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Abstract

Approximately half of known human miRNAs are located in the introns of protein coding genes. Some of these intronic
miRNAs are only expressed when their host gene is and, as such, their steady state expression levels are highly correlated
with those of the host gene’s mRNA. Recently host gene expression levels have been used to predict the targets of intronic
miRNAs by identifying other mRNAs that they have consistent negative correlation with. This is a potentially powerful
approach because it allows a large number of expression profiling studies to be used but needs refinement because mRNAs
can be targeted by multiple miRNAs and not all intronic miRNAs are co-expressed with their host genes. Here we introduce
InMiR, a new computational method that uses a linear-Gaussian model to predict the targets of intronic miRNAs based on
the expression profiles of their host genes across a large number of datasets. Our method recovers nearly twice as many
true positives at the same fixed false positive rate as a comparable method that only considers correlations. Through an
analysis of 140 Affymetrix datasets from Gene Expression Omnibus, we build a network of 19,926 interactions among 57
intronic miRNAs and 3,864 targets. InMiR can also predict which host genes have expression profiles that are good
surrogates for those of their intronic miRNAs. Host genes that InMiR predicts are bad surrogates contain significantly more
miRNA target sites in their 39 UTRs and are significantly more likely to have predicted Pol II and Pol III promoters in their
introns. We provide a dataset of 1,935 predicted mRNA targets for 22 intronic miRNAs. These prediction are supported both
by sequence features and expression. By combining our results with previous reports, we distinguish three classes of
intronic miRNAs: Those that are tightly regulated with their host gene; those that are likely to be expressed from the same
promoter but whose host gene is highly regulated by miRNAs; and those likely to have independent promoters.
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Introduction

MicroRNAs (miRNAs) are a large family of small, non-coding

endogenous RNAs that play critical roles in a wide range of

normal and diseased-related biological processes [1]–[3] by post-

transcriptionally repressing the expression of target genes.

miRNAs repress gene expression by binding target mRNAs often

in their 39 UTR.

MicroRNAs recognize their targets through partially comple-

mentary, as such, they are particularly amenable to computational

prediction of their target mRNA sequences [4]–[20] (for a recent

review of these techniques see [21]). Substantial computational

and experimental effort in this area has revealed a number of core

predictive sequence features: strong base pairing between the 39

UTR of mRNAs and the miRNA seed region [22], thermody-

namic stability of binding sites [23], evolutionary conservation of

binding sites (particularly the seed region) [7], [14], secondary

structure accessibility [8], [11], [24]–[26], and dinucleotide

composition of flanking sequence [14], [27]. For example,

TargetScan [8] is a popular method that incorporates many of

these features and regularly performs well in head-to-head

comparisons (e.g., [28]). For a comprehensive review of

sequence-based features see [29].

However, despite these efforts, recent reports claim that even

the most accurate miRNA target prediction methods have false

positive rates greater than 30% [28], [30] and the limited overlap

of their predictions suggest that they also have high false negative

rates [31]–[33].

One strategy to improve the accuracy and the sensitivity of

target prediction methods is to search for inverse relationships

between paired miRNA and mRNA expression levels. Although

miRNA-mediated gene repression can occur through Argonaute-

catalyzed mRNA cleavage or mRNA destabilization, or transla-

tional repression [34]–[40], as much as 84% of the resulting

decrease in the protein product is due to miRNA-induced changes

at the transcriptional level [41]. This miRNA-induced mRNA

degradation leaves a signature that is inversely correlated with

miRNA expression level on the steady-state mRNA levels of its
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targets [34], [42], [43]. This signature can be detected even when

miRNAs also repress translation [37], [38]. However, detecting

this signature is difficult simply by comparing expression profiles of

a single miRNA and mRNAs [44] possibly because many mRNAs

are regulated by multiple miRNAs [12], [32]. We have previously

shown that allowing for multiple miRNA regulators of a given

mRNA and Bayesian modeling of potential sources of variation

can reveal this signature [12]. One way to predict the miRNA

targets is to identify mRNA-miRNA pairs whose expression

profiles show significant negative correlation in both human and

mouse data [45]. However, these approaches require large

amounts of paired miRNA and mRNA expression data. This

paired data is rarely available because different assays need to

applied to the same RNA sample, and until recently, miRNA

expression levels were difficult to measure accurately.

Approximately half of mammalian miRNAs are in the introns of

protein-coding genes, so it may be possible to predict the targets of

some of these intronic miRNAs without having to measure their

expression level. Indeed, many intronic miRNAs appear to lack

their own promoters and are processed out of introns [46]–[57].

Estimates for the proportion of intronic miRNA whose expression

profiles are significantly correlated with their host gene vary

between 34% (25/74 [51]) and 71% (22/31 [50]). If these co-

expression relationships can be detected without having to

measure the miRNA expression, then host gene expression levels

can be used as a surrogate for the miRNA levels when doing target

prediction (c.f., [16]). There are substantial advantages to doing

this. First, host gene expression levels are measured at the same

time and on the same platform as the target gene expression levels,

thus removing the need to model platform and laboratory-based

effects. Also, there are hundreds of suitable Gene Expression

Omnibus datasets for well-studied model organisms that can be

used for target prediction, thus adding considerable statistical

power to any target predictions.

However, not all host gene expression profiles are useful for

predicting the targets of their intronic miRNAs. Some of these

intronic miRNAs show evidence of having their own promoter

[58]–[65]. For example, two independent studies found putative

promoters for one-third of intronic miRNAs [58], [59]. Further-

more, host gene mRNAs may themselves be under post-

transcriptional regulation by other miRNA. As such, it is

important to distinguish host genes with expression profiles that

are good surrogates for those of their intronic miRNAs from those

that are not.

Here we propose a new method that both identifies intronic

miRNAs whose host gene’s expression provide good surrogates for

their expression level as well as predicting the mRNA targets of

these miRNAs. Our method takes as input a set of potential

miRNA target sites based on sequence comparisons and then

among these sites it identifies those likely to be functional sites

based on the degree to which host gene’s expression is predictive of

down-regulation of the mRNA. When predicting regulators of a

particular mRNA, we consider the combined effect of all of its

potential regulators because most miRNAs are regulated by

multiple miRNAs [12], [31], [32], [66], [67]. Our method can use

any mRNA expression profiles, however, here we use 140 gene

expression data series chosen for their size and their use of the

Table 1. The description of symbols used in the paper.

symbol Description

g gene index

k miRNA index

i dataset index

G # of target genes

Kg # of putative targeting miRNAs for gene g

T # of samples

ni noise vector corresponding to dataset i

xi
g

expression of gene g in dataset i

Hi
g

a matrix containing the expressions of host genes in dataset i

hi
kg

expression of the gene hosting miRNA k that targets gene g in
dataset i

Dxi
g

change in expression level of gene g in dataset i

wi
g

regulatory weights of miRNAs targeting gene g in dataset i

doi:10.1371/journal.pone.0019312.t001

Figure 1. Interaction between hosts, targets, and intronic miRNAs using DAG. A directed acyclic graph (DAG) that represents interactions
between host genes, intronic miRNAs, and the target. The top nodes represent the host genes. The middle layer represents the intronic miRNAs
located in the introns of the host genes at the first layer. And the bottom layer denotes the target gene. In this DAG, the gene LSM12 is targeted by
intronic miRNAs miR-19a, miR-19b,miR-26a,miR-26b, miR-27b, miR-214, miR-340, and miR-874 which are located in the introns of CTDSP2, CTDSPL,
MIRHG1, CTDSP1, C9orf3, RNF130, DNM3, and KLHL3.
doi:10.1371/journal.pone.0019312.g001
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same microarray platform. We distinguish between good and bad

host gene surrogates based on the proportion of their hosted

miRNA’s potential targets that we predict to be functional. Host

genes that we deem to be bad surrogates based on this test have

more predicted Pol II/III promoters in their introns as well as

more predicted miRNA binding sites in their 39 UTRs.

Results

We modeled the change of an mRNA’s expression level in a

sample by a linear combination of the host gene expression levels

of a subset of the miRNAs with potential target sites in the 39

UTR of the mRNA. We distinguished the functional and non-

functional target sites by fitting this linear model to expression

profiling data from a large number of studies and then examining

the distributions of weights assigned each potential miRNA

regulator.

This linear modeling approaches differs from previous ones

[12], [66], [67] in a number of important aspects. First, we use

host gene expression levels as surrogates for miRNA expression

levels. Also, we predict functional and non-functional sites by

integrating evidence from multiple profiling studies rather than a

single study. This change allows us to employ a much simpler

linear model for each individual dataset because we need not rely

upon prior assumptions to detect statistical signals of regulation.

The parameters of our model can be easily estimated using

ordinary least squares linear regression. One final change is that

we assume that the multiple miRNAs contribute additivity to the

down-regulation of a given mRNA rather than multiplicatively. In

other words, the decrease in expression level of the target is

proportional to the expression level of miRNAs. As such, we do

not log transform the mRNA expression profile applying our

model to it. In the following, we describe our methodology and

obtained results in detail.

1-Computing weights for putative miRNA regulators on
individual datasets

Our linear model is as follows: Given N gene expression

datasets Di, i~1, . . . N (see materials and Table S1), let

Dxi
g~fDxi

tgg
T
t~1 denote an T-element vector whose elements

correspond to the decrease in the expression level of the �gth target

gene over T samples in the ith dataset. We model this vector as a

linear function of Kg intronic miRNAs whose host gene expression

levels are denoted by hi
kg~fhi

tkgg
T
t~1,k~1, . . . ,Kg. These intronic

miRNAs represent putative regulators of the mRNA identified

based on a sequence-based miRNA prediction algorithm, such as

TargetScan. Based on the above assumptions and definitions, we

build the following model:

Dxi
1g

Dxi
2g

..

.

Dxi
Tg

0
BBBBB@

1
CCCCCA

target gene

~ wi
1g

hi
11g

hi
21g

..

.

hi
T1g

0
BBBBB@

1
CCCCCAzwi

2g

hi
12g

hi
22g

..

.

hi
T2g

0
BBBBB@

1
CCCCCAz . . . zwi

Kg

hi
1Kg g

hi
2Kg g

..

.

hi
TKg g

0
BBBBBB@

1
CCCCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
the contribution of the intronic miRNAs

%hbracez

ni
1

ni
2

..

.

ni
T

0
BBBBB@

1
CCCCCA

noise

ð1Þ

where wi
kg, k~1, . . . ,Kg is a weight that represents the contribu-

tion of the kth intronic miRNA in regulating the target gene g and

ni~fni
tg

T
t~1 represents modeling error or noise. Typically, we

cannot measure Dxi
kg directly, so we approximate it by the

difference between the mean mRNA expression level in the sample

and the measured level of xi
kg, i.e., Dxi

kg~{(xi
kg{

1
G

PG
g~1 xi

kg) ,

where G denotes the number of genes in the dataset. We also

assume that the noise vector is sampled from a multivariate

Gaussian distribution whose covariance matrix is proportional to

the identity matrix, i.e., is spherical. Equation (1) can be written in

matrix-vector notation as

Dxi
g~Hi

gwi
gzni, i~1, . . . ,N ð2Þ

in which Hi
g~½hi

1ghi
2g . . . hi

Kgg� denotes the expression data of Kg

host genes over T samples.

In the model, a positive (negative) weight, bwwi
kg, indicates the

contribution of the host gene k in decreasing (increasing) the

expression level (Dxi
g) of the target gene g. We call this the

unconstrained linear model (ULM) to distinguish it from previous

models [12], [66] that constrain the weights wi to be positive

thereby insisting that miRNAs act only to down-regulate the

expression of their target genes. We relax this constraint for

convenience because doing so simplifies the fitting procedure

without impacting the predictions of the model (see Fig. S2, Fig.

S3, and Fig. S4). In this paper, we focus on the down-regulating

role of miRNAs as only few miRNAs have been reported to up-

regulate target gene expression [68], [69].

Under these assumptions, we can estimate wi
g using ordinary

least squares linear regression, i.e., we minimize the root mean

squared error between the reconstruction of the mRNA down-

regulation profile based on the miRNA estimates and the observed

one, i.e.,:

bwwi
g~ arg min

wi
g

(Dxi
g{Hi

gwi
g)T (Dxi

g{Hi
gwi

g) ð3Þ

Figure 2. The simplified DAG. The simplified DAG of Fig. 1 in which host genes have a direct interaction with the target.
doi:10.1371/journal.pone.0019312.g002

(1)
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Figure 3. CDF plots for weights. Plots a–d: the CDFs of the weights wi
gk (a–b) and ri

gk, (c and d)Vi,g for seven host genes obtained from ULM (a
and b), and CORR (c and d) with the actual (a and c) and permutation setups (b and d). The thick gray line in each plot is the CDF obtained from the
pooled permutation data for each method. The Table lists the p-values (Willcoxon ranksum test) showing the probability that the weight or
correlation data are drawn from the pooled permutated data (see (4) and (5) for detail). P-values marked in red are predicted to be significant
(Pv0:01). It should be noted that the host gene MIRHG1 was excluded for analysis since the expression data related this host gene did not exist in
the retrieved dataset.
doi:10.1371/journal.pone.0019312.g003
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where T denotes the matrix transpose operation. Note that the

solution to equation (3) corresponds to the maximum likelihood

estimate of wi (see materials for details).

We solved (3) individually in each dataset to obtain N bwwi
g

vectors for the target gene g. In order to be able to compare

weights across datasets, we rescaled the weights for each mRNA

within each dataset by dividing each element in bwwi
g by the sum of

the absolute values of its elements, i.e.,
PN

i~1 Dbwwi
g D thus ensuring

that {1ƒ
i
kgƒ1, Vi,k. In the next section we describe how we

combine weights from multiple datasets to make a single

prediction for each putative miRNA and mRNA interaction. A

summary of symbols used is given in Table 1.

2-Mapping host gene weights to miRNA weights
Our model uses host gene expression as a surrogate for the

expression level(s) of its intronic miRNAs. This requires us to resolve

some of the host gene / intronic miRNA relationships that are not

one-to-one, because some host genes contain multiple intronic

miRNAs and some intronic miRNAs are duplicated in more than

one host gene. Fig. 1 shows a directed acyclic graph (DAG)

representing these relationship for eight intronic miRNAs that are

possible regulators for the expression of gene LSM12 whose protein

product accumulates in stress granules [70]. This DAG can be

interpreted as a graphical model in which the expression patterns of

intronic miRNAs are hidden. Because our goal is not only to predict

miRNA targets but also to determine which host genes are good

surrogates for their intronic miRNAs, we assign weights directly to

host genes rather than miRNAs. So, the host genes of duplicated

miRNAs get separate weights. Also, when a host gene contains more

than one intronic miRNA with putative targets in a given mRNA,

we assign this host gene weight to each of these miRNAs. The host

gene / target mRNA model that we fit for LSM12 after making

these adjustments is shown in Fig. 2.

3-Combining multiple datasets to predict functional
targets

We make our predictions of functional targets by comparing the

distribution of weights assigned to a host gene / mRNA pair across

the datasets to a distribution in which the association between host

genes and their expression profiles is randomized. Specifically, we

generate a null distribution of weights by permuting the labels of the

host genes and re-calculating the weights for all putative pairs in

every dataset. All of the weights calculated during this process

comprise the empirical null distribution. Then for each host gene /

mRNA pair, we compare the distribution of weights for this pair

against this null distribution by calculating the two-sided Wilcoxon-

Mann-Whitney (WMW) ranksum P-value, we call this value Pkg for

the k-th host gene and the g-th mRNA. We also record whether the

mean of the distribution of real weights for a given pair is larger or

smaller than the mean of the null distribution. The means of the

weight distributions that are larger than random reflect a prediction

by our model that a miRNA associated with the host gene is down-

regulating the target mRNA. As we will describe later, we use host

gene / mRNA pairs whose weights are smaller than random when

distinguishing good and bad host gene surrogates.

We interpret Pkg as an enrichment measure and determine a

cutoff value, for both positive and negative enrichment, by

comparing it to P-values calculated for host gene / mRNA pairs

that are unlikely to interact. We generated P-values for these likely

negative examples by calculating a two-tailed WMW P-value, Qkg,

for each putative host gene / mRNA pair as described above

except that we replace the actual weight distribution with that we

computed after permuting the host gene labels. Formally, we

define Pkg and Qkg as follows:

Pkg~WMW(fwi
kgg

N
i~1,ffqi

kgg
K
k~1g

N
i~1) ð4Þ

Figure 4. Receiver Operating Characteristic (ROC) curve
analysis. Receiver Operating Characteristic (ROC) curve analysis to
determine the cutoff point. We set the cutoff point to 0.01
({ log10 0:01~2) to identify significant host-target interactions. The
blue, red, and black curves show the ROC associated with ULM, CORR,
and random, respectively.
doi:10.1371/journal.pone.0019312.g004

Figure 5. Interaction between LSM12 (target gene ) and the
host genes of its targeting miRNAs. Shown are the boxplots of
weights obtained from the procedure described Materials, Subsection
5. The significant negative interactions, i.e. those with PvPcutoff and
meangkwrandom, have asterisk marks. The horizontal dashed line
indicates the median of weights obtained from the permutation test.
doi:10.1371/journal.pone.0019312.g005
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Qkg~WMW(fqi
kgg

N
i~1,ffqi

kgg
K
k~1g

N
i~1) ð5Þ

where WMW(S,S’)) is a function that calculates a two-tailed

WMW P-value for sets S and S’ and fqi
kgg is the set of weights fit

to the permuted data.

Fig. 3.a–d show the CDFs of weights (i.e. wi
gk and qi

gk ,Vk) for all

host genes whose intronic miRNAs have potential target sites in

LSM12. The CDF of the pooled weights obtained from the

permuted data (the thick gray line) is also shown. These weights

were obtained from two methods: ULM (Fig. 3.a–b) and a method

that sets weights by correlation (Fig. 3.c–d) (the CORR method,

see materials for details). Recently, the HOCTAR method was

introduced that uses inverse correlation with host genes to detect

Figure 6. A gene-gene interaction network of target and host genes of intronic miRNAs. A gene-gene interaction network of target and
host genes of intronic miRNAs with significant negative interactions. Each green and red node shows a host and target gene, respectively. An edge
indicates that there is a significant negative interaction between two nodes, i.e. meangkwrandom and PkgvPcutoff . The size of each host node is
proportional to the number of the edges connected to it. Host–intronic miRNAs pairs are: MCM7–miR-106b/93/25, LARP7–miR-367/302a/
302b,LARP7–miR-302c/d, RNF130–miR-340,PPIL2–miR-130b/301b,HUWE1–miR-98/let-7f, CTDSP2–miR-26a, CTDSP1–miR-26b, RCL1–miR-101,COPZ1–
miR-148b, PANK2–miR-103,TRPM3–miR-204, DNM2–miR-199a/638, IARS2–miR-215/194,HNRNPK–miR-7, SREBF2–miR-33a, WWP2–miR-140, DALRD3–
miR-425/191, EVL–miR-342, LPP–miR-28, ACADVL–miR-324,KIAA1797–miR-491, C3orf60–miR-191.
doi:10.1371/journal.pone.0019312.g006
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intronic miRNA targets [16]; here we use the CORR method to

demonstrate how well inverse correlation performed within our

framework. From Fig. 3.c–d, we see that the distributions obtained

from CORR from the actual and permuted data are almost

indistinguishable suggesting that CORR is unpowered and/or

prone to misclassification compared to ULM. Moreover, these

observations also confirm the cooperative impact of miRNAs on

target genes. By contrast, the distributions of three host genes,

namely CTDSP1,CTDSP2, and CTDSPL, obtained from ULM–

also from constrained linear model (CLM) (Fig.S4)–are signifi-

cantly different from their permuted counterparts and the pooled

distribution. The table at the bottom of Fig. 3 lists Pkg and Qkg for

each interaction. In the next subsection we specify a cutoff point in

order to determine the significant interactions that we will be using

to make predictions about targets.

4-Determining a cutoff value for significant interactions
We apply ROC analysis to determine a cutoff point for specifying

significant Pkg. Fig. 4 shows the ROC curves for the ULM and

CORR methods when we use { log Pkg as the discriminant values

for the positive examples and { log Qkg for the negative examples. By

using a cutoff of 0:01 for the ULM Pkg values, we are able to achieve a

sensitivity of 32% at 100% predicted specificity. In other words, 32%
of interactions predicted by TargetScan are assigned weights whose

distributions are more distinguishable from a random distribution

than any of those assigned the permuted host gene / mRNA pairs. If

we insist on 100% specificity, CORR only recovers 17% of the

TargetScan predicted host gene / mRNA interactions; achieving 32%

sensitivity with CORR requires lowering the specificity to 94%. The

corresponding cumulative distribution of these log P-values is shown

in Fig.S1-2. In the example in Fig. 3, detect significant interactions

between CTDSP1 and LSM12 (P-value = 3:1|10{8(ULM)), be-

tween CTDSP2 and LSM12 (P-value = 1:7|10{4 (ULM)), and

between CTDSPL and LSM12 (P-values = 2:1|10{5 (ULM))

significant. Fig. 5 shows the boxplots of weights of 7 host genes whose

intronic miRNAs putatively target LSM12.

5-Detecting good host gene surrogates
Using the method described in the last section, we defined for each

host gene a set of significant interactions between the host gene’s

expression level and those of the predicted targets of its associated

intronic miRNAs (i.e. those for which PkgvPcutoff ). Furthermore,

we know whether that an interaction is a ‘‘negative’’ one when the

mean of weights over all datasets (i.e. mean(wkg)~ 1
N

PN
i~1 wi

kg) is

larger than random expectation or a ‘‘non-negative’’ one, when the

mean is smaller than random expectation. When we examine all the

significant interactions between a host (or equivalently its miRNA)

and its predictive targets, we find that these interactions are almost

exclusively negative or non-negative.

We retrieved and processed the expression profiles of 75 host

genes and 3864 target genes (see materials and Table S3 ) over 140

datasets. For all target genes (G~3864), we carried out the

Figure 7. The host genes that significantly negatively interact with the target genes. Each dark green bar shows the number of putative
targets–-obtained from TargetScan–-of intronic miRNAs of the corresponding host gene labeled in the x-axis. Light green bars indicate the number of
putative targets which satisfy the condition PgkwPcutoff (significantly regulated). Number of putative targets that meet the both conditions
PgkwPcutoff and meangkwrandom (significantly negatively regulated), are shown by yellow bars.
doi:10.1371/journal.pone.0019312.g007
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procedure given in Materials subsection 5 for obtaining p-values for

ULM, CLM, and CORR methods. All of these p-values are

available in Table S3. We report the results for ULM, the significant

interactions from CLM are similar and, as we described in the last

section, using CORR reduces our sensitivity or specificity or both.

After applying the cutoff at P~0:01, we find that 22 (29%) host

genes have more negative interactions than positive ones. Those

host genes and their 1935 target genes are shown in Fig. 6.

Fig. 7 shows the number of TargetScan-predicted targets for

each of these 22 host genes, along with the number of significant

interactions for these predicted targets and the number of these

significant interactions that are negative. As shown, for 21 out of

22 host genes, almost all interactions are negative (equal light

green and yellow bars). We take this as evidence that the host gene

expression level is a good surrogate for that of its intronic miRNAs.

Indeed when we consider all of the host genes with any significant

interactions, we find that they fall into two main classes: those

whose interactions are almost exclusively negative and those that

are non-negative (Fig. 8). Furthermore, those that are non-

negative are highly enriched for those with possible promoters, as

predicted by sequence analysis in [58], for their intronic miRNAs

(Fig. 8 and Fig. 9). We also observe that significantly negatively

enriched host genes have, on average, high mean p-values (blue

circles). For instance, 7 out of 8 host genes, namely HNRNPK ,

COPZ1, HUWE1, PANK2, ACADVL, LARP7, and IARS2

appear at the top of the ranked mean p-value list. Thus,

significantly negatively interactions and high mean p-values are

two determinants which may provide strong evidence for detecting

co-expressed host-intronic miRNA pairs.

6-Targeting of host genes by miRNAs partially explains
their predicted surrogacy

Even if a host gene and intronic miRNA are expressed from the

same promoter, they could have different expression levels due to

different post-transcriptional regulation. To investigate this, we

examined the predicted miRNA targets within the 39 UTRs of

Figure 8. The scatter plot shows the enrichment of host genes. Each circle, associated with a host, shows the mean of { log10 p-values of the
enriched genes vs the percentage of negatively enriched genes targeted by the intronic miRNAs of host genes. The blue and red circles are
associated with good and bad surrogate host genes, respectively. The circles corresponding to the hosts whose intronic miRNAs have predicted
promoters marked by yellow triangles.
doi:10.1371/journal.pone.0019312.g008

Figure 9. Venn diagrams. Venn diagrams showing overlap between
good and bad surrogate host genes and hosts whose intronic miRNAs
have predicted promoters.
doi:10.1371/journal.pone.0019312.g009
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host genes. We found host genes are targeted by miRNAs much

more than non-host genes (Pv10{22, Wilcoxon ranksum test)

though we were unable to detect a preference for targeting by

intronic versus intergenic miRNAs (Fig S5). However, we found

that negatively enriched host genes have significantly fewer

(Pv0:02, Wilcoxon ranksum test) miRNA targets than non-

negatively enriched hosts (Fig. 10). So, down-regulation of the host

gene by other miRNAs could provide another possible explanation

for why some host expression levels are bad surrogates for those of

their intronic miRNAs. The pattern of interactions among host

genes and their intronic miRNAs suggests that there may be some

hierarchical structure in intronic miRNA-based regulation (Fig

S6).

7-Correlation measurements are not good indicators of
surrogacy

Correlation between the expression patterns of the host genes

and their intronic miRNAs in a single dataset are not a good

indicator of surrogacy. We observed that correlation measure-

ments reported by five different groups are highly non-overlapped

and somehow inconsistent (See File S1, Fig S7, Table S5). Only 11

host-miRNA pairs show high positive correlation (rw0:4) at least

in two of these five datasets (Fig. 11). Out of these 11 host genes, 4

host genes are predicted to be good surrogates by our model.

While the intronic miRNAs of none of these 4 hosts have

promoters, 6 out of 7 hosts predicted to be bad surrogates have

intronic miRNAs with promoters (Fig. 11). Thus, 7 highly

correlated host-intronic miRNA pairs pass neither our criteria

nor the promoterless condition.

Discussion

InMiR models the combinatorial effect of miRNAs using a

simple and biologically plausible linear model. Because we use

ordinary linear regression for target prediction, InMiR is fast and

easy to update to incorporate new mRNA expression data. We

used data from *1,500 gene expression arrays to predict

interactions in human between 57 intronic miRNAs and 3,864

potential targets. InMiR can also be readily applied to other

species beside human because intronic miRNAs constitute a large

portion of the miRNA complement of a variety of species (Fig. 12).

Unlike previously described methods, InMiR does not assume

that all host genes have expression levels that are equally good

surrogates. The set of host genes predicted by InMiR to be bad

surrogates is enriched for those with predicted intronic promoters

as well as having a larger number of microRNA target sites in their

39 UTRs.

As shown in Fig. 13, our observations suggest at least three types

of regulatory relationships between host genes and their intronic

microRNAs: (a) an intronic miRNA and its host gene are

transcribed from the same promoter; the mature miRNA is then

processed from intron before or after splicing using Drosha or

independently (mirtrons) and the subsequent steady-state expres-

sion levels of the host and intronic miRNA are highly correlated

(Fig6.a); (b) an intronic miRNA has its own promoter and is

Figure 10. Number of intergenic and intronic miRNAs that putatively target our set of host genes. Bars marked by red circles are
associated with the genes predicted to be good surrogates.
doi:10.1371/journal.pone.0019312.g010
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transcribed independently from the host gene at least some of the

time (Fig 6.b); (c) the intronic miRNA and host are transcribed

from the same promoter but the post-transcriptional regulation of

the host gene expression levels is different than those of the

miRNA (Fig 6.c). For example, a host gene could be down-

regulated by its own intronic miRNA; we found three self-

regulated hosts, all of which were predicted as bad surrogates by

InmiR (Fig S8) or host genes could be down-regulated by other co-

expressed miRNAs.

The host gene / intronic miRNA interactions that we observe

suggest a variety of new regulatory mechanisms. For example,

tightly coupled host gene and intronic miRNA expression could

support a rapid ‘‘biological switch’’ in cellular state in which host

gene expression also expresses an intronic miRNA that immedi-

ately down-regulates genes expressed in the competing state (Fig.

S9).

Our observation raise a number of interesting questions. Are

intronic miRNAs with their own promoter ever expressed from the

host gene’s promoter? How is this decision regulated? How does

the independent transcription of an intronic miRNA affect host

gene transcription? Does the processing of intronic miRNA

interfere with splicing? This may depend on whether Drosha

cleaves the pre-miRNA before or after splicing. Kim and Kim [56]

speculated that both mechanisms may occur but no conclusive

results can be drawn yet. Answers to these not well-understood

mechanisms provide a clearer picture of intronic miRNA

biogenesis.

Materials and Methods

1-Microarray data
140 curated gene expression data sets, called GDS, were

downloaded from Gene Expression Omnibus (GEO) using the

MATLAB Bioinformatics toolbox function getgeodata.m. The list

of these GDSs are given in Table S1. Each dataset is then processed

as follows. First, we excluded those genes for which we have missing

values. Then we filtered out genes with absolute values less than

10th percentile using MATLAB function genelowvalfilter.m. The

expression profile related to the host gens are normalized so that all

have length one. Mathematically this means hi
gk/

hi
gk

Ehi
gkE

,Vi,k,g.

For the target genes, we obtain the decrease in expression level as

Dxg~�xxg{xg where �xxg~
1
kg

PKg

k~1 xgk,Vg.

2-Maximum Likelihood Estimation
The maximum likelihood estimate of wi

k is given by

ŵwi
g~ arg max

wi
g

p(Dxi
g Dw

i
g,Hi

g): ð6Þ

The vector ng is modeled by a zero mean white Gaussian noise of

the form

pn(ng)*N (0,Sn)~
1

D2pSnD
T
2

exp ({
1

2
nT

g S
{1
n n): ð7Þ

Figure 11. Pearson correlation coefficients averaged over five correlation datasets. (Table S6) Only those host-intronic miRNAs pairs
which are significant (Pv0:05) in at least two datasets and overlap with our host gene list are considered. The hosts marked with a yellow triangle
contain intronic miRNAs with predicted independent promoters.
doi:10.1371/journal.pone.0019312.g011
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If we assume that the noise process has a diagonal covariance

matrix of the form Sn~s2I where I denotes the identity matrix,

then maximum likelihood function is given by

p(Dxi
gjwi

g,Hi
g)~

1

(j2ps2j)
T
2

exp ({
1

2s2
(Dxi

g{Hi
gwi

g)T(Dxi
g{Hi

gwi
g)):

ð8Þ

Thus, maximizing the log of p(Dxi
g Dw

i
g,Hi

g) is equivalent

bwwi
g~ arg min

wi
g

(Dxi
g{Hi

gwi
g)T(Dxi

g{Hi
gwi

g) ð9Þ

3-Predicting miRNA targets using inverse correlation
(CORR method)

Gennarino and colleague [16] recently described an algorithm,

HOCTAR, that predict intronic microRNA targets based on

inverse correlation of their host genes with other mRNAs across a

large number of datasets. As we have previously demonstrated

[71], linear models that consider the impact of multiple potential

miRNA regulators generate more accurate target predictions than

simple correlations, consistent with recent observations of miRNA-

target interactions [31], [32]. To assess whether these observations

hold for target predictions based on host gene expression, we also

assessed a version of our method in which we replace the weights

with correlations. The resulting algorithm is very similar to

HOCTAR.

In particular, we denote the correlation coefficient by

ri
gk~corr(xi

g,hi
k), Vi,k,g where corr(:,:) represents the Pearson

correlation coefficient. We then use these correlations ri
gk for real

and permuted datasets in the place of weights to calculate the P-

value based enrichment measures as described in Section II.C. We

call this method as CORR.

4-Processing hosts and targets data
We retrieved the mirRBase gene context repository and

extracted all human intronic miRNA-host gene association

(Table S2). We also downloaded 140 gene expression datasets

(GDS) from Gene Expression Omnibus (GEO) which were built

on the Affymetrix HG-U133 microarray platform [16] using

MATLAB function getgeodata.m (Table S1 and materials). Only

those probe IDs that could be mapped to gene symbols

(according to HGNC) were considered for analysis. We used

the list of putatively predicted target genes (9448) and their

intronic miRNAs (134) from the TargetScan (release 5.1)

repository.

Figure 12. Intronic miRNAs comprises a significant portion of identified miRNAs in other species. Stack bars showing the number of
miRNAs located in exon (brown), 39UTR (yellow), intron (cyan), and intergenic regions (blue) in 20 species for which more than 100 microRNAs have
been detected. Data are retrieved from miRBase (v.15).
doi:10.1371/journal.pone.0019312.g012
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5-Pseudo code for implementing InmiR

for g~1 : G(number of target genes)

cfind all intronic miRNAs which putatively target g using

TargetScan

cmap intronic miRNAs to their host genes ,k~1, . . . ,Kg

for i~1 : N(number gene expression datasets)

cextract the expression data of the host genes, Hi
g

cextract the expression data of the target gene, xi
g

csolve bwwi
g~ arg min

wi
g

EDxi
g{Hi

gwi
gE

cpermute the rows using a permuted matrix, M, to get MHi
g

csolve bqqi
g~ arg min

qi
g

EDxi
g{MHi

grwi
gE

end

for k~1 : Kg

ccompute the P-values:

Pkg~WMW(fwi
kgg

N
i~1,ffqi

kgg
K
k~1g

N
i~1)

Qkg~WMW(fqi
kgg

N
i~1,ffqi

kgg
K
k~1g

N
i~1)

end

end

cset two classes of data I:fPkg DV i,g,k} and II:fQkg DV i,g,kg
cplot ROC curve and determine a cutoff point (Pcutoff ) to get

almost zero false positive

cdeclare the interaction between host gene k and target gene g
significant if Pk,gvPcutoff

Supporting Information

Figure S1 The cumulative distribution function ob-
tained from ULM. The cumulative distribution functions of

the negative 10 based logarithm of the p-values for the actual and

permuted host-target interactions obtained form ULM (dashed

and solid blue lines), and CORR (dashed and solid red lines). The

cutoff point was set to 2 (the dashed black vertical line) and all p-

values beyond this point are declared significant.

(TIF)

Figure 13. Regulatory mechanisms. Three possible scenarios for the transcription and expression of a host and its intronic miRNA.
doi:10.1371/journal.pone.0019312.g013
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Figure S2 The cumulative distribution function obtained
from CLM. The cumulative distribution functions of the negative

10 based logarithm of the p-values for the actual and permuted host-

target interactions obtained form constrained linear model (CLM)–

Dxi
g~Hi

gwi
gzni, wi

g§0–(dashed and solid blue lines), and ULM.

(TIF)

Figure S3 Receiver Operating Characteristic (ROC)
curve analysis for ULM and CLM.Receiver Operating

Characteristic (ROC) curve analysis to determine the cutoff point.

We set the cutoff point to 0.01 ({ log10 0:01~2) to identify

significant host-target interactions. The blue and green curves

show the ROC associated with ULM and CLM.

(TIF)

Figure S4 The weights CDFs and p-values obtained from
ULM. Plots e-f: the CDFs of the weights wi

gk Vi,g for seven host

genes obtained from constrained linear model (CLM)–

Dxi
g~Hi

gwi
gzni, wi

g§0– with the actual (e) and permutation data

(f). The thick gray line in each plot is the CDF obtained from the

pooled permutation data for each method. Table lists the { log p-

values (Willcoxon ranksum test) showing the probability that the

weight or correlation data are drawn from the pooled permutated

data (see (4) and (5) for detail). It should be noted that the host gene

MIRHG1 was excluded for analysis since the expression data

related this host gene did not exist in the retrieved dataset.

(TIF)

Figure S5 The CDFs of the number of miRNAs targeting
host and non-host genes. Top: the cumulative distribution of

the number of miRNAs targeting host (blue) and non-host genes

(red). The inset shows the CDF of 39 UTR length of hosts(bule)

and non-host genes (bule). Bottom: the CDF of the number of

miRNAs targeting host (blue) and non-host genes (red) per base;

that is, number of target /39UTR length. The CDFs are obtained

from analyzing 367 host genes and 17000 non-host genes.

(TIF)

Figure S6 Host genes targeted by intronic miRNAs of
other hosts. Host genes targeted by intronic miRNAs of other

hosts. The nodes corresponding to hosts predicted to be good

surrogates are shown in red.

(TIF)

Figure S7 Scatter plots of five correlation datasets.
Scatter plots of five correlation datasets (Table S4). (a) the scatter

plot of Rad’s data versus Liang’s, Wang’s, Ruike’s, and

Baskerville’s data. (b) the scatter plot of Liang’s data versus

Wang’s, Ruike’s, and Baskerville’s data. (c) the scatter plot of

Wang’s data versus Ruike’s and Baskerville’s data. (d) the scatter

plot of Ruike’s data versus Baskerville’s data.

(TIF)

Figure S8 The host genes targeted by their own intronic
miRNAs. The host genes in our dataset which are targeted by

their own intronic miRNAs. All of these hosts are predicted to be

bad surrogates.

(TIF)

Figure S9 Host and intronic miRNA resemble a ‘‘bio-
logical switch’’. Tightly coupled host gene and intronic miRNA

expression could support a rapid ‘‘biological switch’’ in cellular

state in which host gene expression also expresses an intronic

miRNA that immediately down-regulates genes expressed in the

competing state.

(TIF)

Table S1 List of GDS data for analysis. The identifiers of Gene

Datasets (GDS) retrieved from the Gene Expression Omnibus

repository.

(XLS)

Table S2 The excel file contains all intronic-host genes pairs.

Data are retrieved from MirBase v.15.

(XLS)

Table S3 The excel file, consisting of 6 sheets, contains the

entire p-values obtained from interactions between 3864 intronic

miRNAs targeted genes and 57 hosts genes using the CLM, ULM,

and CORR methods. sheet 1 p-values from the CLM model. sheet

2 p-values from the CLM model with permuted data. sheet 3 p-

values from the ULM model. sheet 4 p-values from the ULM

model with permuted data. sheet 5 p-values from the CORR

model. sheet 6 p-values from the CORR model with permuted

data. The names of the targeted genes and host genes are given in

the first row and column of the first sheet. Note that a zero in (i,j) in

the tables shows that the ith gene is not a target of the intronic

miRNAs of the jth host.

(XLS)

Table S4 The excel file contains all target-intronic miRNA pairs

and their scores. column one: target genes. column two: intronic

mirnas. column three: host genes. column four: scores (pvalues)–

scores w2 are significant. column five flag = 1 negative and

flag = 1 positive interactions.

(XLS)

Table S5 coefficients. Correlation coefficients obtained from five

different datasets, namely Baskerville et al., Liang et al., Wang et

al., Ruike et al. , and Rad. The data reported by Wang et al. are in

terms of p-values. A empty cell in the table shows that either the

data was not available for the host-intronic miRNA pair or the

correlation coefficient was negative or insignificant.

(XLS)

File S1 Host-intronic mirnas correlation data.

(PDF)
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