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S u m m a r y  

Chagas' disease, caused by the intracellular protozoan parasite Trypanosoma cruzi, is a major cause 
of heart failure in endemic areas. Antigenic mimicry by T. cruzi antigens sharing epitopes with 
host macromolecules has been implicated in the pathogenesis which is thought to have a significant 
autoimmune component. We report herein on the cloning and characterization of a full-length 
cDNA from a T. cruzi expression library encoding a protein, TcP0, that is homologous to the 
human 38-kD ribosomal phosphoprotein HuP0. The T. cruzi PO protein shows a clustering of 
residues that are evolutionarily conserved in higher eukaryotes. This includes an alanine- and 
glycine-rich region adjacent to a highly charged COOH terminus. This "hallmark" domain is 
the basis of the crossreactivity of the highly immunogenic eukaryotic P protein family. We found 
that T cruzi-infected individuals have antibodies reacting with host (self) P proteins, as well as 
with recombinant TcP0. Deletion of the six carboxy-terminal amino acids abolished the reactivity 
of the T. cruzi infection sera with TcP0. This is similar to the specificity of anti-P autoantibodies 
described for a subset of patients with systemic lupus erythematosus (SLE) (Elkon, K., E. Bonfa, 
K. Llovet, W. Danho, H. Weissbach, and N. Brot. 1988. Proc. Natl. Acad. Sci. USA. 85:5186). 
These results suggest that T. cruzi P proteins may contribute to the development of autoreactive 
antibodies in Chagas' disease, and that the underlying mechanisms of anti-P autoantibody may 
be similar in Chagas' and SLE patients. This study represents the first definitive report of the 
cloning of a full-length T. cruzi antigen that mimics a characterized host homologue in structure, 
function, and shared antigenicity. 

T he protozoan hemoflagellate, Trypanosoma cruzi, is the 
causative agent of Chagas' disease, which is endemic in 

many Latin American countries. During the chronic stage 
of infection, an abundant inflammatory infiltrate is found in 
myocardial and nervous tissues (1, 2). This, coupled with the 
rare detection of parasites in damaged tissues, has led to the 
hypothesis that autoimmune mechanisms may contribute to 
tissue injury in Chagas' disease. 

Chagas' disease provides an excellent model for exploring 
the mechanisms of autoimmunity, because the etiology of 
the disease is known. Regarding humoral response, relatively 
few antibodies against different self-antigens have been charac- 
terized in T. cruzi-infected individuals (3-6). To date there 
have been only two reports on the molecular cloning of 
T. cruzi antigens, one complete (7) and the other a 35-residue 

peptide (8), containing antigenic epitopes which may induce 
antibodies that crossreact with self proteins. In general, most 
of the T. cruzi antigens that have been reported are partial 
sequences comprised mainly of repetitive epitopes (9, 10). 
Of the identified nonrepeat antigens, complete sequence in- 
formation is available for only a few (7, 9, 11). 

Herein, we report the cloning, expression, and biochem- 
ical characterization of a fuU-length cDNA encoding a 35-kD 
T cruzi antigen, TcP0, that is constitutively expressed and 
associated with the ribosomal translation machinery. TcP0 
is highly homologous to the human 38-kD type ribosomal 
P protein HuP0, and is conserved in other Trytmnosoma spe- 
cies. We show that T. cruzi-infected individuals have anti- 
bodies against TcP0 which, in most cases, crossreact with 
the homologous human ribosomal P proteins. Of particular 
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interest to our study are previous reports which demonstrated 
that a subset of patients with SLE have autoantibodies against 
ribosomal P proteins (12, 13). 

The uniformity in the target epitope of the autoantibodies 
against the ribosomal P proteins of humans and mice with 
SLE (14), of a mouse mAb derived from immunization with 
heterologous (chick) ribosomes (15), and of TcP0 in T. cruzi- 
infected individuals, is suggestive of similar mechanisms that 
lead to the generation of anti-P autoantibodies either sponta- 
neously (human and mouse SLE) or after infection. We pro- 
pose that exposure to T. cruzi P proteins may result in the 
generation of autoreactive antibodies which could contribute 
to the autoimmune pathogenesis characteristic of Chagas' 
disease. 

Materials and Methods 
Parasite and Cell Culture. T. cruzi (MHOM/CH/00/Tulahuen 

C2) and Tryt, anosoma brucei (EATRO 164, clone IHRI 1) strains 
were grown and cultured as described (16, 17). K562 human 
erythroleukemic ceils were a gift of Dr. M. Yagi, Seattle Biomed- 
ical Research Institute. 

Library Construction and Isolation of cDNA Clones. POly(A +) 
RNA was purified from total T. cruzi trypomastigote RNA using 
standard protocols (18). An expression library was constructed with 
the poly(A +) RNA using the X Zap-cDNA unidirectional cloning 
kit (Stratagene Inc., La Jolla, CA), as suggested by the manufac- 
turer. Approximately 2 x 10 s plaques were screened in duplicate 
with 3ZP-radiolabeled Leishmania chagasi PO insert (Skeiky et al., 
manuscript in preparation) using standard techniques (18). Hybrid- 
ization was at 55~ using the same cocktail mix as described for 
the Southern blots (see below). Posthybridization washes were at 
55~ for 2x 15 min with each of 2x and 0.5x SSC containing 
0.1% SDS. After plaque purification, excision of the pBSK(-) 
phagemid was carried out according to the manufacturer's protocol 
(Stratagene Inc.). 

Northern and Southern Analysis. Total RNA was extracted by 
the acid guanidium isothiocyanate method (19), resolved on 1.5% 
formaldehyde denaturing agarose gels (18), and transferred by cap- 
illary blotting onto Zeta Probe membrane (Bio-Rad Laboratories, 
Richmond, CA) using 50 mM NaOH (20). Genomic DNA was 
prepared, digested with the restriction enzymes, separated on 0.7% 
agarose gel, and blotted on to Nytran membrane (18). Hybridiza- 
tion was performed as described (21), except for minor modifica- 
tions: the salt concentration was 6x SSC, and dextran sulfate was 
omitted for Southern blots. Radiolabeled TcP0 cDNA insert was 
prepared by the random priming method (22), and hybridized over- 
night at 65~ (Northern blots) or 50~ (Southern blots). Blots 
were washed twice at 65~ for 20 min with each of 2x, 0.5x, 
and 0.2x SSC containing 0.1% SDS. 

Sequencing. TcP0 cDNA inserts of the pBSK(-) phagemid 
were excised after restriction with EcotLI and XhoI, and subcloned 
unidirectionally into the same sites of pBSK(+) vector. Overlap- 
ping clones were generated from both the coding (pBSK-) and 
noncoding (pBSK +) strands by exonuclease III (23). Single-strand 
templates were isolated after infection with VCSM13 helper phage, 
as recommended by the manufacturer (Stratagene Inc.), and se- 
quenced by the dideoxy chain termination method (24) using Se- 
quenase (US Biochemical Corp., Cleveland, OH). 

Expression and Purification of Recombinant TcPO (rTcPO) Antigens. 
T cruzi PO cDNAs were engineered at the 5' region of the poly- 

linker sequence using appropriate enzymes for in-frame fusion with 
the amino terminus of B-galactosidase. COOH-terminal deletions 
were initiated from the 3' end (XhoI) of the TcP0 phagemid insert 
and treatment with exonuclease III. Recombinant antigens were 
purified from 500 ml of IPTG-induced cultures (10). The inclusion 
bodies were sequentially solubilized in two washes each of 10 ml 
TNE (50 mM Tris, pH 8.0, 100 mM NaC1, and 10 mM EDTA) 
containing 2, 4, and 8 M urea. Fractions containing the recom- 
binant antigen (usually the 4 and 8 M urea supernatants) were 
pooled, dialyzed against PBS, and concentrated by precipitation 
with 30% ammonium sulfate. Purification to homogeneity was 
accomplished by preparative SDS-PAGE electrophoresis, followed 
by excision and electroelution of the recombinant antigens as de- 
scribed (25). 

Productwn of Rabbit Antiserum against Recomtn'nant 7~PO. An adult 
rabbit (New Zealand White; R & R Rabbitry, Stanwood, WA) 
was immunized with purified rTcP0 as described (26), except that 
rlbl-3 was excluded. 

Antigens. Parasite and cell lysates were prepared by freeze/thaw 
lysis of pellets in SDS sample buffer, but without glycerol and B-ME. 
Insoluble material was separated from the supernatant by centrifu- 
gation at 10,000 rpm in a microfuge. 77, cruzi ribosomes were iso- 
lated as previously described for mammalian cells (13), and the final 
pellet resuspended in SDS sample buffer. Protein concentrations 
were determined using the BCA protein assay kit (Pierce Chemical 
Co., Rockford, IL). 

In vitro Translation and Immunolorecipitation. 10/zg of total stage- 
specific T. cruzi RNA was translated in rabbit reticulocyte lysate 
in the presence of [3SS]methionine, as suggested by the supplier's 
protocol (Promega Corp., Madison, WI). Typically, 100,000 cpm 
of the total translated mixture was diluted to 250/~1 with solubili- 
zation buffer (20 mM Tris, pH 8.0, 50 mM NaC1, 1% Triton X-100, 
0.5% deoxycholic acid, 50 /~g/ml gentamycin, 5 mM EDTA, 
0.1 mM PMSF, and 0.1 mM iodoacetic acid). 2/~1 of anti-TcP0 an- 
tiserum was added and incubated on ice for 2 h. Complexes were 
precipitated by the addition of 40/xl of a 10% vol/vol fixed Staphy- 
lococcus aureus (Cowan I) and further incubation for I h. After cen- 
trifugation through a 1-M sucrose cushion, immunoprecipitates 
were washed twice each in solubilization buffer and mixed deter- 
gent buffers (0.05% NP-40, 0.1% SDS, 0.3 M NaC1, and 10 mM 
Tris, pH 7.6), and resuspended in 50 #1 SDS sample buffer. 10-/xl 
samples were resolved on SDS polyacrylamide gels and prepared 
for fluorography by treatment with Entensify TM (Du Pont Co., Wil- 
mington, DE), as specified by the manufacturer. 

Patient Sera. T. cruzi infection sera were from well character- 
ized patients (confirmed by both parasitological and serological evalu- 
ation) from Brazil (10). Anti-P positive SLE sera were from North 
American patients and have been described elsewhere (27, 13). Sera 
from uninfected individuals were from Seattle and nonendemic areas 
of Brazil. 

Immunoblot Analysis. 5-10 #g of parasite or cell extracts or 
0.5-1.0/xg of recombinant antigens were separated on 12.5% SDS- 
PAGE (28), and transferred electrophoretically to nitrocellulose 
membranes (29). Reactivities of the antisera were assessed as previ- 
ously described (25) using [12sI]Protein A, followed by autora- 
diography. 

ELISA. Microtitre plates (Probindr~; Falcon Plastics, Cock- 
eysville, MD) were coated overnight with synthetic peptide corre- 
sponding to the COOH-terminal 22 amino acids of the human 
ribosomal P2 protein conjugated with thyroglobulin (27) at a con- 
centration of 250 ng per well in 50/zl of coating buffer (15 mM 
NazHCO3, 28 mM NaHCO3, pH 9.6). Control wells were coated 
with free thyroglobulin. After washing with PBS/0.1% Tween- 
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20, 50/zl of sera (1:200 dilution) were added and incubated for 
30 min at room temperature. Bound antibody was detected using 
Protein A-horseradish peroxidase (Zymed Laboratories, Inc., Seattle, 
WA) as described (30). 

Resuhs  

Cloning and Characterization of the Genoraic Organization of 
the T. cruzi Antigen TcPO. As part of a strategy for iden- 
tifying antigens shared between T. cruzi and Leishmania, we 
screened a L. chagasi expression library with a pool of sera 
from individuals with T. cruzi infection. One L. chagasi clone, 

named LcPO, was isolated (Y. A. W. Skeiky et al., manu- 
script in preparation) and used to screen a T. cruzi trypo- 
mastigote cDNA expression library by crosshybridization. 
A full-length cDNA clone was isolated and named TcP0 (for 
T. cruzi PO) after comparison with other published sequences 
(see below). 

Fig. 1 A displays the entire nucleotide and deduced amino 
acid sequences of the full-length cDNA insert, a 1073 bp 
EcoRI /XhoI  fragment. The  sequence contains the last eight 
nucleotides of the tram-spliced leader sequence found on the 
5' end of all trypanosome nuclearly-encoded transcripts (31), 
followed by a short (26 nucleotide) 5' untranslated leader seg- 

A 
SL 

[EcoR I ] CTATATTGAATCCGGGACTCAAGTATCTTTTATT -3~ 

�9 �9 ~ �9 

AiGCCGTCCGTCTCCGAGGCCAAGCGGGAGTACGAGGAGCGTTTCAATGGCTGCCTCACC~GTACGGCCGCGTGCTTTTCTGcCT~TGGATAACGTCC 100 
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GGAGGAC~G~GGCCAGCGCGTACGACAAGTTGCTTTACAACACGTGCATCGAA~GAAGCTGTTGTG~GGC~CACCGCCCTCATCTTTACG~TGAG 300 
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GAGATCCCAGTCATCACGGCCGTGCTGGACAAGCACCGCGTACAGGCCCCCGCCCGTGTGGGCCCATCGCCCATGCGACGTCATTGTCCCGCTGGT~CA 400 
E I P V [ T A V L D K H R V Q A P A R V G P $ P H R R H C P A G N 133 

~CGGCATGGAGCCCAAGGCGACATCCTTCTTCCAGGCACTGAACATTGCGACGAAGATTGCAAAGGGCACAGTCG~ATTGTGAGTGAC~G~GGTGCT 500 
T G H E P K A T S F F Q A L N I A T K I A K G T V E I V $ D K K V L 167 

GAGcGTTcGT~ATcGT~GGAcAAcTcGAcGGccAcGcTGcTGcA~AGcTGGA~ATcTccccGTTc~Ac~AccA~G~GAGG~GcAG~cc~T~T~Ac 6oo 
s v ~ o e v o . s T A X ~ L O ~ L 0 ~ S P F Y V ~ V E V ~ S V ~ 0 ZOO 

AN222 
GTGGTATGcT~mc~TcGcGAG~AccTTTccATcAccGAc~Ac~TTGTGGAG~TAccT~cTG~TATcAGc~c~TTGcTGcGc~TTc~cTGG 7oo 

R G H L F L R E O L $ ] T D D V V E K Y L L E G I S N V A A L $ L 233 

6TGCTGGCATCCCGACGGCGGCGACCTTGCCACATATGATCATGGACGCGTTCAAGACCCTTcTTGGCGCCTCCGTTGCCACCGAATACGAGTTCGATGA 800 
G A G I P T A A T L P H . I . D A F K T L L G A S V A T E Y E F D E 267 
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F 0 G K N L R K A A L E G N L G G G V A D A A A A A D r G A A A A 300 
~c6 

CCTGCCGCTGCCGCTGAACCCGAAGAGGAGGATGATGATGACGACTITGGCAIGGGGGCGCIGITCTAAGCTACAAGGTAGAGAAG~TTT?CCGGAAA 1000 
P A A A A E P E E E D D D O D F G H G A L F  322 

T~TTTTATTTTTGTTTTTGTTTTTTATTTCTCATACTTAAAAA~A/U~AAAAAAAA[Xhol] 1060 

B 
T A.....~AGC TACAAGGT AGAGAAGAA . . . . . . .  ATTTTCCGGAAATGATTTTATTTTTGTTTTTGTTTTTTATTTCTCATA . . . . . . . . . . . . . . . . . . .  CTTAn 74 

III11111 I I I I I I  I I I I I  I I I I I I  I l l l l l l  I I I I  I l l l  I I I  I I I I I  
TA_.AAGCTACGCAATGGAGAACTGCAGTTT TAT T T T . . . . . . . .  GATTTTTTTTTTGTGTGTGTGTTTTGTTTTTATTTGAGCCTGCGAATTTTTTTGCATA n 92 

Figure 1. (A) The nucleotide and predicted amino acid sequences of the full-length TcP0 eDNA as cloned in the )~ uni-Zap expression system (5' 
EcoRI and 3' XhoI adaptors). The beginning and end of the eDNA are identified by the splice leader (SL) and poly(A) tail. Nucleotide and amino 
acid numberings are with respect to the first A of the initiation codon (underlined). The termination codon TAA is also underlined. The bacterial 
expressed fusion protein (which includes the 5' portion of B-gal, the multiple cloning site and the 5' untranslated region of TcPO) is '~5.6-kD larger 
(40.6 kD) than the coding capacity of the cDNA insert ("~35 kD). The location of the restriction sites, PstI(P) and EcoRV(RV), that cut within 
the insert and were used in the genomic Southern are indicated. (Arrows) Positions of the first residue of the NHz-terminal deletion clone AN222 
and the last residues of the COOH-terminal deletion clones AC43, AC33, and AC6, respectively. (B) Nucleotide sequence comparison of two sequenced 
cDNAs in their 3' untranslated regions. The upper and lower lines show the full-length TcP0 (top) and the partial-length AN222, respectively. (Vertical 
lines) Nucleotide identity. Gaps (-)  have been introduced to maximize homology. The termination (TAA, underlined) and poly(A) tail (A.) residues 
are indicated. Numbers indicate the lengths of the 3' untranslated sequences. 
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ment. An open reading frame of 966 nucleotide encoding 
a predicted protein of'~35 kD is followed by a 73 nucleotide 
3' untranslated portion terminating in a stretch of poly(A) 
residues. 

Southern analysis of T. cruzi genomic DNA digested with 
enzymes that cut both within and outside of TcP0 revealed 
multiple hybridizing bands when probed with either the full- 
length TcP0 insert (Fig. 2 A) or a 3' probe (AN222; Fig. 
1 A). These results indicate that at least two copies of TcP0 
are present within the genome. This has also been confirmed 
from the nucleotide sequences of one other partial TcP0 cDNA. 
The results revealed that although both cDNA clones have 
identical TcP0 nucleotide sequences within their coding seg- 
ments, they differ in the sequences and lengths of their 3' 
untranslated regions (Fig. 1 B). The weaker hybridizing bands 
in the EcoRV and PstI lanes of Fig. 2 may reflect on the lengths 
of the complementary sequence overlap with the uniformly 
labeled probes or the presence of more divergent members 
of the TcP0 family. Fig. 2 also illustrates the cross-species con- 
servation between P0 of T. cruzi and other Trypanosoma spe- 
cies including T brucei and T. lewisi. It is interesting that 
T. cruzi showed a different PstI hybridization pattern than 
the other Trypanosoma species. 

TcPO Is the T. cruzi Homologue of the Evolutionarily Conserved 
Eukaryotic Ribosomal '~idi~'type Phosphoproteins. Comparison 

of the predicted amino acid sequence of TcP0 with other pub- 
lished protein sequences in the GenBank data base (32), re- 
vealed significant homology with members of the family of 
acidic phosphorylated ribosomal proteins known as the "P" 
or "A" proteins (12, 13, 33). Fig. 3 A shows alignment of 
the deduced primary structure of T. cruzi P0 with those of 
human (HuP0, 33) and yeast (YP0, 34). TcP0 has an overall 
homology of 58% (36% identity, 22% conservative substi- 
tution) with HuP0 and 62% (38% identity, 24% conserva- 
tive substitution) with YP0. The lengths (322, 317, and 312 
amino acids), molecular masses (35, 35.3, and 33.8 kD), and 
isoelectric points (5.1, 5.8, and 4.6) of TcP0, HuP0, and YP0, 
respectively, are very similar. 

The T. cruzi PO shows a clustering of residues that are evolu- 
tionarily conserved in higher eukaryotes. This includes an 
alanine- and glycine-rich region adjacent to a highly charged 
COOH terminus. This domain is the "hallmark" of the eu- 
karyotic P protein family, and is the basis of their immuno- 
logical crossreactivity (15, 27, 35). Like other P0 proteins, 
TcP0 has a arginine- and lysine-rich region (located at an equiva- 
lent position; residues 42-71). This region is hypothesized 
to be involved in the binding to rRNA (36). The COOH 
terminus of the P proteins (P0, Pl, and P2) can be divided 
into two portions: a variable but highly charged region, and 
the highly conserved hydrophobic COOH terminus (Fig. 3 

Figure 2. Genomic organization of TcP0. T. cn~zi DNA 
(lanes ~) was digested with enzymes that cut within 
(EcoRV[RV] and PstI[P D and outside (EcoRI[R/], 
BamHI[B], and PvulIlPv]) of the cDNA TcP0 insert. DNA 
from T. brucei (Tb) and T. lewisi (TI) were digested with 
PstI(P). Numberings indicate the sizes in kb pairs of 
HindlII/HincII-digested DNA. Open and failed circles in 
the Pstl lanes indicate the lower and upper bands of the 
"~0.84-kb doublet, respectively. (--~) Origin of the gel. 
(A) The probe used was 32p-labded full-length TcP0. (B) 
The same blot shown in A reprobed with the insert of 
the deletion clone AN222. 
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Figure 3. TcP0 is the trypanosomatid homo- 
]ogue of the eukaryotic ribosomal 1'0 phos- 
phoprotein. (,4) Homology between the deduced 
amino acid sequences of TcP0 (T. cruzi) with those 
ofy~ast and human P0 proteins. (Vertical lines) Iden- 
tity. (Double dots) Conservative changes. Gaps ( - )  
have been introduced to maximize the homology. 
The conserved Arg/Lys-rich amino portion seg- 
ment (residues 42-71) is predicted to bind to 
rRNA. The hydrophobic domain containing 
mostly Gly and Ala (double underline) is followed 
by the highly charged segment (broken lines), and 
a hydrophobic terminus (underline). (B) Sequence 
comparison of the carboxy 17 terminal residues of 
TcP0 with other sequenced P proteins: JL5 (8); 
human (33); mouse (47); Drosophila (48); shrimp, 
A. salina (49); yeast, Sacclmronr2res cerevisiae (34, 
50, 51); and Dictyosteliur, (52). A single gap is in- 
troduced to maximize alignment with TcP0. Serine 
residues within the charged domain are underlined. 
Differences in the hydrophobic termini are in bold 
and shaded. 

B). Among  all the P proteins analyzed thus far, TcP0 is ex- 
ceptional because of the presence of nonconservative substi- 
tutions within the hydrophobic C O O H  terminus, and the 
absences of a serine and a terminal acidic residue (Fig. 3 B). 
The serine residue(s) in this domain have been shown to be 
phosphorylated in the brine shrimp Artemia salina (37), and 
in higher eukaryotes by casein kinase II (38). Phosphoryla- 
tion of these serine residues has been reported to increase their 
binding afSnities for the ribosome (39) or their cellular ac- 
tivities (40). 

Trylmnosoma 1>0 Is Constitutively Expressed. Northern anal- 
ysis revealed that ToP0 is expressed as a '~l .3-kb transcript 
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during the entire life cycle (epimastigote, trypomastigote, and 
amastigote) of T. cmzi (Fig. 4 A).  An identical hybridization 
pattern was obtained using poly(A) R N A  (not shown). Al- 
lowing for the poly(A) tail, the size is in agreement with 
that of  the cloned full-length c D N A .  The differences in the 
lengths of the 3' untranslated portions between the two se- 
quenced c D N A  clones (18 nucleotides, Fig. 1 B) are not large 
enough to expect multiple hybridizing bands. The same 
Northern also shows that TcP0 probe crosshybridizes with 
an identical size transcript present in both the bloodform and 
procyclic forms of T. bruce/. 

To determine whether the synthesis of the P0 protein reflects 



Figure. 4. Trypanosoma P0 is constitutively expressed. (A) Northern 
blot analysis. 5/~g each of the indicated total RNA from the life cycle 
stages of T. cruzi (~) epimastigote (e), trypomastigote (t), and amastigote 
(a), as well as T. brucei (Tb) bloodform (b) and procyclic (pr) form were 
hybridized with radiolabded full-length TcP0 insert. Lane c contains 10 
/~g of R.NA derived from the mouse myoblast cell line, L6Eg. The mobili- 
ties and sizes in kb nucleotides of single-stranded KNA are indicated. (B) 
Western blot and immunoprecipitation of in vitro transhted RNA. Western 
blot of T. cruzi (7~; e ~ epimastigote, t = trypomastigote, and a = 
amastigote) and T. brucei (Tb; b m bloodform and pr z procyclic form) 
lysates reacted with rabbit anti-ffcP0 antisera. (lane n'b) Purified polysomal 
fraction from the epimastigote stage of T. cruzi. (Right) Immunoprecipita- 
tion reactions of translation reactions (psS]methionine labeled) from 5/~g 
of the indicated T. cruzi RNA using rabbit anti-TcP0 antisera (IVT/IP). 
Molecular mass markers are shown in kD. Alignment of the composite 
was based on the mobilities of the markers. 

the transcription pattern, we performed Western analysis of 
T cruzi lysates using a rabbit antiserum raised against rTcP0. 
As shown in Fig. 4 B, the antiserum detected a single pro- 
tein of "~38 kD in both the insect (epimastigote) and mam- 
malian (trypomastigote and amastigote) stages. Thus the ex- 
pression of TcP0 reflects the transcript abundance. The serum 
did not crossreact with proteins of sizes expected for the 
T. cruzi equivalent of Pl and P2. The same blot also shows 
that purified T. cruzi ribosomes (lane r/b) contain TcP0. The 
postribosomal supernatant, when subjected to similar anal- 
ysis, also showed an immunoreactive band at 38 kD (not 
shown). This is in agreement with studies from other spe- 
cies demonstrating the presence of P proteins in ribosome- 
free cytoplasm (35, 41, 42). Fig. 4 B also shows that rabbit 
anti-rTcP0 antisera crossreacted with a 38-kD species in both 
the bloodforms and procyclic forms of T. brucei. 

To determine whether endogenous TcP0 is subjected to 
any posttranslational modification that significantly alters its 
mobility, immunoprecipitates of TcP0 from in vitro transla- 
tions using total T. cruzi KNA (Fig. 4 B; lanes IVT/IP) and 

in vitro transcribed TcP0 cDNA as template (not shown) were 
performed. The sizes of the precipitated bands were indistin- 
guishable from those revealed in immunoblots of cell lysates. 
Taken together, these results suggest that, posttranslational 
events do not significantly affect the size of TcP0, and that 
the cloned cDNA encodes authentic TcP0 protein. Although 
the predicted molecular mass of TcP0 is "~35 kD, the endog- 
enous as well as in vitro translated products migrated more 
slowly ('~38 kD). This is attributed to the peculiar secondary 
structure of the P proteins (33). 

Reactivity of Chagas' Patients with T. cruzi and Human P Pro- 
teins. To address the question of whether individuals with 
T. cruzi infection produce antibodies against TcP0, sera from 
10 patients were tested on immunoblots (Fig. 5 A) containing 
purified rTcP0 (lanes A), as well as total trypomastigote ly- 
sate (lanes B). All ten patients (1-10) showed binding to rTcP0. 
The smear of bands towards the upper portion of the gel 
(lanes A) is the result of aggregation of rTcP0 after purification. 
The specificity of the reactivity of patient sera on rTcP0 is 
demonstrated below (Fig. 6). Thus, T. cruzi-infected indi- 
viduals produce anti-TcP0 antibodies. Pooled sera from unin- 
fected individuals showed no reactivity. To determine whether 
Chagas' patients produce antibodies reactive to human P pro- 
teins, we tested the same 10-patient sera described above by 
ELISA using an available synthetic Peptide corresponding to 
the COOH-terminal 22 amino acid residues (C-22) of the 
human P2 protein (35). In human P proteins, the C-22 ter- 
minal residues are identical for P0, P1, and P2, with the ex- 
ception of a single conservative substitution in P0 (an aspartic 
to glumatic acid) at position nine with respect to the COOH 
terminus (Fig. 3 B). This substitution was shown to have 
no effect on the binding competence of patient sera (13). Fig. 
5 B shows that 9 of 10 sera reacted with the human Peptide 
with absorbance values ranging from 3.1 to 24-fold higher 
than the mean of sera from uninfected controls. These findings 
indicate that most Chagas' patient sera with anti-T, cruzi P 
protein antibodies crossreact with self P proteins. 

Epitope Mapping of Anti-TcPO Antibody. To determine the 
TcP0 epitope(s) recognized by T. cruzi-infected individuals, 
we tested the reactivities of patient sera on truncated ver- 
sions of rTcP0. Fig. 1 indicates the end points of the dones 
used, all of which were expressed in Escherichia coil as fusion 
proteins with 3-galactosidase. TcPOAN222 lacks the amino 
222 residues and contains only the 100 COOH-terminal por- 
tion amino acids of TcP0. When expressed in E. coil, this 
COOH-terminal fusion protein maintained reactivity with 
a pool of Chagas' sera (Fig. 6 A). The weaker and lower bands 
are probably the result of partial degradation of the fusion 
protein. Therefore, major antigenic determinant(s) of TcP0 
recognized by Chagas' sera reside within the COOH ter- 
minal of the molecule. To map the epitope(s), we performed 
3' deletions resulting in clones with COOH-terminal trun- 
cations of 6 (TcPOAC6), 33 (TcPOAC33), and 43 (TcPOAC43). 
All three clones maintained the same fusion amino add residues 
as TcP0 until their respective deletion junctions. Coinciden- 
tally, their reading frames continued past the P0 sequence 
in to the plasmid for an additional 59 amino acid (-,~9 kD). 
Immunoblotting of TcPOAC33 and TcPOAC43 with a pool 
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Figure 5. T. cruzi-infected individuals contain antibodies that react with TcP0 and human P proteins. (A) 
Immunoblots showing reactivities of Chagas' patient sera with recombinant TcP0. The blots were probed 
with sera from individual patients (1-10) infected with T. cruzi  using the following sera dilutions: 1 = 1:400; 
2 = 1:200; 3 = 1:200; 4 = 1:400; 5 = 1:400; 6 = 1:400; 7 = 1:400; 8 = 1:800; 9 = 1:800 and 10 = 

1:400. Strips from patients 7-12 were exposed twice as long (12 h) as those of 1-6. (b 0 Normal sera pool 
from four uninfected individuals (1:100 dilution each). Sera from rabbits immunized with rTcP0 (rP0) was 
used at a dilution of 1:1000. Lanes A contain 0.5/~g of recombinant TcP0, and lanes B, 5/*g of trypomastigote 
lysate. (Left) Size markers in kD. (B) ELISA showing the reactivities of the same ten individual sera (see above) 
on human C22 pepfide. The sera were used at a 1:200 dilution. Background absorbance (no serum controls) 
was subtracted from all samples. Relative absorbance ~ absorbance value of test sera + mean of the absorbance 
of sera from uninfected individuals. 

of Chagas' patient sera showed no reactivity on the deleted 
recombinants (not shown). It is interesting that when 
TcPOAC6 was immunoblotted with Chagas' sera from ten 
different patients (those shown in Fig. 5), their reactivities 

Figure 6. Epitope mapping of Chagas' anti-P0 antibodies. Immuno- 
blots showing reactivities of anti-TcP0 sera on wild type (wt)  and deleted 
forms (AN222 and AC6) of TcP0. (A) Reactivity of pooled Chagas' pa- 
tient sera (1-10 in Fig. 5 A) at 1:200 dilution each; and (B) rabbit anti- 
rTcP0 sera at 1:500 dilution. 

were abolished despite the fact that they all reacted with the 
wild type TcP0 (Fig. 6 A). Fig. 6 B is a control with rabbit 
anti-rTcP0 sera. 

SLE Patients Contain Antibodies that Crossreact with TcPO. 
Approximately 10-20% of patients with SLE possess anti- 
ribosomal antibodies. These antibodies react predominantly 
with three of the ,o80 ribosomal proteins: P0, P1, and P2 
(12, 13). Sera from these patients also react with the homol- 
ogous antigens present in rats, shrimp, and yeast (12). We 
therefore tested the binding of eight SLE sera previously charac- 
terized as anti-human P positive (27, 14) on TcP0. We found 
that although all eight SLE sera reacted with rTcP0 with 
varying intensities, they either showed no reactivity or bound 
weakly to truncated rTcPOAC6. Fig. 7 (A and B) is represen- 
tative of two individual SLE sera, showing their variable reac- 
tivities with rTcP0 (lanes 1) and rTcP0AC6 (lanes 2). The sera 
also reacted with a 38-kD band in T. cruzi lysate (lanes 4) 
with intensities proportional to their respective reactivities 
on rTcP0. Fig. 7 A, lane 5 is a control showing that the band 
detected by the rabbit anti-TcP0 sera on T. cruzi lysate comi- 
grates with the 38-kD band detected by SLE sera. As ex- 
pected, the SLE sera reacted with proteins with migrations 
characteristic of the P protein family in human K562 cell ly- 
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Figure 7. Patients with SLE contain antibodies that crossreact with 
TcP0. lmmunoblots showing reactivities of two SLE sera (1:250 dilution) 
on TcP0 (A and B). Lanes I and 2 contain 2.5/~g of purified rTcP0 and 
AC6, respectively. Lanes 3 and 4 contain 2.5 and 10/~g each of total K562 
and T. cruzi trypomastigote lysates, respectively. Lane 5 is a control con- 
taining parasite lysate (as in lane 4) but reacted with rabbit anti-TcP0 sera. 
The position of human and T cruzi P0 is indicated, as are those of human 
Pl and P2. 

sates (lanes 3). The SLE sera containing anti-human P ac- 
tivity also reacted with other species in T. cruzi lysates, in- 
cluding a very strong ~15-kD band and two weaker bands 
in the ~17-kD range. Any of these might correspond to the 
T. cruzi equivalent of P1 and P2. 

Discussion 

We report on the cloning and characterization of a T. cruzi 
full-length cDNA, TcP0, identified as the parasite equivalent 
of the ribosomal phosphoprotein P0. The evidence supporting 
the identity of the cDNA as TcP0 is the homology (~60%) 
to other eukaryotic P0 proteins in sequence, size ('~38 kD), 
acidic isoelectric point, and ribosomal localization. TcPO is 
present as multiple copies within the genome, and for at least 
two sequenced cDNAs, they have identical coding segments, 
but diverge markedly in their 3' untranslated regions. TcP0 
is transcribed as a "~l.3-kb mRNA that is constitutively ex- 
pressed in all stages of the parasite life cycle. Cross-species 
studies demonstrated that P0 is highly conserved in other 
Trypanosoma species at both the nucleotide and protein levels, 
as demonstrated by Southern and immunoblot assays. 

The 38-kD TcP0 protein, like the mKNA, is constitutively 
expressed and is associated with the ribosomal translation 
machinery. This constitutive expression coupled with the cross- 
spedes conservation strongly suggests that TcP0 serves a house- 
keeping function, as expected for a P0 ribosomal protein. 
Immunoblot analysis with ten randomly selected sera from 
T. cruzi-infected individuals, revealed that all contained IgG 
antibodies against TcP0, albeit of varying levels. 

In higher eukaryotes, the P protein family comprises three 
antigenically crossreactive proteins P0, P1, and P2 (12, 13, 
15, 33). P0, the largest protein of the family, has an apparent 
molecular mass of '~38 kD, while Pl and P2 migrate as a 
doublet in the 14-19 kD on SDS-polyacrylamide gels. These 
proteins all possess an alanine~ and glycin~rich region of 20-30 
residues adjacent to a highly charged C O O H  terminus, but 

show much lower homology in the remainder of the pro- 
tein. Pl and P2 are believed to be functional homologues of 
the bacterial proteins L7/L12, and P0 is thought to be the 
homologue of the L10 protein. These proteins are known 
to play an essential role in the elongation step of protein syn- 
thesis (39, 43). The proteins form a pentameric complex 
composed of two molecules each of Pl and P2, and one of 
P0 (33, 35, 44). The carboxy 17 amino acid residues of the 
P proteins are shared both within and across species (33, 
35). In addition, a mouse mAb raised against chicken ribo- 
somes was shown to bind to all three of the human P pro- 
teins (27, 15). 

We mapped the antigenic epitope(s) of TcP0, and demon- 
strated that the reactivities of sera from T. cruzi-infected in- 
dividuals require a single linear determinant. Deletion of the 
carboxy six hydrophobic residues abrogates the immunolog- 
ical reactivity of TcP0 on Western blots. This is analogous 
with the binding properties of SLE anti-P autoantibodies 
where the only required epitope has been mapped to the car- 
boxy 11 residues (27). We demonstrated that anti P-positive 
SLE sera do in fact recognize TcP0. The variable degree of 
reactivities of the SLE sera on TcP0 is in agreement with 
previous studies on human P proteins which revealed that 
different SLE patients have variable specificities and reactivi- 
ties with shorter, as well as modified peptides of the Cl l  
residues (27). Given that the hydrophobic COOH-terminus 
of TcP0 is different from those of the human P proteins, it 
is surprising that anti-P SLE sera reacted as well as they did 
on TcP0. More interesting, is the finding that, like sera from 
T cruzi-infected individuals, the reactivity of SLE sera on 
TcPOAC6 is either abrogated or greatly reduced. In addition, 
the SLE sera also showed reactivities on parasite lysates with 
proteins of sizes characteristic of P0, P1, and P2. Given that 
the hydrophobic terminal residues of T. cruzi P1 is identical 
to those of the human P proteins (see below and Fig. 3 B), 
it is very likely that the strong reactive "~15-kD 'band' de- 
tected by the SLE sera on T. cruzi lysate is TcPl and/or TcP2. 
The SLE sera also reacted with two additional bands of '~50 
kD (above P0) on parasite lysates. Whether these represent 
modified forms or complexes of T. cruzi P proteins, or different 
T. cruzi antigens that are shared with human and T. cruzi, 
remains to be determined. The reciprocal assay using the an- 
tigenic C22 peptide of human P2 demonstrated that most 
T. cruzi-infected individuals possess antibodies that crossreact 
with self-ribosomal P proteins. However, their reactivities 
did not correlate with the results of the immunoblots on rTcP0, 
indicating that different T. cruzi-infected individuals show 
variable crossreactivities for a substituted COOH-terminal 
domain. 

The results of the Western blot and immunoprecipitations 
indicate that either TcP0 is not antigenetically related to 
T. cruzi P1 and P2, or that the specificity of the rabbit anti- 
TcP0 serum does not include the conserved C O O H  terminus. 
The C O O H  terminus of TcP0 (which shows differences in 
the linear arrangement of the residues with other P proteins), 
may also be different from that of the T. cruzi P1 and P2. 
This is not unreasonable given that a cloned T. cruzi sequence 
encoding a 35-residue peptide named JL5 (8) has a C O O H  
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terminus that is different from TcP0, but almost identical 
to that of the human P proteins (12/13 identical). JL5 does 
not represent a cloned fragment of TcP0 since it differs in 
sequence, and detects an 0.7-kb transcript too small to en- 
code P0, but adequate to encode P1 or P2. It is different from 
P2 (Skeiky et al., unpublished results) and appears to repre- 
sent the COOH-terminal portion of P1 (45). This could ex- 
plain the lack of immunological crossreactivity between TcP0, 
TcPl, and TcP2 of T. cruzi using the rabbit anti-TcP0 serum. 
The differences in the specificity of the human and rabbit 
sera may reflect outcomes of antigenic stimulation initiated 
by T. cruzi infection versus immunization with purified 
monovalent rTcP0. 

Levitus et al., (46) recently demonstrated that sera from 
Chagas' heart disease patients crossreact with recombinant 
human ribosomal Pl and P2 proteins. In addition, it was pre- 
viously shown (8) that immunoselected antibodies against 
JL5 recognize a predominant 38-kD antigen on T. cruzi ly- 
sate which, presumably, is TcP0. However, it remains un- 
resolved whether the JL5-immunoselected reactivity was ini- 
tiated through recognition of antigenic determinant(s) of TcP0 
or JLS. Nevertheless, this lends further support to our argu- 
ment that, despite the differences in the fine organization of 
the COOH-terminal residues of TcP0, antibodies directed 
against it can crossreact with the COOH-terminal region 
of the prototype P proteins both within and across species. 
We demonstrated that the reciprocal also holds true. 

It was also shown that 57% (of 44 patients) of selected 
T. cruzi-infected individuals (chronic Chagas' heart disease) 
reacted with the C13 terminal residues of JL5 (46). In our 

studies, we found that all ten randomly selected T cruzi in- 
fection sera recognized TcP0. The combined results suggest 
that the antibodies against T. cmzi ribosomes can have unique, 
as well as shared specificities for the P protein family both 
within, as well as across species. 

The possibility that TcP0 antibodies found in sera of 
T cruzi-infected individuals are the result of leakage of self 
P proteins and subsequent immunization is unlikely since not 
all sera reacted with the human C22 peptide, although they 
all reacted with TcP0. Hines et al. (14) demonstrated that 
in the autoimmune MRL mice, anti-P autoantibodies could 
be induced by immunization with xenogenic A. salina 
ribosomal P proteins, but not by syngenic mouse ribosomes. 
In addition, it was shown that as with the spontaneous anti-P 
autoantibodies of MR,L mice, the induced anti-P autoanti- 
bodies were exclusively directed against the COOH-terminus. 
The ability ofA. salina P proteins to induce anti-P autoanti- 
bodies was attributed to a single nonconservative substitu- 
tion in the COOH-terminal 11 residues (serine in mouse and 
glutamic acid in A. salina). 

We propose that through mechanisms involving molec- 
ular mimicry, the ribosomal P proteins participate in the in- 
duction of autoreactive antibodies in Chagas' disease. This 
is made possible because of differences at the C O O H  ter- 
minus of the parasite (particularly TcP0) and host P proteins. 
Through synergistic mechanisms, the T. cruzi P proteins (P0, 
P1, and P2) could provide a multivalent epitope(s) which may 
be necessary for the establishment of an autoimmune process 
similar to that described for the murine system (14). 
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