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Abstract

Background: Both transcriptional control and microRNA (miRNA) control are critical regulatory mechanisms for
cells to direct their destinies. At present, the combinatorial regulatory network composed of transcriptional
regulations and post-transcriptional regulations is often constructed through a forward engineering strategy that is
based solely on searching of transcriptional factor binding sites or miRNA seed regions in the putative target
sequences. If the reverse engineering strategy is integrated with the forward engineering strategy, a more accurate
and more specific combinatorial regulatory network will be obtained.

Results: In this work, utilizing both sequence-matching information and parallel expression datasets of miRNAs and
mRNAs, we integrated forward engineering with reverse engineering strategies and as a result built a hypothetical
combinatorial gene regulatory network in human cancer. The credibility of the regulatory relationships in the
network was validated by random permutation procedures and supported by authoritative experimental
evidence-based databases. The global and local architecture properties of the combinatorial regulatory network
were explored, and the most important tumor-regulating miRNAs and TFs were highlighted from a topological
point of view.

Conclusions: By integrating the forward engineering and reverse engineering strategies, we manage to sketch a
genome-scale combinatorial gene regulatory network in human cancer, which includes transcriptional regulations
and miRNA regulations, allowing systematic study of cancer gene regulation. Our work establishes a pipeline that
can be extended to reveal conditional combinatorial regulatory landscapes correlating to specific cellular contexts.
Background
Transcriptional factors (TF) and microRNAs (miRNAs) are
important regulation factors to determine the expression
levels of mRNAs and miRNAs [1]. TFs activate or repress
gene transcription by binding to specific sites (transcription
factor binding sites, or TFBSs) in promoter regions, thus
regulating gene expression at the transcription level;
miRNAs inhibit mRNA translation by inducing mRNA
degradation and/or blocking the translation machinery,
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thus negatively regulates gene expression at the post-
transcriptional level. Given the facts that the transcription
of both mRNA and miRNA is regulated by TFs, and that
mRNA expression, including TF’s, could be modulated by
miRNAs, the cellular transcriptome is believed to be deter-
mined by combinatorial regulatory network of at least two
interconnected layers, where TFs work as master regulators
in the transcriptional layer and miRNAs as fine tuners in
the post-transcriptional layer [1]. It thus becomes critical to
delineate and characterize the two-layered combinatorial
regulatory networks, for the sake of understanding the
regulatory mechanisms at a higher precision than what we
can do with either layer alone.
Databases, such as TransFAC [2] on TF-to-mRNA

regulation, TransmiR [3] on TF-to-miRNA regulation,
and TarBase [4] on miRNA-to-mRNA regulation, pro-
vide experimentally validated regulation relationships
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between regulators and their targets. However, such data
alone are too limited to enable large-scaled studies.
Therefore, peers have resorted to a forward-prediction
strategy to infer regulatory relationships between TFs or
miRNAs and their putative targets based on the match-
ing or complementary of motif or seed sequences [5,6].
In this way, they built the two-layered combinatorial
regulatory networks, and investigated the global and
local architectural properties [7,8]. It is imaginable that a
high rate of false positive predictions is necessitated [9],
and moreover, these forward works generate ‘reference
networks’ that span across all spatiotemporal contexts –
in concept all regulations that take place at different
temporal points and different cells or tissues are com-
bined unreasonably. That is, forward engineering cannot
solve a conditional regulatory network that corresponds
to a particular cellular context. The reverse engineering
strategy therefore comes into use where the regulatory
relationships between TFs or miRNAs and their putative
targets (cause) are inferred from the observed expression
correlations (consequence) (for a review see [10]).
Reverse engineering has been put into effect in infer-

ring TF-controlled transcriptional regulation networks
[11-13] as well as sifting miRNA potential targets
[14,15]. However, we have rarely seen successful applica-
tions of reverse engineering in inferring combinatorial
networks involving TFs and miRNAs, except for a few
works where small-scaled combinatory circuits of miR-
NAs and TFs were mapped around some selected genes
prioritized from the expression data [16-18]. The major
obstacle in this direction, lack of simultaneously mea-
sured miRNA expression data and mRNA expression
data, is being relieved as parallel miRNA expression and
mRNA expression datasets are being continuously
released to public [19], such as those for epithelial sam-
ples [20,21] or various tumor samples [22-24]. Having
only been explored for confirming predicted miRNA tar-
gets [24,25] or extracting tumor-classifying molecular
signatures [26], these parallel expression datasets have
far more potential to be exploited.
Previously, we integrated forward predicted gene regu-

lation relationships with miRNA-perturbed gene expres-
sion datasets (MPGE datasets) and as a result elucidated
miRNA-centered primary and secondary regulatory cas-
cades in human cancer by using nonparametric test and
linear regression modeling [27]. Confined to the type of
expression data - mRNA expression, the combinatorial
regulatory networks mapped therein encompassed only
the regulation of mRNA by TF and by miRNA (miRNA-
to-mRNA, TF-to-mRNA), missing the regulation of
miRNA by TF (TF-to-miRNA). This limitation is also
existent in a contemporary study [28], which substitutes
mRNA’s expression data for that of the embedded intra-
genic miRNA in order to identify miRNA-mediated
feedback and feed-forward loops. We realize that studies
on combinatorial gene regulatory network can be advanced
significantly with the help of the aforementioned parallel
miRNA expression and mRNA expression datasets. Due to
our preceding work on human cancers [27], we are par-
ticularly interested in the NCI-60 data panel [23,29] which
involves 60 cancerous cell lines originating from breast,
central nervous system, colon, leukemia, melanoma, Non-
Small Cell Lung, ovarian, prostate, and renal tissues.
In the present work, we demonstrated an efficient in-

tegration of the forward-predicted candidate regulatory
relationships with the NCI60 panel of parallel miRNA
and mRNA expression datasets, giving rise to a genome-
scale combinatorial network of transcriptional regula-
tions and miRNA regulations in human cancer. The re-
sultant combinatorial regulatory network makes a
scaffold for systematic study of cancer gene regulation,
and the demonstrated working pipeline can be extended
to reveal conditional combinatorial regulatory land-
scapes in other cellular contexts.

Materials and methods
Parallel miRNA and mRNA expression datasets
From the NCI-60 data source CellMiner (http://discover.
nci.nih.gov/cellminer/), we downloaded the NCI-60
mRNA expression dataset assayed with the Affymetrix
HG-U133 44 K probeset microarray [29] and the parallel
miRNA expression dataset assayed with the OSU-CCC-
hsa-miRNA-chip-V3 array [23]. A total of 59 cell lines, ori-
ginating from breast, central nervous system, colon,
leukemia, melanoma, Non-Small Cell Lung, ovarian, pros-
tate, and renal tissues, were used in our study, ignoring the
cell line “LC:NCI_H23” for lack of necessary meta-infor-
mation. For a pre-filtration of non-informative molecules,
we only analyzed ‘frequently expressed’ miRNAs and
mRNAs whose log2-based expression values were larger
than the dataset-specific minimum value (2.3 and 7 for
miRNA and mRNA respectively) in more than 47 (~80%)
arrays. Afterwards, values in each row (corresponding to
each mRNA or miRNA) of the two expression datasets
were centered to zero, and rows of synonymous probes
were averaged to designate a unique miRNA or mRNA. Fi-
nally, we determined two parallel expression datasets
across a same spectrum of cancer cell lines, one involving
195 microRNA genes and another involving 8388 protein-
coding genes.

Candidate miRNA-to-gene regulatory relationships from
miRGen
From the miRGen website (http://www.diana.pcbi.
upenn.edu/miRGen, version 3.0), we obtained 118,408
human candidate miRNA-gene regulatory relationships
involving 276 human microRNAs and 10,255 targets,
which were a union of results from three forward

http://discover.nci.nih.gov/cellminer/
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predicting algorithms: PicTar [30], TargetScan [5] and
miRanda [31]. For more information, please refer to our
related work [27] and its supplement 2.

Candidate TF-to-gene regulatory relationships from UCSC
and TRED
A set of forward predicted TF-gene regulatory relation-
ships were compiled by merging records from UCSC
(http://genome.ucsc.edu/) and TRED (http://rulai.cshl.
edu/TRED/), which included 130,338 binary tuples in-
volving 214 human TFs and 16,534 targets. For more in-
formation, please refer to our related work [27] and its
supplement 3.

Candidate TF-to-miRNA regulatory relationships from
UCSC
The file ‘wgRna.txt’, downloaded from UCSC hg18, gave
coordinate information of human microRNA genes. For
all miRNAs, around 35% were embedded in protein-
coding gene regions and on the same-strand of the host
gene, i.e., intragenic, whereas the others were located
outside protein-coding gene regions, i.e., intergenic.
Note that miRNAs embedded in protein gene regions
but on the opposite strand to the host gene’s were
assigned to the so-called ‘intergenic’ group.
For intragenic miRNAs, we assume that they have the

same transcriptional factors as their host genes consider-
ing the co-transcription of intragenic miRNAs and the
hosts [32,33]. This is a common tactic in this field [28],
though some violations were lately observed [34]. For
intergenic miRNAs, we inherited pioneer operations [35]
to group them into genomic clusters where in each clus-
ter every two proximate miRNAs were separated by
not more than 7.5 kb (more explanation is found in
Additional file 1). Then we investigated the distribution
of TF binding site (TFBS) near the first microRNA in
each cluster and defined -3Kb to +1Kb of the first
microRNA's transcription starting site (TSS) as the pro-
moter region of the whole cluster (more explanation on
the promoter definition is found in Additional file 1.)
On these grounds, candidate TF-target microRNA rela-
tionships for intergenic miRNAs were established.

Network modeling
The simplicity of the linear regression model has led
many groups to employ it to reveal the gene network
from gene expression data (for a review please see [10]),
and it was also successfully utilized in our related work
[27]. In this work, still by using the linear regression
models, we constructed a combinatorial gene regulatory
network based on the forward predicted regulation rela-
tionships involving TFs and miRNAs and 59 different
expression values for each of 199 miRNAs and 8388
protein-coding genes. We noted that in the forward
predictions, a target can be regulated by quite a lot of
regulation factors: for instance, PLEC1, DMD, and
BDNF were associated with more than 50 TFs, inconsist-
ent with the observation that a gene is rarely regulated
by more than 20 regulators [7]. As we did previously
[27], we therefore conducted a single variable linear re-
gression (Equation 1) with respect to every pair of a
regulator (TF or miRNA) and a putative target, in order
to filter out the regulation relationships where the regu-
lator was not significantly related to the concerned tar-
get. For a specific target t (an mRNA or a miRNA), its
expression level (log2 expression value), Et , is modeled
in Equation 1. Ert and Art respectively stand for the
observed expression level and the to-be-estimated regu-
latory efficacy of a regulator rt (a miRNA or a TF) which
regulates the target t. ‘Intercept’ is a constant, and err,
following a normal distribution with a zero mean, cap-
tures the variation of gene t's mRNA level that cannot
be interpreted by its regulators.

Et ¼ Ert ⋅Art þ interceptþ err ð1Þ
After regression of Equation 1, TFs and miRNAs without

statistically significant relationship (p>α1, α1=0.05) with
their putative targets were disconnected with their putative
targets. With regards to miRNA-to-target regulations, spe-
cially, we only kept the ones with negative regulation effi-
cacy Art . In this way, the number of putative regulation
relationships was largely cut down. The remaining regula-
tors for a specific target, mRNA or miRNA, were repre-
sented as independent variables in the formal multivariate
linear regression (Equation 2 or Equation 3).
The expression level (log2 expression value) of a mRNA

target g, Eg , is modeled in Equation 2. Atfg is a vector of
the regulating efficacy of TFs that regulate gene g (tfg); cor-
respondingly, Etfg is a vector of the mRNA levels (log2 ex-
pression value) of those TFs. Similarly, Amg is a vector of
the regulating efficacy of miRNAs that regulate gene g,
and Emg is a vector of the levels (log2 expression values) of
those miRNAs. Note that miRNAs here were assumed to
regulate their targets only through mRNA degradation,
which is acceptable as mammalian miRNAs predomin-
antly act to decrease target mRNA levels through mRNA
degradation rather than mRNA blockage [36].

Eg ¼ Etfg ⋅Atfg þ Emg ⋅Amg þ interceptþ err ð2Þ

Similarly, the expression level (log2 expression value) of
a miRNA target m, Em , is modeled in Equation 3 with
Etfmrepresenting the expression levels of its regulating TFs,
and Atfm representing their regulation efficacies.

Em ¼ Etfm ⋅Atfm þ interceptþ err ð3Þ

http://genome.ucsc.edu/
http://rulai.cshl.edu/TRED/
http://rulai.cshl.edu/TRED/
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In brief, expression levels of mRNAs (Equation 2) and
miRNAs (Equation 3) were modeled by the regulators
that passed the statistical test (p < =α1) in the pre-
filtering step (Equation 1), and the stepwise linear regres-
sion was implemented to determine the ultimate
regulators of a particular target. As we did for Equation
1, if a positive miRNA-to-target regulation efficacy
appears in the final regression model of Equation 2, all
regulations reserved in the model for the same target
gene g were eliminated.
An R function implementing this network modelling al-

gorithm (miRNAII.regression) is provided in the supple-
mentary source codes (Additional file 2).

Results
A genome-scale combinatorial gene regulatory network
in human cancer
By integrating the forward-predicted regulatory relation-
ships and the miRNA/mRNA expression data with the lin-
ear regression models (Equations 1, 2, and 3), we culled a
subset of regulatory relationships that were hopefully
more plausible than the beginning set of forward-
predicted regulatory relationships. These remaining
regulator-target relationships make up a combinatorial
network of transcriptional regulations and miRNA regula-
tions in human cancer, which involves 3418 vertices and
5136 edges. The full information on the edges and vertices
are included in Additional file 3: Table S1 and Additional
file 4: Table S2, while the summary statistics are shown in
Table 1. A subnetwork that is composed solely of regula-
tion factors (TFs and miRNAs) is extracted from the
whole network for a quick glimpse (Figure 1).
To estimate the false discovery rate of our predicted regu-

latory relationships, we randomly permuted the expression
values within each expression dataset and conducted the
linear regression procedure (Equations 1, 2, and 3) over the
randomized miRNA/mRNA expression datasets for 100
times. The regulation edges in the combinatorial networks
resulting from the randomized datasets were deemed as
false discoveries. In this way, we estimated that the overall
false discovery rate (FDR) of the regulation relationships
Table 1 Statistics of vertices and edges in the combinatorial g

Vertices MiRNAs

TFs

Non-TF protein-coding genes

Total

Edges miRNA-gene

TF-gene

TF-microRNA

Total
remaining in the human cancer combinatorial gene regula-
tory network were 17.2% (Table 2).
We also evaluated our methods in terms of the pre-

dictability of the resultant linear model (Equation 2 and
Equation 3). While in real work we made use of all 59
expression data-points of a gene, in the jack-knife like
evaluation procedure we excluded one data-point from
the modeling (Equations 1, 2, and 3) and used the fitted
model (Equation 2/Equation 3) to predict the left-out
data-point. For each target gene we had 59 iterations,
and we calculated the Pearson correlation coefficient
(PCC) between the measured expression values and the
predicted ones. As a result, significantly higher PCCs
were obtained with real expression data than with ran-
domly permuted data (Additional file 5), indicating that
the obtained linear model, or roughly speaking the com-
bination of included regulations, had a significant power
to predict the targets’ expression values.
Finally, by resorting to databases TarBase, TransFAC,

and TransmiR which contain different types of experi-
mentally validated regulation relationships, we compared
the fractions of experimentally supported records in the
modeling results and in the forward predictions. It
turned out that the fractions had been significantly
raised by our integrative modeling strategy for all three
regulation types (Table 3 and Additional file 3: Table
S1), proving the validity of our model.

Key players in the human cancer combinatorial gene
regulatory network
Since our modeling work was based on the NCI60 ex-
pression data panel, the genes in the combinatorial
regulatory network should be substantially related to
cancer. For a total of 427 cancer related genes down-
loaded from the “Cancer Gene Census" (http://www.
sanger.ac.uk/genetics/CGP/Census/), 197 overlapped the
8,388 frequently expressed genes of the NCI-60 mRNA
expression dataset, of which 121 were found in the
3,259 genes remaining in the resultant regulatory net-
work (Additional file 3: Table S1). The fraction of
cancer-related genes was significantly raised from 2.3%
ene regulatory network in human cancer

Number of unique objects

159 (101 as only regulator, 5 as only target, and 53 as both)

81 (22 as only regulator, 13 as only targets, and 46 as both)

3178

3418

1625

3413

98

5136

http://www.sanger.ac.uk/genetics/CGP/Census/
http://www.sanger.ac.uk/genetics/CGP/Census/


 2.1

 2.5

 1.5

 3.4

 2.1

 3.0

−1.6

−2.2

−2.7

−2.0 2.6

 2.6

 2.1

 2.3

 2.4

−2.4

−2.0

 5.5

−2.9

 1.5

 2.3

−2.3

−1.8

−2.5

−3.0

−3.0

−1.5

 3.9

 5.5

 2.3 2.4

−2.2 2.1

−2.8

 1.8

−3.5

−2.8

 1.5

 1.6

 2.3

−3.9

−1.9

−2.6

−2.8

−2.6

−1.8

 2.2

 2.9

−2.2

 2.6

−2.2

−1.4

 2.3

−1.5

−2.4

 2.7

−3.7

 2.9

 1.7 −1.5

−1.4
−3.2

 1.5

−1.4

−1.6

 2.8

 2.6−3.5

−3.5

 2.4  2.1

 3.3

−2.9

 2.6

−3.0

 2.0

 1.7

−1.7

−1.6

 2.4

−2.8

−3.3

−1.5

 2.1

 2.9

 4.0

 2.7

−2.4

 2.6

 3.1

 2.4

 2.5

−2.1

−2.0

 2.1

−2.8
−1.5

 2.0

−2.1

 5.0

 2.2

 1.4

 3.4

 1.9

−2.1

−3.0

−2.1

 3.2

−2.3

 2.9

 2.9

−2.9

 2.1

 2.1

 2.5

−1.9

−1.9

−3.1

 2.2

 1.7

 2.3

 2.3

 2.6

 2.5

 3.8  2.1

−2.4

 2.3

−2.3

 1.6

−1.9 1.7

−2.5 2.3

 3.1

−2.8

 3.0

 2.1

 2.6

−1.8

 2.1

−2.3

 3.0

 1.6

 2.9

 1.5

−1.6

 4.7

 2.1
 3.1

 3.1

−2.2

−2.1

 2.3

−2.3

 3.0 2.4

 2.1

 1.9

 2.2

 3.0

 2.6

 2.2

 2.3

 2.5

 3.9

 2.8

 2.2

 1.6

−2.5

 2.8

−1.6

 2.1

 1.6

−1.8

 1.7

 1.4

ARID5B

ARNT

ATF4

CUTL1
E2F2

E2F3

E2F4

EGR1

ELK1

ETS1

FOSL1

FOXO1A

FOXO3A

GATA3

GATA6

HIF1A

HOXA9

hsa−let−7c

hsa−let−7f

hsa−let−7i

hsa−mir−100

hsa−mir−101

hsa−mir−103

hsa−mir−106a

hsa−mir−106b

hsa−mir−10a

hsa−mir−10b

hsa−mir−124a

hsa−mir−125b

hsa−mir−128b

hsa−mir−129

hsa−mir−130b

hsa−mir−132

hsa−mir−134

hsa−mir−135a

hsa−mir−140

hsa−mir−141

hsa−mir−147

hsa−mir−152

hsa−mir−15a

hsa−mir−181a

hsa−mir−181b

hsa−mir−181c

hsa−mir−181d

hsa−mir−182

hsa−mir−192

hsa−mir−193b

hsa−mir−194

hsa−mir−195

hsa−mir−196a

hsa−mir−196b

hsa−mir−199a

hsa−mir−19a

hsa−mir−19b

hsa−mir−200b

hsa−mir−205

hsa−mir−20b

hsa−mir−21

hsa−mir−214

hsa−mir−215

hsa−mir−219

hsa−mir−220

hsa−mir−221
hsa−mir−222

hsa−mir−23b

hsa−mir−25

hsa−mir−26a

hsa−mir−26b

hsa−mir−27b

hsa−mir−29b

hsa−mir−31

hsa−mir−32

hsa−mir−326

hsa−mir−328

hsa−mir−361

hsa−mir−365

hsa−mir−377

hsa−mir−378

hsa−mir−383

hsa−mir−497

hsa−mir−9

hsa−mir−92

JUN

JUNB

JUND

KLF12

MAX

MEF2A

MSX1

MYC

NFATC3

NFE2L1

NFIA

NFIC

NFKB1

NFYB

NR2F2

NR3C1

PBX1

POU3F2

PPARG

RFX1

RREB1

RUNX1

SMAD3

SOX9

SP1

SP3SREBF1

STAT1

STAT3

STAT6

TFAP2A

TFAP2C

TGIF1

TP53

XBP1

YY1

ZIC2

ZNF238

Figure 1 A sub-network from the human cancer combinatorial gene regulatory network composed of regulators only. Pink nodes
indicate miRNAs; blue and grey nodes indicate TFs regulating or not regulating other regulators. Regulation relationships are differentially
designated with three different edges according to the linear regression p-value: solid lines (most credible, p < 0.01), dashed line (medium
credible, 0.01 < p< 0.05), and dotted line (less credible, p > 0.05). Numbers tagged with each edge are the T-statistics of the corresponding
regulation.

Table 2 False discovery rates (FDRs) of predicted regulation relationships

Regulation type Edges in shuffled network Edges in predicted network FDR (%)

miRNA!gene 477.8(+− 29.2) 1625 29.4(+− 1.8)

TF!gene 382.3(+− 23.9) 3413 11.2(+− 0.7)

TF!miRNA 21(+− 5.2) 98 21.5(+− 5.3)

Overall 881.1(+− 46.2) 5136 17.2(+− 0.9)
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Table 3 Validation of regulation relationships

Regulation type Validation source Engineering method Total items Items validated Validation fraction Significance of validation
fraction increase
(binomial test p-value)

miRNA-to-gene TarBase Forward 86,196 583 0.6% <0.055

Forward and reverse 1,625 16 1%

TF-to-gene TransFAC Forward 58,417 137 0.3% 3.3e-13

Forward and reverse 3,413 35 1%

TF-to-miRNA TransmiR Forward 1195 23 1.9% 1.8e-5

Forward and reverse 98 9 9.1%

*Forward: the forward-predicted regulatory relationships involving only the regulators showing up in the combinatorial regulatory network; forward and reverse:
the regulatory relationships showing up in the combinatorial regulatory network.
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to 3.7% (hypergeometric t-test p < e-10), consistent with
the expectation that our gene regulatory network
should enrich genes related to cancer. In the following
sections we pinpointed the most noteworthy cancer-
related genes and miRNAs from the topological view-
point (for a full table of vertex properties see Additional
file 4: Table S2).

MYC
From the combinatorial regulatory network, we concen-
trated on the most common regulators according to ver-
tices’ out-degrees and betweennesses [37] (Additional
file 4: Table S2). Among these common ones, MYC has
the largest number of regulating targets (301) and the
highest betweenness (46215.9). Besides, of all regulators,
MYC has the largest in-degree (six), implying that MYC
is under strict control. These statistics are consistent
with the unique role of MYC in tumorigenesis. As one
of the most important cancer-related genes, MYC has
been proved to participate in several essential functions,
such as cell cycle progression and apoptosis. Particularly,
MYC was found to be involved in the regulation of a
broad range of miRNAs, many of which play key roles in
cell proliferation and oncogenic transformation [38,39].
In our network, MYC was predicted to regulate 10

miRNAs: miR-378, hsa-miR-17, hsa-miR-19a, hsa-miR-
19b, hsa-miR-20b, hsa-miR-92, hsa-miR-106a, hsa-miR-
25, and hsa-miR-106b, and hsa-miR-125b. Of them,
hsa-miR-378 is located in the intron of protein-coding
genes PPARGC1B, an experimentally validated
transcriptional targets of MYC [40], and another eight
miRNAs (hsa-miR-17, hsa-miR-19a, hsa-miR-19b, hsa-
miR-20b, hsa-miR-92, hsa-miR-106a, hsa-miR-25, and
hsa-miR-106b) belong to three paralogous clusters
located on chromosome 13 (the hsa-miR-17 cluster),
chromosome X (the hsa-miR-106a cluster), and chromo-
some 7 (the hsa-miR-106b cluster), with the former two
clusters having been proved to be regulated by MYC
[41]. Finally, our prediction of hsa-miR-125b being
repressed by MYC was in accordance with an
independent observation [42]. It is notable that, except
hsa-miR-125b, the other nine miRNAs were all predicted
to be ‘ACTIVATED’ by MYC, and this seems contradict-
ory to a previous notion that ‘widespread microRNA RE-
PRESSION by Myc contributes to tumorigenesis’ [42].
Aside from the 10 miRNA targets, MYC demonstrated

another 291 protein-coding genes as its regulating tar-
gets. In order to evaluate the reliability of our refined
MYC targets, we referred to a set of 3,455 c-Myc bind-
ing targets determined in human B lymphoid tumor
using chromatin immunoprecipitation coupled with
pair-end ditag sequencing analysis (ChIP–PET) [40], and
found that the fraction of ChIP-PET confirmed MYC
targets was increased from 18.0% (453 of 2508) in the
forward prediction to 23.0% (67 of 291) in the modeling
result, which was a statistical significant enrichment
(hypergeometric test p = 0.009). The 67 MYC targets
confirmed by ChIP-PET experiment were marked out in
Additional file 3: Table S1.

Hsa-miR-106b and hsa-let-7c
By analogy to MYC, miR-106b, a target of MYC, is prob-
ably the most important miRNA since it has the largest
number of targets among all miRNAs in the network. For
the 44 predicted targets of miR-106b, 38 were covered in
the public dataset GSE6838 (http://www.ncbi.nlm.nih.gov/
projects/geo/query/acc.cgi?acc=GSE6838) recording the
gene expression changes in cells transfected with hsa-
miR-106b, and 21 were among the top 5% down-regulated
genes (Additional file 6). While the hsa-miR-106 family
have been implicated in breast cancer [43] and gastro-
intestinal tumor [44], our results furthermore suggest it
may be a central miRNA underpinning the general
tumorigenesis mechanism. In-depth investigations of hsa-
miR-106b and its regulations are necessary in future stud-
ies of fundamental cancer mechanisms.
In our network, there are some miRNAs that have

betweenness comparable to TFs (Additional file 4:
Table S2), among which hsa-let-7c is a typical example.
The betweenness of hsa-let-7c is ranked after only four

http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE6838
http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE6838
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TFs in the combinatorial regulatory network, and its
confirmed inhibition of MYC [45] happened to have the
highest edge-wise betweenness. In addition, hsa-let-7c
is regulated by NFE2L1, the 5th TF with the largest out-
degree. All these observations indicate that hsa-let-7c is
another important miRNA probably underpinning the
general tumorigenesis mechanism.
Global and local architecture of the human cancer
combinatorial regulatory network
A hierarchical scale-free network
In the human cancer combinatorial gene regulatory net-
work, the numbers of inward and outward regulations
made the in-degree and out-degree of a vertex respect-
ively. Firstly, it was found that while a regulator could
regulate more than one hundred targets, a gene was
regulated by at the most six regulators. The in-degrees
and out-degrees in our network were much lower than
previous reports [7,8], partly because previous regulatory
networks were constructed as ‘reference networks’ that
spanned across all spatiotemporal contexts. Secondly, a
larger in-degree was found to be associated with a larger
out-degree (Pearson correlation coefficient 0.4306,
p value = 3.297e-11), suggesting that a regulator regulat-
ing more targets is subjected to regulations from more
regulators. Thirdly, out-degrees of all vertices seemed to
form a power-law distribution with a slope of −0.5
(p = 0.006) (Figure 2). This is accordant with our expect-
ation, as similar observations have been made in the
regulatory networks of protein-coding genes or miRNAs
separately [46,47]. Finally, with a Krackhardt Hierarchy
Score [48] of 0.998, the combinatorial gene regulatory
network turned out to be a hierarchical scale-free net-
work, consistent with previous studies of metabolic net-
works [49], protein-protein interaction networks [50,51],
and transcriptional regulation networks [52].
Figure 2 Log-scale distribution of out-degrees of the human
cancer combinatorial gene regulatory network.
Coordinating TF-TF, miRNA-miRNA, and TF-miRNA pairs
It is of great interest how regulators coordinate to regu-
late their targets. In our combinatorial regulatory net-
work, we identified coordinating regulator pairs which
share a significantly large number of common targets
(one-sided Fisher’s exact test, p < 0.01), and obtained 17
TF-TF pairs, 46 miR-miR pairs and 17 TF-miR pairs
(Additional file 7: Table S3). To our expectation, coordi-
nated regulations often take place among regulators who
usually form complexes and play their roles as a whole,
such as MYC and MAX; NFKB1 and RELA; JUN, JUND,
and FOSL1. Regulators from a same protein family or
miRNA family are also likely to form coordinating regu-
lators, such as those from the E2F family, the STAT fam-
ily, or the let-7 family.
Our 21 miR-miR co-regulating pairs were compared

with the counterpart set of 199 pairs reported earlier in
a forward-prediction work [7]. There was not a single
pair that perfectly matched between the two sets, and, if
we relaxed the matching criteria to the family level, only
three of our 46 pairs (hsa-mir-130a and hsa-mir-152;
hsa-mir-130a and hsa-148b; has-mir-130b and has-mir-
19a) showed up in the previous set of 199 pairs. It seems
that important discoveries may differ between a
forward-predicted reference network and a reverse-
engineered context-specific network, which warrants the
efforts to integrate the forward-predicted putative regu-
lation relationships with various conditional expression
datasets so as to construct conditional combinatorial
gene regulatory networks that are specific to different
experimental conditions.

Recurrent feed-forward loops and feed-backward-loops
By definition, there are 18 types of closed triple-vertex
regulatory circuits that involve at least a miR and a TF,
which can be classified into ‘feed-forward loops’ (FFLs)
and ‘feed-backward-loops’ (FBLs) by considering the
connecting ways of directed regulations [28]. Previous
studies found that TF-initiated or miRNA-initiated feed-
forward loops (FFLs) may be characteristic regulatory
motifs in tumor cells influencing a large number of tar-
get genes from specific biological pathways [53,54].
Therefore we counted in our cancer regulatory network
the occurrences of all possible fourteen triple-vertex
FFLs and four FBLs, and estimated the corresponding p-
values through counting the counterpart occurrences
1000 times in randomly shuffled networks. The
randomization was achieved by randomly shuffling the
actual regulatory relationships (TF-miRNA, TF-mRNA,
and miRNA-mRNA), provided that the type-specific in-
degree and type-specific out-degree of each vertex were
fixed, with the type being miRNA or mRNA.
Of the 18 motifs being surveyed, one FBL and four

FFLs turned out to be significantly recurrent (p < 0.01,
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Figure 3). Composed of one miR-TF post-transcriptional
regulation and two positive transcriptional regulations,
the only one significant FBL (Figure 3A) is a negative
feedback loop potentially able to maintain stable volume
of key molecules [54]. For the four significant FFLs, one
has a miRNA as the foremost regulator (Figure 3B), an-
other has a miRNA as an interim transmitter of regula-
tion signal (Figure 3C), and the other two have miRNA
as the ultimate target (Figure 3D and E). The last two
FFLs differ from each other in the overall regulation ef-
fect: positive or negative. In each significant FFL, the
multiple regulation cascades are always coherent to each
other (Figure 3B, C, D, and E). At last, we noticed that
most instances of these significant FFLs include the gene
MYC. As a matter of fact, the issue of MYC-involved
regulatory circuits was specially addressed and a curated
database of MYC-involved and miRNA mediated FFLs
was released to public very recently [55].

Discussion
In this work, we made use of parallel miRNA and
mRNA expression datasets from the NCI-60 data panel,
and, by using the linear regression model as a tool to in-
tegrate the sequence-matching information and the ex-
pression data, we sifted the forward-predicted regulation
relationships and constructed a human cancer gene
regulatory network composed of transcriptional control
and miRNA control. This differs from related peer works
mostly in that we realized for the first time a global
landscape of combinatorial gene regulatory network in a
specific biological context. By analyzing the results ori-
ginating from randomized expression datasets, we esti-
mated that the false discovery rate of our selected
regulations were 17.2%, and by taking the experimental
evidences from TransFAC, TarBase, and TransmiR as
benchmarks, we proved that our human cancer com-
binatorial gene regulatory network tended to enrich
genuine regulations of all three types.
Figure 3 Significantly recurrent feed-backward-loop (A) and feed-forw
transcription factor (TF); dark-grey rectangle: non-TF protein-coding gene. A
repressing regulation.
Two years ago, we integrated the forward predictions
with the miRNA-perturbed gene expression datasets
(MPGE datasets) to elucidate the miRNA-centered pri-
mary and secondary regulatory cascades in human cancer,
which encompassed two types of mRNA regulation,
miRNA-to-mRNA and TF-to-mRNA [27]. By introducing
parallel miRNA and mRNA expression datasets, here we
manage to map a combinatorial gene regulatory network
that encompass one more regulation relationship: the
regulation of miRNA by TF, and as a result, TF control
and miRNA control are comprehensively described in this
genome-scale cancer-related network. With the microar-
rays becoming cheaper and next-generation sequencing
platforms being rapidly developed, it is foreseeable that a
large amount of parallel miRNA and mRNA expression
datasets are attainable in the near future, and thus, our
modeling strategy can be extended to enormous cell types,
strains, tissues, and so on.
In human cancer, miRNAs are presumed to preferen-

tially couple its post-transcriptional inhibition with
TF-initiated transcription in combinatorial regulatory
circuits [53,54]. Our regulatory network provides a holis-
tic background in which the important elements, rela-
tionships, and network motifs can be analyzed
thoroughly. For instance, a quick topology analysis of
this network highlights the very important cancer-
related transcription factor MYC and two remarkable
miRNAs hsa-miR-106b and hsa-let-7c. While these en-
tities themselves have already been found to be cancer
relevant, our network demonstrates their putative regu-
latory contexts comprising their coordinating partners
and their targets, and such information may shed add-
itional light on tumorigenesis mechanisms. For instance,
we discriminated three significantly recurrent coherent
FFL motifs from our combinatorial regulatory network,
most of which involve the ascertained cancer-related
transcription factor MYC. Coherent FFLs are often used
to amplify target genes or reduce target genes to
ard loops (B, C, D, and E). Light-grey circle: miRNA; dark-grey circle:
rrow-headed line: activating regulation; hammer-headed line:
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inconsequential levels. These types of regulation are
often being used as an "on/off" switch during develop-
mental transitions and cellular differentiation. Current
work in model organisms suggested miRNAs and TFs
are also involved in incoherent FFLs - miRNAs appear
to buffer against biological noise by targeting several
components within a network in an incoherent manner
[54]. The fact that incoherent FFL is missing in our can-
cer regulation network may imply an important and spe-
cific aspect of cancer cells.
While the overall working pipeline turns out to be ef-

fective in this work, some specific steps need to be dis-
cussed. For example, the prefiltration step (Equation 1)
is incurred primarily for reducing computation complex-
ity of the following steps (Equation 2/Equation 3) or cir-
cumventing the n < p problem (if the number of samples
is less than the number of putative regulators, the step-
wise linear regression is unsolvable). Taking into account
the forthcoming reduction in microarray or RNA-seq
costs, the number of samples in future parallel expres-
sion datasets may be larger, which may greatly alleviate
the pre-filtration pressure. For another example, doubts
have been arising with regards to the stepwise (STEP)
linear regression [56], and therefore it is necessary to
consider other variants for modeling Equation 2, say the
‘least absolute shrinkage and selection operator
(LASSO)’[57]. LASSO is a penalized linear regression
model which shrinks the coefficients of some predictors
to smaller values or zeroes, and therefore can be used as
a variable selection tool. On the same input data materi-
als, we implemented the algorithm using STEP and
LASSO separately, and got two different combinatorial
regulation networks. We found that overall LASSO gave
rise to a network with denser edges (three edges per
node for LASSO, in comparison to two edges per node
for STEP). The estimated false discovery rates were
23.3% for LASSO, a little bit higher than that of STEP.
When comparing the LASSO-based results and the
step-based results, we found on the whole a high level of
mutual consistency (data not shown). It should be noted
that this comparison was limited to a particular sets of
datasets relating to the NCI60 case, and more rigorous
comparative experiments are needed to substantiate an
optimal choice of the regression model in this step. In
the supplementary source codes, we allow the user to
decide whether to implement the prefiltration Equation
1 or not, and provide both the STEP portal and the
LASSO portal for Equation 2.
Towards the ultimate goal of ‘differential networking’

analysis [58], we made the first step to map a TF and
miRNA-involved combinatorial gene regulation network
for a specific context, human cancer. Confined to the
used expression dataset, we arrived at results for the
general tumorigenesis but not for a specific cancer type;
and the results reported herein would be consolidated if
a direct comparison was made between the cancer-
specific network and a ‘normal’ network. Given the ever-
increasing resource of parallel miRNA and mRNA
expression datasets enabled by rapidly developing RNA-
seqs, improvements are expected to be made in forth-
coming succeeding works.
Conclusions
In this work, we made an attempt to integrate the for-
ward engineering and reverse engineering strategies and
for the first time resulted in a global landscape of com-
binatorial gene regulatory network in a specific bio-
logical context (human cancer) that has a moderate false
discovery rate and is enriched with confirmed regula-
tions. The human cancer combinatory gene regulatory
network is found to be a hierarchical scale-free network
with MYC, hsa-miR-106b and has-let-7c being the most
important regulators. From the network, 17 TF-TF pairs,
46 miR-miR pairs and 17 TF-miR pairs are identified as
the significantly co-regulating regulator pairs, and four
triple-vertex regulatory circuits (one FBL and three
FFLs) turn out as significantly recurrent building motifs.
We believe our work provides a scaffold combinatorial
gene regulatory network allowing systematic study of
cancer gene regulation, and that our pipeline can be
extended to reveal conditional combinatorial regulatory
landscapes correlating to specific cellular contexts.
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