 ± 0,068 0,263 ± 0,059 0,836 ± 0,087 1,118± 0,049

T5-T6 0,277 ± 0,075 1,011± 0,258 0,104 ± 0,029 0,875 ± 0,080 0,649 ± 0,034

P3-P4 0,574 ± 0,107 0,511 ± 0,091 0,019 ± 0,008 0,962 ± 0,118 1,888± 0,087

O1-O2 2,231± 0.364 0,402 ± 0,126 0,767 ± 0,177 0,761 ± 0,072 0,792 ± 0,036

lower SD, consequently, indicating less variability in number
of correct diagnosis.

Table 2 shows the results of the individual accuracy rate
variability. The columns show, respectively, from left to right,
epochs accuracy by each subject of 100%,≥75%, ≤50%, and
0% (all epochs incorrectly classified by one subject).

SVMs tests presented Lbp as the montage with maximum
epoch accuracy (16 subjects with 100% accuracy), followed
by Bcp e Czr (15 cases each). Bco was the montage with
higher number of cases with accuracy greater than or equal
to 75%, less cases with accuracy less than or equal to 50%,
and without cases of 0% correct classification.

The LR tests ratified Bco as having the highest number
of 100% accuracy results, the highest number of cases
with accuracy greater than or equal to 75%, less cases
with accuracy less than 50%, and no cases of 0% correct
classification (in this last case similar to Bar and Czr, both
with zero cases).

This study suggested that Bco was the more trustworthy
montage because of his higher rates of 100% epoch accuracy
and absence of 0% cases to both classifiers. Consequently,
other parameters could be tested based on LR. The odds
ratio values (ODDR) could be analyzed from the ratio
AD/controls (Table 3). It was possible to verify 11 features
presenting ODDR > 1. Consequently, there is a possibility
that these features can be associated with AD.

Among these ODDR features, the electrodes F3-F4, F7-
F8, C3-C4, and T5-T6 presented values of ODDR > 1 to theta
band; the electrodes F7-F8 and O1-O2 presented values of
ODDR > 1 to delta band; F3-F4, F7-F8 and C3-C4 presented

values of ODDR > 1 to beta band, and T3-T4 and P3-P4
presented values of ODDR > 1 to gamma band.

EEGs of mild DA have higher theta activity and low beta
activity [31, 32], as seen in our cases (F3-F4, F7-F8, C3-
C4, and T5-T6). Furthermore, these electrodes were directly
associated with the inter-hemispheric differences found in
our AD population [33]. Moderate to advanced cases of AD
are associated with increasing of delta activity [32, 34–36],
and this could explain the values found in F7-F8 and O1-
O2. Thus, our findings are in accordance to data presented
by others.

The analysis of the number of electrodes related to
each montage demonstrates that the montages with higher
number of signals were Lbp and Czr with 16 signals each,
followed by Bar and Bcr with 14 signals. The montage with
lowest number of signals was Bco (7 signals). We can say that
Bco is also the more compact (less electrodes), consequently,
less expensive in terms of processing time.

4. Conclusion

To sum, our results are in accordance with the literature
that suggests that the spectral peak is an efficient tool in AD
diagnosis [24, 37]. Our contribution is to answer the ques-
tion that gave origin to the paper. Yes, the analysis indicates
that the bipolar inter-hemispheric montage (Counterpart
bipolar) is the best to evaluate AD patients with the help of
automatic classifiers (DA versus N) [38, 39], when using EEG
spectral peaks as features (predictors).
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Although more tests are needed to confirm the gener-
alization power of our classifiers, we propose that spectral
peak calculation using different montages of electrodes have
an influence on the classification results (differentiation) of
normal subjects and patients with AD. Our future goal is
to generalize the results obtained increasing the number of
probands.
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