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Abstract

Quantification of interictal spikes in EEG may provide insight on epilepsy disease burden,

but manual quantification of spikes is time-consuming and subject to bias. We present a

probability-based, automated method for the classification and quantification of interictal

events, using EEG data from kainate- and saline-injected mice (C57BL/6J background) sev-

eral weeks post-treatment. We first detected high-amplitude events, then projected event

waveforms into Principal Components space and identified clusters of spike morphologies

using a Gaussian Mixture Model. We calculated the odds-ratio of events from kainate- ver-

sus saline-treated mice within each cluster, converted these values to probability scores, P

(kainate), and calculated an Hourly Epilepsy Index for each animal by summing the probabil-

ities for events where the cluster P(kainate) > 0.5 and dividing the resultant sum by the

record duration. This Index is predictive of whether an animal received an epileptogenic

treatment (i.e., kainate), even if a seizure was never observed. We applied this method to

an out-of-sample dataset to assess epileptiform spike morphologies in five kainate mice

monitored for ~1 month. The magnitude of the Index increased over time in a subset of ani-

mals and revealed changes in the prevalence of epileptiform (P(kainate) > 0.5) spike mor-

phologies. Importantly, in both data sets, animals that had electrographic seizures also had

a high Index. This analysis is fast, unbiased, and provides information regarding the salience

of spike morphologies for disease progression. Future refinement will allow a better under-

standing of the definition of interictal spikes in quantitative and unambiguous terms.

Introduction

The electroencephalogram (EEG) is an essential tool for monitoring seizures, diagnosing epi-

lepsy and understanding epileptogenesis. Most EEG analysis, including the scoring of seizures

and interictal epileptiform events, is carried out manually by trained scorers. Manual scoring

is labor-intensive and prone to low interobserver agreement [1] which often precludes fine-
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scale and quantitative analysis of EEG, especially for chronic (>24 hours) recordings com-

monly employed in clinical and research settings [2,3].

Adding to the challenge of analyzing EEG for epilepsy is that often convulsive seizure fre-

quency is relatively low, often much less than one/day, making capturing confirmatory seizure

events on EEG rare [4]. Thus, the identification and analysis of subclinical, interictal events

such as spikes may be important for diagnosis, identification of epileptic foci and understand-

ing the progression of epilepsy [3–10]. But the definition of spike-like events for subsequent

manual scoring remains an area of some disagreement among clinicians [2] and researchers

[1,11]. Together with the laborious nature of manual EEG analysis, this means that the fre-

quency of interictal spiking is not typically quantified for diagnostic purposes in the clinic

[12], though there are special cases [13], and is underutilized in epilepsy research.

There are many automated approaches for detecting interictal events, including template-

matching [14], non-linear energy operator (NEO) detection [15,16] wavelet filtering and line

length [17], and neural networks [18] among others [19]. These algorithms rely in part upon a

spike definition that is based on expert visual analysis and are rooted in some version of the

definition by Chatrian et al 1974, where a spike is a transient that is clearly distinguishable

from background activity, with a duration from 20 to 70 ms [20–22]. Still, a universal ground

truth definition of an interictal spike is lacking as demonstrated in many cases where interob-

server agreement may be relatively low [1,23]. Further careful analysis and refined detection of

spike and spike-like event morphology is needed to refine this definition and to improve the

utility of spike analysis in epilepsy.

Studies in rodents have shown that spiking can be identified within the EEG from both nor-

mal and epileptic brains [2,4,24,25]. Thus, it is important to identify aspects of spike-like mor-

phologies that are specifically associated with epilepsy versus those that may be considered

artifact related to EEG implantations, etc. Presumably, artifactual spikes may be found in any

animal while epileptiform spikes should only be found in epileptic animals. However, differen-

tiation of the many spike types and shapes by visual or algorithmic analysis is a difficult pros-

pect. Rigorous differentiation and quantification of spikes in epileptic versus normal animals

could elucidate patterns of activity that shed light on spike-related mechanisms in epilepsy and

identification of epileptic foci while also contributing to an unbiased definition of true interic-

tal spiking activity across models of epilepsy. Given the links between interictal spiking and

disease progression in epilepsy [26,27], quantitative understanding and differentiation

between normal and epileptiform spike-like activity is essential for future progress in epilepsy

research; studies in animal models are essential to this progress.

Classification of spikes based on waveform morphology is a promising approach for differ-

entiating events that are normal versus those that are relevant to epilepsy. Indeed, spike sorting

by waveform clustering has been used to tune spike-detection and quantification algorithms

[28], to choose spike templates [29] and to identify or predict epileptic foci [30]. A very well-

studied use of waveform clustering is to distinguish individual extracellularly recorded action

potential waveforms in order to identify neurons in single-unit recordings [31]. Several clus-

tering approaches have been used across these applications, including K-means clustering and

affinity propagation [29], graph theoretical algorithms [30], and Gaussian Mixture Models

(GMM) [31].

Here we present a novel waveform-based analysis to compare spike-like events recorded

from mice treated with an epileptogenic insult (i.e., kainate, a model of temporal lobe epilepsy

[32]) with spike-like events recorded from control mice treated with saline. We identified

spike-like events in both groups, then projected these waveforms into a low-dimensional (3D)

space using Principal Components Analysis (PCA), and clustered these waveforms using a

GMM. This allowed us to estimate the probability distributions that characterize normal
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versus epileptiform spike-like waveforms and to compute the probability that specific spike

waveforms reflect epileptiform activity. By assigning a probability score to each event type, we

provide a novel measure (the Hourly Epilepsy Index) for estimating the probability that an ani-

mal is epileptic, even in the absence of observing electrographic or behavioral seizures. The

ability to assess epilepsy with a high-resolution metric in every animal is extremely important

in animal models with low seizure burden such as repeated low-dose kainite in C57Bl6 mice

(used in this study) and could result in the more efficient use of animals and EEG recording

time in future studies. This novel analysis thus provides rapid and unbiased insight into differ-

ences among spike types in normal and epileptic animals that can be used for early diagnosis

of risk and serve as a biomarker of disease progression.

Materials and methods

Animals

All use of animals in this manuscript conformed to the Guide for the Care and Use of Labora-
tory Animals [33] and was approved by the University of Wisconsin-Madison Institutional

Animal Care and Use Committee (IACUC, protocol M005629).

Animals (male C57BL/6J background, ~5 weeks old) were received from Harlan (Madison,

WI) and housed in clear acrylic cages ~7 L cages with filtered airflow and corn cob bedding

with paper nesting material. Animals were housed in groups of five or less with rodent chow

and water available ad libitum. After ~2 weeks of acclimation, animals underwent repeated

low-dose kainate (KA) or saline (SA) injections (~7 weeks old) and EEG implantation and

recording (~18–20 weeks). All animals were checked daily for food/water/health by laboratory

personnel and/or the University of Wisconsin-Madison Biomedical Research Model Services.

Staff veterinaries were consulted in the event of illness (post-injection) or severe injury (as a

result of fighting post-injection) and their recommendations for animal care were followed.

The data used in this study represents a portion of data collected as a result of an additional

study (IACUC approved) investigating pneumonic discrimination during behavioral trials

and computational pattern separation in slice (In Preparation).

Epilepsy induction

During the injection process, when not handled, mice were individually housed in enclosed

~150 cm3 acrylic cubicles with opaque sides and clear front portals with holes to allow air

exchange, and equipped with corn cob bedding and rodent chow. Animals were then ran-

domly assigned to SA or KA treatment, ear punched or tagged for identification and weighed.

Mice received a series of intraperitoneal (IP) injections based on the following schedule

(herein referred to as “repeated low-dose kainate”). Mice in the KA group first received a

10 mg/kg (5.5 mM) dose of kainate (Tocris Bioscience, UK) delivered in 1x phosphate-buff-

ered saline (PBS) prepared from PBS tablets (Dot Scientific, Michigan) dissolved in deionized

distilled water (DDW) and filter sterilized (0.22 μm, Corning, MI). Mice continued to receive

injections at 2.5–5 mg/kg every 20 minutes until status epilepticus (SE) occurred (4–9 injec-

tions) [34,35]. Mice in the SA group received the same schedule of sterile PBS injections. Mice

were considered to be in SE when displaying behavioral seizures of level 4–5 on the Racine

Scale [36] for a minimum of 30 minutes. Mice usually experienced SE for 90–180 minutes and

were allowed to recover spontaneously. Mice were treated in cohorts of ~8 at a time, with a

ratio of ~2:1, KA:SA animals. The first cohort of mice received alternating 5 mg/kg and

2.5 mg/kg injections after the initial 10 mg /kg dose, but this schedule took longer than only

5 mg/kg injections without any noticeable differences in eventual efficacy or survival, so subse-

quent cohorts received 5 mg/kg injections. During chemoconvulsant administration, if an
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animal appears extremely distressed and immobile such that it enters stage 3 status epilepticus

(continual ictal behavior) or remain in status at the 4 hr time point, it was euthanized.

Throughout the study, poor body condition (e.g. fighting wounds or dehydration), immobility,

and hunched posture were also criteria for the consideration of euthanasia. Under these cir-

cumstances a vet was consulted. We euthanized one animal due to dehydration and hunched

posture three days after kainite injection. One animal died during the kainite injection proce-

dure as a result of status epilepticus. No other mortality occurred during this study.

After the injection schedule, animals were given fresh apple slices, monitored until SE

ceased (assessed by normal posturing), and returned to group housing. They were monitored,

weighed, and given 0.4 mL of sterile 1x PBS via IP injection on a daily basis as necessary until

their weight returned to pre-injection level. No animal injected with SA ever experienced sta-

tus epilepticus, lost weight, or required recovery injections of 1x PBS. Mice remained in the

vivarium for 7–9 weeks after injections, allowing time for the development of epilepsy in KA

mice. During this time some KA mice became aggressive and were removed from group hous-

ing and caged individually.

EEG surgery and recording

Animals were implanted with EEG headcaps while under 1–2% vaporized isoflurane anesthe-

sia (see [37] for detailed methods) at ~18–20 weeks old (~11–13 weeks post injection), allowed

to recover for 3–4 days, and then recorded continuously at 256, 512, or 1024 Hz sampling rate

for three days. All data not collected at 512 Hz were either resampled (1024 Hz) or linearly

interpolated (256 Hz) to 512 Hz for analysis. Data were then notch filtered at 60 Hz using a

Chebyshev Type II digital filter and high-pass (>0.5 Hz) filtered with a Chebyshev Type I digi-

tal filter. All analyses presented in this manuscript used a right-frontal EEG channel. All deter-

minations of electrographic seizures in this manuscript are based solely on EEG and EMG

traces.

High-amplitude event detection

To assess the severity of epilepsy in animals injected with kainate, we developed a probability-

based approach for the detection of epilepsy-related events (e.g. interictal abnormal events like

EEG spikes, seizures) and the calculation of an epilepsy severity index.

Filtered EEG signals were normalized to using a variation of z-score normalization that we

term Gaussian normalization. First, we fit a Gaussian distribution to the all-points histogram

(calculated using the histfit() function with bins equal to the floor of the square-root of the

number of data points in each EEG signal) of each 24-hour record using least-squares minimi-

zation with Nelder-Mead Simplex [38] optimization implemented by the fminsearch() func-

tion (with ‘fit_gauss’ as an option) in Matlab. We then normalized the 24-hour record by

subtracting the mean from each point and dividing by the standard deviation of the model fit.

The resultant normalization is different from the standard z-score normalization in that the

mean and standard deviation components are calculated from a model estimating the Gauss-

ian components of the EEG rather than empirically calculating the mean and standard devia-

tion. We employed this normalization because it adjusts the data based on the normal

component of the signal and is less influenced by very large and brief artifacts.

Using normalized EEG we detected high-amplitude, spike-like events using a two-threshold

strategy [39]. The final thresholds used in this analysis were optimized to yield the largest pre-

dictive effect size (Fig 1D). The start of an event was triggered when the EEG signal rose 5 stan-

dard deviations above the mean of the Gaussian fit. An event ended when the signal passed 1

standard deviation below the mean. We then combined any events occurring within 0.2
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seconds of one another (end to start) into a single event [21]. This resulted in a list of events of

varying duration (98% shorter than 1s, with some representing rapid spike bursts) from each

animal/day EEG record. We then took two seconds of signal centered on the start of each

event and collated events across 72 days of recording (3–4 days from each of 15 KA and 7 SA

animals). This resulted in a matrix with ~33000 event waveforms (1024 points each) across all

treatments, recording days, and animals. We chose optimal high (event start) and low (event

end) threshold values after a grid search to investigate high values between 3 and 8, and low

values between -3 and 2 and then performing a t-test to compare the number of events per

hour identified in SA vs. KA animals (Fig 1D).

Epileptiform event confirmation

We compared the output of the two-threshold detection method with output from another

method that has been highly cited for seizure and interictal spike detection, and that also per-

forms similarly to manual human scoring [17]. Spikes, seizures, and other abnormal epilepti-

form activity were detected in normalized EEG according to Bergstrom et al. [2013]. The

baseline was determined using the whole signal. The event threshold was set at 4.0, where

spikes were defined using a modified amplitude of 15, and seizures were defined as events

greater than one second in duration. To compare the two-threshold method with that of Berg-

strom et al. [2013], all records were represented as logical vectors where 1 indicates the pres-

ence of an event during each second of recording and 0 indicates the absence of an event.

Fig 1. Event detection by two-threshold approach. Sample traces of events identified (red) using the two-threshold method (high threshold = 5 SD above Gaussian

mean, low threshold = 1 SD below mean) in (A) SA- and (B) KA-injected animals. Each row in A and B shows an expanded view (indicated by the blue lines) of the signal

directly above. (C) Average number of events per hour detected in SA (black) versus KA (red) animals (P = 0.166, t = 1.44, df = 19.83, two-sample T-test with unequal

variances). Circles represent the average number of events per hour for each animal over 3 days of recording. Closed circles represent animals that were recorded having

an electrographic seizure. (D) P-values comparing the average number of events per hour in SA and KA animals across a set of high and low thresholds; the p-value is

minimized at 5 and -1. The center mark of the box and whisker plot represents the median, while the lower and upper bounds of the box represent the 25th and 75th

quartiles, respectively; the whiskers extend to the most extreme data points or 1.5x the interquartile range.

https://doi.org/10.1371/journal.pone.0207158.g001
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Confusion matrices [40] between these vectors were used to compute true-positive and false-

negative rates, by provisionally assuming that Bergstrom et al. [2013] detected “true” events.

PCA, clustering, and P(KA)

We performed Principal Components Analysis (PCA) [41,42] on the matrix (~33000 x 1024)

of waveforms detected by the two-threshold method and projected each original waveform

into the space spanned by the first three Principal Components (PCs). In such 3D projections,

each point represents a detected waveform and the distance between any two points represents

the difference between their original waveform shapes. Three dimensions were chosen for ease

of display, but higher or lower dimensional projections could be used throughout this analysis

in principle.

Waveforms that are closely intertwined with epilepsy should be a) more common in KA

than in SA and b) similar to other waveforms in epileptic (KA) mice and different from those

of SA mice. Therefore, the densities of PCA-projected points for KA and SA events are

expected to overlap somewhat but, by examining quantitatively their overlap in specific

regions of PCA space, we can compute the likelihood of a waveform in any region having

come from a KA vs SA animal.

The resulting ensemble of points was fit with a Gaussian Mixture Model (GMM) with

expectation maximization using the function fitgmdist() [43] with nine components and then

clustered based on the GMM coefficients. The GMM defines a probability for every point in

the space, and in this case reflects the prior probability distribution that any waveform would

be detected because both KA and SA were included in the GMM fit. We then calculated the

conditional probability, P(KA) that events in each cluster are related to an epileptogenic treat-

ment by computing the ratio of KA (epileptogenic) to SA (control) events in each cluster

(Odds ratio) and converting it to a probability, P, using Odds ¼ P
1� P.

Hourly Epilepsy Index

Given that there is some disagreement between manual scorers, we are attempting to provide a

statistical and unbiased measure of epileptiform event frequencies. We first defined epilepti-

form event morphologies as events with a P(KA) > 0.50, because they are more likely to be

found in KA than SA animals and are therefore more relevant to epilepsy. The range of P(KA)

values was rescaled from 0.5–1.0 to 0–1, where scaled P(KA) = (P(KA) − 0.5) × 2 to reflect the

relative contribution of each event morphology to the KA-specific set. Our method is probabi-

listic, so it can only be interpreted as an “index” rather than an actual count of interictal events.

Therefore, we define the Hourly Epilepsy Index = ∑(freq.events in each cluster with P(KA) > 0.5

× associated scaled P(KA)). Theoretically, the possible Hourly Epilepsy Index for any given

EEG recording ranges between 0 and the total number of high amplitude events detected from

that record.

Parameter optimization

One tunable parameter in this analysis is the choice of how many clusters to use in modeling

the data (i.e., how fine-grained should our analysis of waveform shapes be?). To investigate

this parameter, we built a set of models varying the total number of GMM clusters. Addition-

ally, because creation of a GMM in our implementation is a stochastic process, we rebuilt each

model at 25 unique random seeds (seeds = 1 through 25). In total, we generated 600 Gaussian

mixture models and related cluster profiles, P(KA)s, and Hourly Epilepsy Indices. From each

of these model sets we calculated: 1) the Negative Loglikelihood of the data fit to the GMM, 2)

The average belongingness of each event to its assigned cluster (Cluster Belongingness, defined
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below), 3) the effect size between SA and KA treated animals and 4) P value comparing the

Hourly Epilepsy Index between SA and KA treated animals. Cluster Belongingness was calcu-

lated by taking the sum of squares of the set of posterior probabilities, calculated with the pos-

terior() function in Matlab (which calculates posterior probabilities for Gaussian mixture

components) for each event and then averaged across all events. For each event, these posterior

probabilities (as many probabilities as there are clusters) provide the likelihood of belonging to

each cluster in the model and these probabilities sum to one. For example, in the case of a 2

cluster model, data point A may belong equally to each cluster P = (0.5, 0.5) where its Cluster

Belongingness equals 0.5. In contrast, data point A may belong much more strongly to one

cluster over another P = (0.9, 0.1) with a cluster belongingness of 0.82. Thus, a clustering

model with poor fit will have a low value for Cluster Belongingness.

Computer programming

All analyses, data processing, and event classification was done in Matlab (Mathworks, Natick,

MA) using home-written scripts. The final version of this algorithm was executed with Matlab

2017b.

Statistical analysis

The usage of statistical tests and procedures used to estimate model fit are indicated through-

out the methods section of this manuscript. All tests and statistical applications were chosen

after careful consideration of data distribution (using the Kolmogorov-Smirnov (KS) tests in

addition to Quantile-Quantile plots to assess normality and visual assessment of variance with

boxplots) and independence. In the event that data were considered non-normally distributed

according to the KS test at alpha = 0.05, a non-parametric Wilcoxon Rank Sum (using rank-

sum()) test was performed in place of a two-sample t-test. All statistical tests were two-tailed.

The researchers were not blinded or randomized to the treatments given to animals, but

rather treatments (KA and SA) known to cause the development of epilepsy [34,35] were used

to calculate probabilistic information that went into creating the Hourly Epilepsy Index.

Indeed, the design of this approach was to optimize for differences between the treatments.

However, we feel that this approach is warranted and importantly, the clustering of the events

morphologies was unsupervised and thus ‘blinded’ to the treatment from which each event

originated.

Results

EEG recording and event detection

We collected three days of continuous, 24-hour EEG for 15 KA and 7 SA animals and normal-

ized the records as described above. The two-threshold event detection algorithm identified

25681 and 5764 events in KA- and SA-treated animals, respectively (Fig 1; mean ± SD event

duration for KA animals = 55 ± 148 ms; for SA animals = 169 ± 380 ms). The average number

of events per hour detected in KA (23.3 ± 27.4) and SA (11.5 ± 11.0) animals using this detec-

tion method was not significantly different (Fig 1C, P = 0.166, t = 1.44, df = 19.83, two-sample

T-test with unequal variances). The p-value for comparison of KA and SA animals was mini-

mized by the use of the high threshold of +5 and low threshold of -1, though combinations of

high thresholds of four or five and low thresholds of one to -2 showed low p-values relative to

all other combinations (Fig 1D).
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High-amplitude events are epileptiform

To confirm that the events identified by the two-threshold method include epileptiform

events, the normalized EEG signal was analyzed using an event detection and sorting algo-

rithm that is validated with human spike scoring [17]. A comparison between events detected

by the two-threshold method and spikes from Bergstrom et al. [2013] resulted in a true positive

rate (TPR) of 0.781 and a false positive rate (FPR) of 0.005 (Fig 2A and 2C). Thus, our initial

detection of spikes agrees reasonably well with a previous method that itself agrees well with

human scoring. In a comparison of the two-threshold detection method to all epileptiform

events (spikes, seizures, and other low-amplitude, short duration abnormal) from Bergstrom

et al. [2013], the agreement between the algorithms drops precipitously (Fig 2B and 2D, TPR

and FPR for all events are 0.038 and 0.001, respectively), suggesting that the two-threshold

method is selective for spike-type events and does not detect low-amplitude abnormal or some

seizure-like events. We illustrate specific examples of agreement (Fig 2E) and disagreement

(Fig 2F) between the two detection methods, highlighting that the two-threshold detection

method selects for high-amplitude spike- and seizure-like activity.

Measures predictive of an epileptogenic insult

Events from KA- and SA-treated animals were projected into Principal Components space

(Fig 3A, first three PCs shown). We used the first three PC (76.7% of the overall variance) and

clustered the data into nine groups using a GMM (Fig 3B). The probability, P(KA), that a clus-

ter morphology is relevant to epilepsy is equal to the probability of that morphology being

found in KA but not SA records and was calculated as the odds ratio of the number of KA to

SA events for each cluster. The P(KA) for four of nine clusters is above 0.5 (Fig 3C, range

0.73–0.99), indicating that event morphologies in these clusters may be specific to the KA

treatment and thus related to epilepsy. On average, KA animals exhibit a significantly higher

average Hourly Epilepsy Index than do SA animals (11.6 ± 14.6 for KA, 3.0 ± 2.0 for SA;

P = 0.039, t = 2.26, df = 15.04, two-sample t-test with unequal variances). Two of 15 KA ani-

mals displayed electrographic seizure activity in at least one recording (Fig 3D, magenta filled

circles); the average Hourly Epilepsy Index for these animals falls above the 75th percentile

(top line of box plot) of the SA hourly index. We found that there was a broad spread of Hourly

Epilepsy Indices across the 17 KA mice, where eight KA mice had Hourly Epilepsy Indices

similar to SA mice and 9 KA mice had Hourly Epilepsy Indices above the 95% confidence

interval of the SA Index (95% confidence interval for SA = 1.14–4.47). This interesting result is

in line with published reports of varying sensitivity to systemic KA injection in epileptogenesis

[34,35].

Optimization of the clustering algorithm

To determine the optimum number of clusters to differentiate between KA- and SA-specific

spike morphologies, we calculated 600 repetitions of the Gaussian Mixture Model used to clus-

ter events at each unique value of 2 to 25 clusters and random seeds set from 1 to 25. The Nega-

tive Loglikelihood (Fig 4A) approaches an asymptote around eight to ten clusters, suggesting

the reasonable model fit in this range. Cluster Belongingness (Fig 4B) decreases across the sim-

ulation range with no clear inflection point (i.e. elbow) in the data to indicate diminishing

returns of increasing cluster number. Effect size and p-value for the Hourly Epilepsy Index

(Fig 4C and 4D) models indicate that the effect size and the p-value reach an asymptote in a

range similar to that indicated by the Negative Loglikelihood results. Here, we have a fuzzy

problem in terms of cluster selection. We selected nine clusters for our purposes and discuss

cluster selection in depth in the discussion section.
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Fig 2. Interictal events correspond to epileptiform activity. We compared events from the two-threshold crossing method to events

detected by a validated event detection and classification algorithm [17]. Second-by-second, animal-specific (SA = black, KA = red)

event classification agreement (True positive rate, TPR) and the rate of detection of additional events not identified in the validated

method (Additional events, false positive rate, FPR) for spike-type events only (A) and all event types (seizures, spikes, and other low-

amplitude abnormal and epileptiform events, (B), with corresponding confusion matrices (spikes only C, all events D). True positives

Probabilistic classification of interictal spikes
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are events detected by both the validated algorithm and the two-threshold crossing method. (E) Sample true positive events for each

event type, where gray is the original EEG trace, green is two-threshold detection output, and black is Bergstrom et al. [2013] detection

output. (F) Sample events for each detection method that were not detected by the other method.

https://doi.org/10.1371/journal.pone.0207158.g002

Fig 3. Event sorting by clustering and Hourly Epilepsy Index. (A) Events detected with the two-threshold crossing method, from all animals and records, and

projected into Principal Components space (first three PCs shown, red = KA, black = SA). (B) Events in A clustered into 9 groups using a GMM with Expectation

Maximization. The upper inset shows a rotated and expanded view of the same plot, allowing a view of cluster 5 (embedded within cluster 6, which is set to 10%

transparency for visualization). (C) P(KA) for each cluster identified in B calculated from the relative proportion of KA to SA events, presented in descending

order with examples of events. (D) The average Hourly Epilepsy Index (15 KA, 7 SA animals) is much higher for animals treated with KA (P = 0.039, t = 2.26,

df = 15.04, two-sample T-test with unequal variances). The center mark of the box and whisker plot represents the median, while the lower and upper bounds of

the box represent the 25th and 75th quartiles, respectively; the whiskers extend to the most extreme data points or 1.5x the interquartile range.

https://doi.org/10.1371/journal.pone.0207158.g003
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Cluster morphologies match published characteristics of interictal spikes

We performed a preliminary waveform shape analysis by plotting individual event duration vs

amplitude for each cluster. In clusters where P(KA) > 0.5 (clusters one through four, Fig 5A)

many events from KA-treated animals have a higher amplitude than do events from the same

cluster found in SA-treated animals. The majority (92%) of events in these clusters for both

treatment groups are shorter than 200 ms, consistent with published spike definitions. This

trend is not as distinct in clusters five through nine, where P(KA)< 0.5. Further inspection of

events in clusters one through four reveals that the morphologies of these event types are more

classically “spikey” (short-duration events with sharp waveforms) than are events found in the

remaining clusters. Finally, the majority of the events identified in KA animals (88%) were

found in clusters one through four, whereas events in SA animals were equally distributed

among the clusters with P(KA) above (49%) and below 0.5. The average number of events per

hour for each cluster in SA and KA shows separation between event frequency in clusters one

through four but not clusters five through nine (Fig 5B, p-values reported on each graph).

Analysis of out-of-sample data supports the methodology

We applied the clustering approach to events detected in a novel dataset of longitudinal

recordings from 5 KA-treated animals (Fig 6A–6D, recorded on days 30–34 and 44–51 post-

Fig 4. Selecting an appropriate number of clusters. We repeatedly generated a set of models (n = 25, random seeds set from 1:25)

specifying a range of 2 to 25 clusters (totaling 600 models) and calculated the (A) Negative Loglikelihood, (B) Cluster Belongingness,

the (C) Effect size and (D) P value of the Hourly KA Index comparing KA to SA treated animals (calculated using only events where

P(KA)> 0.5). These values offer guidelines for model selection via ‘elbows’ in the data which are indicative of diminishing returns in

model fit. It does not appear that there is a clear best value for clustering these data into discrete groups. Therefore, the cluster

number must be selected and evaluated based on the goal of the cluster analysis.

https://doi.org/10.1371/journal.pone.0207158.g004
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KA). The longitudinal data were projected into the same PC space as the SA and KA dataset

from Fig 3A and clustered according to the same parameters as Fig 3 (Fig 6A and 6B). All but

one animal (Animal E) experienced similar, but not identical, increases over time in total

event rate (average for all events per hour, Fig 6C) and Hourly Epilepsy Index (clusters one

through four, Fig 6D). Electrographic seizures were only detected in one animal (Animal B) at

days 44 and 45; this animal displayed a trend toward increasing event rate and Hourly Epilepsy

Index (Fig 6C–6E, magenta-filled circles).

Discussion

Interictal spikes are a hallmark of the epileptic brain [2]. Yet the definition of an interictal

spike remains somewhat nebulous, potentially biasing spike-detection strategies and algo-

rithms. Previous analyses of spikes in kainate and other models of epilepsy have relied upon

Fig 5. Characterization of individual clusters and contribution to total event count. (A) Graphical distribution of each cluster’s events in EEG amplitude (x-axis) by

event duration (y-axis, time (s)) for events belonging to both KA (red) and SA (black). Example events from each cluster type are displayed in the upper right corner of

each plot. For improved visualization of the majority of data, we have set the axis to exclude a small amount of the most extreme data points (most notably from cluster

7). (B) The average number of events per hour within each cluster for SA (black) and KA (red) animals. P-values indicate the results of t-tests or rank sum tests between

KA and SA for each cluster of waveform shapes.

https://doi.org/10.1371/journal.pone.0207158.g005
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scoring of spikes and other interictal events to differentiate between KA-treated and control

animals, where more spikes are observed in epileptic than in control animals [4,17]. In these

studies, control animals also exhibit spike-type events in the EEG; however, given that control

(and many KA animals) animals do not proceed to have seizures, it is probable that some

spikes arise by a non-epileptic mechanism, including spike-like events in normal brain (e.g.,

sharp wave ripples [2], electrographic noise, artifact, or damage associated with electrode

implantation. That non-epileptiform spikes may also be present in both normal and kainate-

treated animals further complicates the quantification of interictal spikes and thus the inter-

pretation of nonconvulsive EEG events in epilepsy and epileptogenesis.

Here we present a novel automated algorithm for probability-based differentiation of epi-

leptiform versus non-epileptiform spike and interictal EEG event morphologies in the kainate

model of TLE. Our algorithm detects interictal events and weights them in an Hourly Epilepsy

Fig 6. Detection and categorization of interictal events in longitudinal data. We applied our detection and categorization algorithm to longitudinal EEG records

(recorded days 30–34 and 44–51 post-KA) from 5 KA mice. (A) Events identified from these 5 animals (purple circles) projected into PCs with data from Fig 3 (black

circles, SA and KA data). (B) Clustering of these new data points using the same GMM coefficients and clustering parameters used in Fig 3 (cluster colors correspond to

those throughout manuscript). The upper inset shows a rotated and expanded view of the same plot, allowing a view of cluster 5 (embedded within cluster 6, which is set

to 10% transparency for visualization). (C) Events per hour as detected by the two-threshold method in each of the 5 KA animals over time. (D) Hourly KA Index for

longitudinal data set. E) Average events per hour as detected by the two-threshold method within each cluster group. In panels C-E, records with electrographic seizures

are shown as filled in circles. An example seizure is shown in the inset of panel D.

https://doi.org/10.1371/journal.pone.0207158.g006
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Index based on the likelihood that they are, indeed, relevant to the injection of kainic acid and

thus TLE (i.e., related to an epileptogenic insult [32]). Interictal events and seizures projected

into PC space were clustered using a Gaussian Mixture Model. We used the probability P(KA)

that an event cluster was KA-specific to calculate an Hourly Epilepsy Index as a weighted aver-

age of the number of events with a P(KA) > 0.5. This value successfully estimates the probabil-

ity that a subject had received an epileptogenic insult, in this case a KA injection. This

algorithm can, in principle, be generally applied to chronic EEG recordings from either experi-

mental animals or human patients, if a control data set is available for comparison. It can also

provide rapid and quantitative scoring of interictal events to predict the likelihood that a sub-

ject is at risk for developing spontaneous seizures. Importantly, the application of this algo-

rithm to EEG recordings from animal models of epilepsy with low seizure burden (e.g.

repeated low-dose kainate) may result in a reduction in the number of animals sacrificed in

future studies.

High-amplitude event detection is an inclusive starting point

Our approach to event detection using a two-threshold algorithm selected events of high

amplitude compared to background signal, but did not, at the outset, impose limitations on

event duration or morphology. This method is therefore intentionally inclusive of spike and

other high-amplitude, non-spike-type events that may be physiologically relevant to epilepsy.

Upon visual inspection of the signal and in comparison to a validated seizure- and spike-detec-

tion algorithm, we found that this method preferentially detects spike-type and seizure-like

activity in the EEG signal (Figs 1 and 2), as well as other event morphologies, including artifact

(Fig 3, cluster 8). That our detection method primarily selects for high-amplitude events does

not negate the possibility that low-amplitude interictal events are relevant to epilepsy and epi-

leptogenesis. Detection and analysis of low amplitude epileptiform events is an area for further

inquiry [17].

Selecting the appropriate number of clusters is flexible and

application-dependent

We built on prior clustering approaches for EEG by considering how spike sorting may eluci-

date spike morphologies relevant to epilepsy and to differentiate these morphologies from

non-epileptiform spike-like events observed in normal rodent brains [2,4]. The high-ampli-

tude events identified in records from SA- and KA-treated animals were projected into PCA

space and then clustered using a GMM with expectation maximization. Similar to spike sort-

ing in extracellular recordings [31], we found that the GMM provided a strong fit for the clus-

tering of high-amplitude events in our dataset.

Nine clusters provided adequate separation between SA and KA-treated animals, though

our analyses also found that this is, indeed, a fuzzy problem with many different options for

cluster number selection depending on the features to be extracted. Spike morphology in

extracellular recording is reflective of the geometry and physiological properties of individual

neurons. Spike morphology in EEG may be reflective of a number of different parameters,

including the underlying pathology of the spike, the spike location, the recording montage/

referencing, individual patient and recording characteristics, and other features. Defining the

number of clusters therefore requires careful consideration to prevent over- or under-

estimation of the true number of spike morphologies.

We found that Cluster Belongingness and p-values for the separation between KA vs non-

KA event morphologies improve as the number of clusters increase. However, very higher

cluster numbers may be partitioning spike morphologies (clusters) based on individual animal
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or recording characteristics, rather than differentiating between KA and non-KA events.

Selecting a smaller number (e.g. three rather than nine) of clusters for analysis does not pro-

vide statistically significant separation between KA and SA animals, so it is important to con-

sider the tradeoffs in increasing and decreasing the cluster number for analysis (Fig 4).

Through modeling using many different cluster numbers (from two to 25), we find that there

is no clear “elbow” in the Negative Loglikelihood or Cluster Belongingness scores across our

simulations. This indicates that there is not a hard and fast cluster number for this analysis.

Still, we found that the p-value and effect size for the epilepsy index, and the Negative Loglike-

lihood values seemingly approached an asymptote by nine clusters (i.e. no major improve-

ments at higher cluster numbers). Thus, we selected nine clusters for our analysis because it

effectively separated KA from SA events while minimizing animal-specific effects.

We further explored event morphologies of individual clusters by specifically focusing on

event amplitude and duration (Fig 5), as instructed by the descriptive spike definition of Cha-

trian et al. [1974]. Events with a P(KA) > 0.5 (clusters 1–4, more likely to be found in KA than

SA animals) exist within a space consistent with general definitions of spikes, that is events

with high amplitude and short duration (the far lower left portion of the graphs in Fig 5A). As

the P(KA) drops below 0.5 (clusters 5 through 9), the events begin to shift toward longer,

lower-amplitude characteristics. It must be noted, however, that there is not a sharp demarca-

tion in the amplitude and duration characteristics of spikes above and below the cutoff of P

(KA) = 0.5.

In applying this analysis to other models of epilepsy, we see two major approaches to select-

ing an appropriate number of clusters, dependent upon the end goal of the analysis. One

approach, similar to the approach that we have taken, is to identify the minimum number of

clusters that provide significant separation between experimental conditions or a minimum

cluster number that yields clusters of visually similar morphologies. In addition to differentiat-

ing between normal and epileptiform activity, this approach should ideally separate noise and

artifact as we see in cluster eight (Fig 3). Quantification of events could thus proceed relatively

noise-free. This is similar to but more specific than an approach taken by (28), where spike

morphologies in clusters that comprise less than 5% of the total spike count are removed from

analysis. The second approach is to maximize the number of clusters, finely parcellating event

into clusters for a higher-resolution model of epilepsy. Care must be taken, however, not to

parcellate the data too far, resulting in over-fitting of the model.

The Hourly Epilepsy Index: What it is, what it is not

We have introduced an Hourly Epilepsy Index as a summary descriptive variable of the likeli-

hood of epilepsy in an individual animal, calculated as an average hourly event rate weighted

based on the probability that an event morphology is found in KA- but not SA-treated animals.

Given that kainate injection is but one model of epilepsy, we cannot yet claim that this is a true

model that is applicable to all epilepsy models or etiologies. However, this index does begin to

address some of the challenges of rodent models of epilepsy, namely that not all mice that

receive KA-treatment will go on to develop epilepsy [32] and low seizure frequency may make

it difficult to identify all epileptic mice, by providing relevant probability-based estimates of

likelihood of an animal being epileptic. Previous studies have demonstrated that spike fre-

quency during the latent period and in interictal periods may be correlated with, or predictive

of, future development of seizures [2, 4]. These studies have not differentiated between epilep-

tiform and non-epileptiform spiking, thus they do not fully characterize the contribution of

truly epileptiform spiking to seizure development and epileptogenesis. Others [32] have also

shown that some animals have different susceptibility to epilepsy in the KA model of TLE;
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resistant animals may be expected to have a different epileptic spike frequency during the

latent period than animals that will develop epilepsy. The Hourly Epilepsy Index may thus be

most useful as a measure during the latent period to predict the likelihood of developing epi-

lepsy. This is a possibility that remains to be further investigated via longitudinal studies and

using video EEG and an Hourly Epilpesy Index-based analysis of the latent period through the

development of spontaneous seizures.

There are several features of the Hourly Epilepsy Index that indicate that this may be a valu-

able model by which to analyze EEG data in epilepsy studies. At its simplest level, the Hourly

Epilepsy Index provides a more robust separation between KA and SA animals than does raw

event count (Fig 1C vs Fig 3D) by excluding events that are not likely to be epileptiform (events

where P(KA) < 0.5) and weighting the remaining events (where P(KA) > 0.5) according to

the probability that they are, indeed, epileptiform. The relevance of this new metric is further

supported by data that reveals that the Hourly Epilepsy Index is significantly higher for the few

KA animals with electrographic seizures than the average epilepsy index of SA-treated animals

(Fig 3D). In further confirmation of this, we did not observe electrographic seizure activity in

SA animals or KA-treated animals that fall within the 95% CI range of the Hourly Epilepsy

Index for SA animals. While we have shown that animals with electrographic seizures do have

a higher Hourly Epilepsy Index and that individual spike morphologies change over time in a

manner seemingly related to epileptogenesis, we have not, in this present study, fully assessed

the relative contribution of each spike waveform morphology to the development of epilepsy.

We plan further investigation of the Hourly Epilepsy Index and the contribution of specific

spike event morphologies to epileptogenesis by monitoring mice directly after SE through the

development of spontaneous seizures and beyond.

Cluster one (Figs 3C and 5A) is of particular interest in considering the power of spike sort-

ing by clustering for epilepsy analysis. These events are relatively infrequent across records,

but are highly correlated with KA treatment (P(KA) = 0.99) and are very rare in SA animals.

Visual inspection of these events confirms that they are, indeed, spike-like, fitting into a more

classical definition of an interictal spike [20]. Because these event types are almost exclusively

seen in records from KA-treated animals, they are weighted more strongly in the epilepsy

index than are events from cluster four, which show features of spiking (high amplitude, fast

duration) but may also cause an expert scorer to pause on their definitive identity as an interic-

tal spike.

The Hourly Epilepsy Index is not without caveats, however. Kainate is a widely-used model

of TLE and epileptogenesis [32], but it is only one of many models. Other models, including

pilocarpine, traumatic brain injury (TBI), genetic or viral models of epilepsy, and kindling,

rely upon different molecular mechanisms of seizure induction and may therefore produce

interictal events of different morphologies. Ultimately, this approach may be used to produce a

library of spike templates across epilepsy models to further expand and refine the working def-

inition of an interictal spike.

Conclusion

Clustering of interictal spike provides insight into event morphologies relevant to epilepsy and

epileptogenesis. Using this clustering method, we isolated epiliptiform event morphologies

that were then quantified to determine the probability that a particular animal is at risk for epi-

lepsy or not, a variable which we have called the Hourly Epilepsy Index. This probabilistic clas-

sification method for interictal event waveforms may provide a biomarker for risk and

development of epilepsy, even in the absence of observing electrographic or behavioral sei-

zures. By distinguishing spike morphologies that are preferentially present in the epileptic

Probabilistic classification of interictal spikes

PLOS ONE | https://doi.org/10.1371/journal.pone.0207158 November 6, 2018 16 / 19

https://doi.org/10.1371/journal.pone.0207158


condition, we may further investigate the contribution of different spike morphologies to the

development of spontaneous seizures, thereby contributing to an unbiased understanding of

the definition of interictal spiking in epilepsy and epileptogenesis.
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