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ABSTRACT: Predicting asphaltene onset pressure (AOP) and bubble point pressure (Pb) is essential for optimization of gas
injection for enhanced oil recovery. Pressure-Volume-Temperature or PVT studies along with equations of state (EoSs) are widely
used to predict AOP and Pb. However, PVT experiments are costly and time-consuming. The perturbed-chain statistical associating
fluid theory or PC-SAFT is a sophisticated EoS used for prediction of the AOP and Pb. However, this method is computationally
complex and has high data requirements. Hence, developing precise and reliable smart models for prediction of the AOP and Pb is
inevitable. In this paper, we used machine learning (ML) methods to develop predictive tools for the estimation of the AOP and Pb
using experimental data (AOP data set: 170 samples; Pb data set: 146 samples). Extra trees (ET), support vector machine (SVM),
decision tree, and k-nearest neighbors ML methods were used. Reservoir temperature, reservoir pressure, SARA fraction, API gravity,
gas−oil ratio, fluid molecular weight, monophasic composition, and composition of gas injection are considered as input data. The
ET (R2: 0.793, RMSE: 7.5) and the SVM models (R2: 0.988, RMSE: 0.76) attained more reliable results for estimation of the AOP
and Pb, respectively. Generally, the accuracy of the PC-SAFT model is higher than that of the AI/ML models. However, our results
confirm that the AI/ML approach is an acceptable alternative for the PC-SAFT model when we face lack of data and/or complex
mathematical equations. The developed smart models are accurate and fast and produce reliable results with lower data
requirements.

1. INTRODUCTION
Flow assurance issues are well known in the petroleum
industry spanning from upstream to downstream. Asphaltene
precipitation and deposition is one of the main issues in this
industry that occurs due to changes in temperature, pressure,
and oil composition. Asphaltenes are crude oil’s polar
components with a complex molecular structure and different
molecular weights (from 500 to 10,000 g/mol).1 Based on
their solubility, asphaltenes dissolve in aromatic solvents (e.g.,
toluene, naphtha, and benzene) and are nonsoluble in n-
alkanes. Clogging porous media, well plugging, permeability
reduction, and wettability alteration are some of the significant

consequences of asphaltene precipitation, which occur during
different oil production stages.2,3

Injection of gas (e.g., nitrogen, carbon dioxide, and natural
gas) during EOR operations is one of the widely used and
effective ways to recover residual oil after primary and
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secondary oil recovery methods. The injection gases can
enhance the flow of crude oil via reducing its viscosity.3

However, a combination of oil and gas changes the
composition and behavior of reservoir fluids and provides a
favorable situation for asphaltene precipitation.2 Hence,
estimation of asphaltene onset pressure (AOP) is vital to
minimize asphaltene precipitation and the related problems.
Accurate estimation of the AOP in various stages of oil

production can help to have a correct long-term plan from the
economic viewpoint. Various research studies (experimental
and modeling) addressed the main problems in the petroleum
industry in the field of kinetics, AOP, and the amount of
asphaltene precipitation/deposition. Light scattering, high-
pressure microscopy, gravimetric precipitation, quartz crystal
resonators, and isobaric filtration techniques are the main
experimental methods that are used for estimating the AOP.4−6

Moreover, there are many modeling approaches to assess the
kinetic and asphaltene thermodynamic states under various
thermodynamic conditions.
Thermodynamic solubility techniques and colloidal-based

models are two main groups of modeling asphaltene
precipitation considering the assumption about the stability
state of asphaltene in crude oil.7,8 In the colloidal approach,
asphaltene is assumed as a solid particle peptized by resin in
the solution. Based on this theory, the asphaltene aggregation
will be formed when resins separate from asphaltene
molecules. In addition, the asphaltene precipitation assumes
an irreversible phenomenon in the colloidal theory. In the
solubility model, asphaltenes are considered soluble particles in
crude oil. In addition, this theory assumes that the dispersion
force between asphaltene and other fractions in crude oil is
responsible for asphaltene aggregation, not polar interaction.
Asphaltenes will precipitate by decreasing their concentration
below a critical solubility value.9

The solubility models fall into two main categories of regular
solution theory and equation of state (EOS). The first group
considers that the system is made of crude oil and asphaltene.
The regular solution theory is used generally for polymer
solution and studies based on Flory−Huggins,10 Scatchard−
Hildebrand,11 and Scott−Magat theories.12 EOS theory is
considered as a mixture of pseudo- and pure components.9

Cubic, Cubic Plus Association, statistical associating fluid
theory (SAFT), Peng Robinson, and Soave−Redlich−Kwong
are placed in EOS theory.7,9 Among these, the SAFT model is
the most reliable model to investigate thermodynamic behavior
of asphaltene as a complex mixture because of the association
effect, and nonspherical chains are considered in this theory.13

The perturbed-chain form statistical associating fluid theory
(PC-SAFT) is the most useful SAFT model to predict the
stability of asphaltene during EOR methods (e.g., gas
injection), drop of pressure, and PVT studies that were
proposed and developed by Gross and Sadowski.14

Several research studies applied the SAFT model to simulate
asphaltene stability in the system. Ting et al.13 used the SAFT
model for this aim. They classified crude oil components into
three gas pseudocomponents and three liquid phases. Their
model successfully predicted the instability and bubble point of
asphaltene compared to experimental data. Following that,
Panuganti et al.15 improved the parameters used by Ting et
al.13 and considered the effect of gas injection on the stability
of asphaltene in the system. They reported that considering
light components as a separate group, the model’s accuracy in
predicting bubble point and AOP was enhanced. Gonzalez et

al.16 investigated the effect of signal component gas (e.g., CH4,
N2, and CO2) on asphaltene stability. In another study, they
used the PC-SAFT model for accessing asphaltene precip-
itation in the presence of oil-based mud and considering the
gas-oil-ratio (GOR).17 In addition to results of these studies,
the thermodynamic modeling approach is costly, time-
consuming, usually complicated, and unsuitable for nonlinear
systems. Hence, it is necessary to use methods that cover this
limitation because asphaltene precipitation and deposition is a
nonlinear and complex process.

Figure 1. Flowchart showing the AI/ML modeling workflow used in
this research work for prediction of AOP and Pb.

Table 1. Number and Percentage of Missing Values for Each
Parameter

parameter
number of missing

data
percentage of missing data

(%)

reservoir pressure 50 29.41
reservoir temperature 31 18.23
API gravity 0 0
GOR 14 8.23
fluid molecular weight 5 2.94
oil-N2 0 0
oil-CO2 0 0
oil-H2S 0 0
oil-C1 0 0
oil-C2 0 0
oil-C3 0 0
oil-i-n-C4 0 0
oil-i-n-C5 0 0
oil-C6 0 0
saturates 5 2.94
aromatics 5 2.94
resins 5 2.94
asphaltenes 5 2.94
N2 0 0
CO2 0 0
H2S 0 0
C1 0 0
C2 0 0
C3 0 0
C4+ 0 0
temperature 0 0
AOP 0 0
bubble point pressure
(Pb)

24 14.12
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Smart computational tools are considered practical methods
to predict the target parameters without knowing the
mathematical/empirical relations and experimental procedure.
Machine learning (ML) methods, which are data-driven
models, attempt to find a function relating predictors to
output.18 This approach provides a suitable method to predict
asphaltene thermodynamic behavior as a nonlinear and
discontinuous function. Artificial neural network (ANN),
least-squares support vector machine (LSSVM), support vector
machine (SVM) and support vector regression (SVR), random
forest (RF), genetic algorithm (GA), decision tree (DT), and
particle swarm optimization (PSO) are the most common AL
algorithms used for the prediction of asphaltene stability
parameters. Khamehchi et al.19 used ANN and adaptive neural
fuzzy system models to predict bubble point and AOP during
CO2 injection. Their results are in good agreement with
experimental data and confirm validity of their models.
Zendehboudi et al.18 investigated the effect of miscible gas
injection during EOR using the PSO-ANN method. Based on
their results, temperature has a great impact on minimum
miscibility pressure (MMP), and a good agreement between
their modeling and experimental results was observed. Kamari
et al.20 predicted AOP and oil saturation conditions using the
LSSVM. They considered different crude oils mostly from the
Middle East with different asphaltene contents. Their results
were by comparing the results with experimental data. In
another study, LSSVM and a multilayer extreme learning
machine were used to estimate asphaltene bubble pressure by
Rashidi et al.21 They used the GA and PSO to optimize the
methods. In addition to the accuracy of their models in
predicting bubble point and oil formation volume factor, the
results show that gas−oil gravity is an influential factor in
bubble point prediction compared with other parameters in
their work. Although the results of previous studies are
acceptable, the effects of various types of gas injection on AOP
and bubble point and the relation between ML results and the
PC-SAFT model were not considered in previous research
studies reported in the literature.
The main objective of the present study was to use AI/ML

methods to estimate bubble point pressure and AOP and
compare the results with the PC-SAFT model during gas
injection. To the best of our knowledge, this is the first
research work where the outcomes of the PC-SAFT model and

AI/ML-based smart models in predicting AOP and bubble
point pressure during gas injection are compared.
This paper is organized into four main parts. After

Introduction, methodology is described in detail, and data
preprocessing, model development, and evaluation with the
assessment of statistical error and PC-SAFT EoS are presented.
Subsequently, in the Results and Discussion section, modeling
results, evaluation of the developed models, and comparisons
between the developed smart models with PC-SAFT EoS are
discussed. Finally, the main outcomes are highlighted in the
Conclusions section.

2. METHODOLOGY
The overall procedure for this modeling research work consists
of three steps: data collection, data preprocessing, AI/ML
model development, and model evaluation. Each step is
discussed in detail in the following subsections.
2.1. Data Collection. Various parameters affect AOP and

bubble point pressure during gas injection. These parameters
include temperature, pressure, molecular weight of asphaltene,
oil composition, oil properties (e.g., API and SARA), GOR,
and properties of gas injection. For the purpose of this research
work, we used experimental data from the literature where the
effect of these parameters on AOP and Pb was investigated by
several researchers.15,22−43 The collected data were then split
into two sets of training data that include 80% of the data set
(AOP data set: 136 samples; Pb data set: 116 samples) and
testing data that contain 20% (AOP data set: 34 samples; Pb
data set: 30 samples) of the total data. Training data are used
to train and build AI/ML models, and the testing data are used
to evaluate the performance of the developed smart models in
estimating the desired parameter. A flowchart illustrating the
AI/ML modeling approach for prediction of AOP and Pb is
presented in Figure 1.
2.2. Data Preprocessing. 2.2.1. Missing Value Imputa-

tion. The issue of missing values in data-driven modeling
approaches is quite common when analyzing real data sets.
Missing values can cause a bias in modeling results and affect
model performance. Hence, a key step in data modeling is
handling missing value. In this research work, AOP and Pb are
target variables. Hence, samples with missing values in these
two parameters were removed from the database. The number
of missing values in each parameter must first be specified to

Figure 2. Overall schematic flowchart for the used models.
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deal with the remaining missing values. A parameter must be
eliminated if the parameter has many missing values or the
percentage of missing values exceeds a certain threshold. In
this research work, a threshold of 50% was considered
according to previous research studies.44 As shown in Table
1, no parameter has more than 50% missing values, and
therefore, they remain. For the other parameters, the missing
values are replaced with the mean value of the parameter which
is a widely used method for estimating missing values for
numeric features. There are many approaches available for
replacing missing values with imputed values, and every single
of them has its own pros and cons. A detailed discussion of
those methods is beyond the scope of this research work. In
this research work, one of the most used and popular methods
was used, which is mean (average) imputation as a quick and
simple way for handling missing values, and in this case, fair
results have been achieved.45

2.2.2. Data Normalization. Data normalization was used to
normalize the range of variables such that the range of features
is the same. This process is commonly performed during the
data preprocessing step to handle highly varying magnitudes or
values or units. All input parameters have the same effect on
the model development process, ultimately. In this research
work, the standardization technique was used for data
normalization that causes all parameters have a mean and
standard deviation of 0 and 1, respectively. A standard scalar is
first fitted on the training data and then applied to the testing
data.

2.2.3. Model Development. Four AI/ML models that have
been shown to be effective in data modeling problems were
explored in this research work: SVM, KNN, and DT, and ET.
A brief description of each AI/ML algorithm is provided in the
text below.

2.2.4. Support Vector Machine. The SVM is a powerful
tool in regression and classification that was introduced in the
1960s.45 The training data are classified in different classes in
this method and show a good performance in modeling noisy
and high-dimension data. In addition, it is suitable for a
database containing a high number of features compared to the
number of samples.46

2.2.5. k-Nearest Neighbor. The KNN method predicts a
class label for a given sample based on its K neighborhods.47

The KNN algorithm works by finding the K examples closest
to the query first and then averages the labels of these K
examples to estimate the value for the query. We used the
KNN algorithm because it is easy to use and effective and
robust in data modeling.

2.2.6. Decision Tree. The DT algorithm provides a rule-
based model by which the value of a target variable is
estimated using decision rules extracted from the data
features.48 The extracted tree can be considered as a piecewise
constant approximation. For the sake of briefness, the DT
algorithm is not discussed in detail; such information is
provided elsewhere.

2.2.7. Extra Trees. The ET algorithm is a type of ensemble
learning technique in which the results of different de-
correlated DT algorithms are aggregated to provide output

Table 2. Statistical Information of the Data Set for AOP

parameter count unit range
mean (standard
deviation)

reservoir pressure 170 MPa 19.68−137.90 42.01 (16.16)
reservoir
temperature

170 K 294.25−418.87 383.13 (21.17)

API gravity 170 20.32−41.69 34.37 (5.84)
GOR 170 m3/m3 38.12−314.78 142.39 (66.02)
fluid molecular
weight

170 g/mol 66.69−169.00 108.37 (26.56)

oil-N2 170 mol % 0.02−6.59 0.52 (1.06)
oil-CO2 170 mol % 0.05−3.68 1.54 (0.97)
oil-H2S 170 mol % 0.00−5.39 0.44 (1.26)
oil-C1 170 mol % 12.39−61.00 34.11 (11.52)
oil-C2 170 mol % 4.33−12.42 7.59 (2.01)
oil-C3 170 mol % 2.48−10.29 6.18 (1.29)
oil-i-n-C4 170 mol % 0.00−6.90 4.38 (2.02)
oil-i-n-C5 170 mol % 0.00−7.85 3.77 (1.55)
oil-C6 170 mol % 0.00−5.48 2.95 (1.48)
saturates 170 wt % 24.80−80.64 61.43 (12.39)
aromatics 170 wt % 11.60−47.81 26.84 (8.22)
resins 170 wt % 1.47−20.60 8.36 (4.57)
asphaltenes 170 wt % 0.10−15.50 2.88 (4.61)
N2 170 mol % 0.00−10.00 0.34 (1.61)
CO2 170 mol % 0.00−45.00 4.07 (9.62)
H2S 170 mol % 0.00−10.00 0.22 (1.33)
C1 170 mol % 0.00−46.52 5.00 (10.09)
C2 170 mol % 0.00−7.75 0.78 (1.62)
C3 170 mol % 0.00−5.94 0.44 (1.00)
C4+ 170 mol % 0.00−5.21 0.29 (0.72)
temperature 170 K 294.26−424.55 362.62 (30.56)
asphaltene onset
pressure (AOP)

170 MPa 10.71−135.14 41.26 (19.99)

Table 3. Statistical Information of the Data Set for Pb

parameter count unit range
mean (standard
deviation)

reservoir pressure 146 MPa 19.68−89.63 41.46 (12.44)
reservoir
temperature

146 K 294.25−418.87 384.09 (22.26)

API gravity 146 20.32−41.69 34.87 (5.99)
GOR 146 m3/m3 56.81−314.78 152.63 (62.20)
fluid molecular
weight

146 g/mol 66.69−169.00 103.43 (21.77)

oil-N2 146 mol % 0.02−6.59 0.58 (1.13)
oil-CO2 146 mol % 0.05−3.68 1.65 (0.99)
oil-H2S 146 mol % 0.00−5.39 0.51 (1.35)
oil-C1 146 mol % 16.84−61.00 35.62 (10.06)
oil-C2 146 mol % 4.33−12.42 7.78 (1.92)
oil-C3 146 mol % 2.48−10.29 6.21 (1.32)
oil-i-n-C4 146 mol % 0.00−6.90 4.37 (2.04)
oil-i-n-C5 146 mol % 0.00−7.85 3.74 (1.52)
oil-C6 146 mol % 0.00−5.48 2.89 (1.43)
saturates 146 wt % 24.80−80.64 61.99 (13.06)
aromatics 146 wt % 11.60−47.81 27.14 (8.58)
resins 146 wt % 1.47−20.60 7.66 (4.32)
asphaltenes 146 wt % 0.10−15.50 2.88 (4.77)
N2 146 mol % 0.00−10.00 0.29 (1.63)
CO2 146 mol % 0.00−45.00 3.73 (9.35)
H2S 146 mol % 0.00−10.00 0.23 (1.42)
C1 146 mol % 0.00−39.46 3.23 (7.47)
C2 146 mol % 0.00−6.79 0.45 (1.07)
C3 146 mol % 0.00−5.15 0.26 (0.72)
C4+ 146 mol % 0.00−5.21 0.23 (0.70)
temperature 146 K 294.26−418.71 362.37 (31.35)
bubble point
pressure (Pb)

146 MPa 5.38−43.21 (7.17)
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of the model. In the ET method, a group of trees are formed
randomly, and their results are aggregated.49 The overall
flowchart of all models is shown in Figure 2.
Each AI/ML model contains several essential parameters

known as hyperparameters that significantly influence the
model performance in predicting the output parameter. It

should be emphasized here that hyperparameter optimization
must be completed before training the models.50,51 In this
research work, an automatic hyperparameter optimization
framework specifically intended for ML known as Optuna52 is
used in conjunction with fivefold cross-validation on training
data to optimize hyperparameters. To accomplish this, we first
determine the maximum and lowest values of each hyper-
parameter, and then Optuna creates a model by arranging
these parameters in a random order. Then performance of the
model is evaluated using 5-fold cross-validation. As a result, the
model will be constructed in such a way that the root mean
square error (RMSE) is minimized. This method is repeated
until the RMSE is as low as possible.52

2.2.8. Model Evaluation. We used two well-known indices,
namely, coefficient of determination (R2) and RMSE as
defined below to evaluate the performance of the developed
models:53

R
y y

y y
1

( )

( )
i
N

i i

i
N

i

2 1
2

1
2

= =

= (1)

Table 5. Result of AI/ML Model Development for
Prediction of Pb

model subset R2 (STD) RMSE (STD)

extra trees training 1.00 (0.00) 2.97 × 10−14 (0.00)
testing 0.97 (2.22 ×

10−16)
1.71 (6.66 × 10−16)

k-nearest neighbors training 1.00 (0.00) 0.00 (0.00)
testing 0.94 (0.00) 1.84 (6.66 × 10−16)

decision tree training 0.99 (0.00) 2.54 × 10−01 (0.00)
testing 0.88 (3.33 ×

10−16)
2.51 (4.44 × 10−16)

support vector
machine

training 0.98 (3.33 ×
10−16)

9.36 × 10−01 (1.11 ×
10−16)

testing 0.99 (0.00) 0.79 (0.00)

Table 4. Result of the AI/ML Model Development for Prediction of AOP

model subset R2 (STD) RMSE (STD)

extra trees training 1.00 (0.00) 6.72 × 10−14 (0.00)
testing 0.79 (1.11 × 10−16) 7.51 (1.78 × 10−15)

k-nearest neighbors training 1.00 (0.00) 0.00 (0.00)
testing 0.62 (2.22 × 10−16) 10.16 (0.00)

decision tree training 0.71 (2.22 × 10−16) 1.10 × 101 (1.78 × 10−15)
testing 0.48 (1.10 × 10−16) 11.87 (1.78 × 10−15)

support vector machine training 0.97 (3.33 × 10−16) 3.61 (4.44 × 10−16)
testing 0.76 (2.22 × 10−16) 7.99 (8.88 × 10−16)

Figure 3. Predicted versus experimental values of AOP for (a) ET model, (b) KNN model, (c) DT model, and (d) SVM model in the testing data.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c03192
ACS Omega 2022, 7, 30113−30124

30117

https://pubs.acs.org/doi/10.1021/acsomega.2c03192?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03192?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03192?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03192?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c03192?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


N
y yRMSE
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N

i i
1

2=
= (2)

where ŷi and y̅ are the predicted value for the ith sample and
average values, respectively.

It should be emphasized here that we used only the testing
data set to assess the performance of the models to avoid bias
in estimating these indices that could mislead evaluation of the
models. The training data set was used only for training the
models.

Figure 4. Predicted versus experimental values of Pb for (a) ET model, (b) KNN, (c) DT model, and (d) SVM model in the testing data.

Figure 5. Relative deviation of the model predictions in the testing data set for AOP: (a) ET model, (b) KNN model, (c) DT model, and (d) SVM
model.
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The reliability of the developed models was further tested
using some noisy data samples. Twenty percent of the total
data (34 samples for the AOP data set and 29 samples for the
Pb data set) was randomly selected. Then, a Gaussian noise
(with mean equal to zero and specified standard deviation) was
added to each feature in this data set for generating the noisy
samples. The standard deviation of the noises was determined
based on standard deviation of each feature (2% changes) in
the randomly selected data samples for creating feasible values.
Finally, the AI/ML model results (e.g., ET, DT, KNN, and
SVM) were compared with the PC-SAFT model results to
evaluate accuracy of the AI/ML models in this research work.

2.2.9. PC-SAFT Model Characterization. The SAFT model
assumes that all molecules are spherical segments with equal
sizes. This method considers five main pure components
including segment number (m), segment diameter (σ),
segment energy (ε), associate energy (εAdiBdi

), and associate
volume (κAdiBdi

). Associate energy and associate volume are
important when self-associating is considered between
molecules. The SAFT model is modified by considering
dipole−dipole interactions using the Lennard−Jones equation
for calculation of the segment contribution. This modified
model is called PC-SAFT.54 The PC-SAFT model successfully
can be used to model chain molecules like hydrocarbon
solution because of considering dispersion interaction between
them. Helmholtz free energy is used to calculate thermody-
namic properties. Hence, the PC-SAFT model uses dimension-
less residual Helmholtz energy to estimate thermodynamic
properties. The following equation shows this energy with
considering different types of interactions.31,55

a a a ares hc disp assoc= + + (3)

where dispersion forces (ãdisp) show the interaction among
nonpolar and weakly polar molecules. The hydrogen
interaction and donor-acceptor forces show using association
contribution (aãssoc), while hard-chain formation and sphere
contribution demonstrate using hard-chain contribution (ãhc).
These parameters and residual Helmholtz energy (ar̃es) are
calculated using eqs 45678 as follows:
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where Ares denotes the residual Helmholtz free energy. N, k,
and T are the number of molecules, Boltzmann constant, and
absolute temperature, respectively. d, x, and mi are the sphere
diameter, molar fraction of a chain component, and number of
segments in the chain, respectively.

Figure 6. Relative deviation of the model predictions in the testing data set for Pb: (a) ET model, (b) KNN model, (c) DT model, and (d) SVM
model.
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3. RESULTS AND DISCUSSION
In this section, the results of the developed models are
presented and discussed. Then, the modeling results are
compared with the experimental data and the PC-SAFT
model.
3.1. Data Statistics. Statistical information for the features

and the target variables for AOP and Pb is presented in Tables
2 and 3, respectively.
3.2. Statistical Analysis. Performances of the developed

models in predicting AOP and Pb are summarized in Tables 4
and 5. The fitting and evaluation process was performed 100
times for each model to test repeatability of the results. Based
on Tables 4 and 5, the ET (R2 = 0.793) and the SVM (R2 =

0.988) models are the best predictor of AOP and Pb,
respectively. In general, the error analysis performance for
the testing results in Tables 4 and 5 shows that the developed
AI/ML methods are more reliable in predicting Pb compared
to AOP.
3.3. Graphical Analysis. Graphical analysis was carried

out to understand performance of the developed AI/ML
models. A comparison between the predicted and experimental
values of AOP and Pb in the testing phase is presented in
Figures 3 and 4. Based on Figures 3 and 4, panels (a)−(d), the
ET and the SVM models have the highest accuracy in the
estimation of AOP and Pb, respectively.
The residual analysis that presents relative deviation (%) of

the predicted AOP and Pb values and the experimental data for
the testing data set are presented in Figures 5 and 6. Equation
9 was used to determine the relative deviation as follows:

y y

y
relative deviation (%) 100exp pred

exp

= ×
(9)

where yexp and ypred are experimental and predicted values,
respectively. Based on Figures 5 and 6, the ET model yielded
the best performance and the majority of the deviations
accumulated between −20% and 20%. In addition, the SVM
model provided an accurate efficiency for Pb (deviation
between −5% and 5%).
3.4. Reliability Test. According to the graphical and

statistical analyses, the SVM and the ET models showed the
best performance in estimating Pb and AOP, respectively.
However, the model was tested using noisy data from the
original data set. A random 20% of the original data set was
chosen, and noisy samples were generated by adding Gaussian
noise to each feature in the data set. The information related to
the noises that are added to each feature is presented in Table
6.
Efficiency of the ET and the SVM models (the best models)

in estimating AOP and Pb parameters, respectively, using the
noisy data samples is presented in Figures 7 and 8. These
figures confirm the accuracy of the developed models in
prediction of the target values.
3.5. Comparison between Smart Models and the PC-

SAFT. The results from comparing the experiment and AI/ML
models in estimating the AOP and Pb with the results of the
PC-SAFT model reported by Panuganti et al. are presented in
Table 7.15 Based on the results, the PC-SAFT model has a
better performance in predicting AOP during gas injection

Table 6. Gaussian Noise Information for the AOP and Pb
Data Sets

feature

Gaussian noise standard
deviation for the AOP

data

Gaussian noise
standard deviation for

the Pb data

reservoir pressure 0.219 0.229
reservoir temperature 0.371 0.380
API gravity 0.116 0.126
GOR 1.196 1.301
fluid molecular weight 0.472 0.415
oil-N2 0.027 0.005
oil-CO2 0.018 0.022
oil-H2S 0.025 0.028
oil-C1 0.202 0.225
oil-C2 0.042 0.042
oil-C3 0.024 0.027
oil-i-n-C4 0.043 0.045
oil-i-n-C5 0.030 0.030
oil-C6 0.031 0.030
saturates 0.252 0.252
aromatics 0.164 0.150
resins 0.077 0.080
asphaltenes 0.097 0.104
N2 0.047 0.002
CO2 0.201 0.125
H2S 0.001 0.037
C1 0.156 0.172
C2 0.031 0.022
C3 0.021 0.014
C4+ 0.015 0.015
temperature 0.637 0.634

Figure 7. Performance of the extra trees model in prediction of the
AOP values using the noisy data samples.

Figure 8. Accuracy of the support vector machine model in prediction
of the Pb values using the noisy data samples.
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compared to AI/ML models. As mentioned in the previous
section, accuracy of the ET (R2: 0.79) is higher than that of the
SVM (R2: 0.76), the KNN (R2: 0.62), and the DT (R2: 0.48)
for AOP. Hence, more input data and experimental points
should be used in the AI/ML models for prediction of the
AOP to minimize the deviation from actual data. Based on
Table 7, the results of the AI/ML models in prediction of Pb
were acceptable compared to the PC-SAFT model. The PC-
SAFT model (R2: 0.99) has similar accuracy to the SVM (R2:
0.99) model in prediction of Pb. In addition, the results of the
ET (R2: 0.97) and KNN (R2: 0.94) are reliable for Pb
prediction. The amounts of R2 and RMSE for the AI/ML
models presented in Table 7 are based on all data points, not
only data from Panuganti et al.15 Hence, it can be concluded
that the SVM, the ET, and the KNN models are a good
alternative for the PC-SAFT model for prediction of Pb
without using complex mathematical relations. However, in the
case of AOP, the results of the PC-SAFT model are better than
those of the developed AI/ML models. It is worth mentioning
here that in the AI/ML models, data from different studies
reported in the literature were used, while in the PC-SAFT
model only data from Panuganti et al.15 were considered.
Hence, the accuracy of the PC-SAFT is higher than that of AI/
ML models and has a lower probable error. As a result, for
prediction of Pb, the AI/ML model is a reliable alternative to
the PC-SAFT model and can predict the results successfully
without considering complex equations and computational
efforts. In addition, the AI/ML model can calculate parameters
in various ranges of temperature, while the PC-SAFT model
has a poor performance at low temperatures.9

Although numerous experimental and theoretical research
studies attempted to predict the pressure that asphaltene starts
to precipitate during gas injection, there are still several
challenges associated with these techniques. Some of the
challenges include high computational requirements and
efforts, high cost, and the need to solve complex mathematical
relationships. It can be concluded here that soft computing
methods can assist in overcoming the limitations and
estimating target values in a simpler way and with an
acceptable error. However, the accuracy of smart methods
highly depends on input parameters, which is the main
drawback of these methods.

4. CONCLUSIONS
Pressure decline in oil reservoirs during gas injection is a
problematic phenomenon that causes asphaltene precipitation
and deposition leading to flow assurance issues. Reservoir
temperature, reservoir pressure, SARA fraction, API gravity,
GOR, fluid molecular weight, monophasic composition, and
composition of gas injection were determined by various
researchers to be the parameters affecting estimation of the
AOP and Pb. Hence, in this research work we attempted to
develop four predictive AI/ML-based intelligent models (e.g.,
ET, DT, SVM, and KNN) to estimate AOP and Pb which are
considered as critical parameters in determining the onset of
asphaltene precipitation in oil reservoirs. A comprehensive
database was collected from experimental research studies
reported in the literature for this aim (AOP: 170 data points
and Pb: 146 data points). The data set used in the present
research work is relatively large and covers all available data
from different sources. Missing value imputation, data
statistics, and data scaling are three main preparing data
methods that we used for preprocessing the database for AI/
ML modeling. The following main five conclusions can be
drawn from this research work:
1- The error analysis and graphical studies showed that the
ET (R2: 0.79, RMSE: 7.5) and the SVM (R2: 0.98,
RMSE: 0.76) are the best predictors in estimating AOP
and Pb, respectively. In addition, the results of the DT
method showed notable deviation from the real data for
both data sets. The accuracy of the developed smart
models for prediction of the AOP and Pb in the present
research work is in the following order:

AOP: ET > SVM > KNN > DT
Pb: SVM > ET > KNN > DT

2- The reliability test results using randomly generated
noisy data confirmed accuracy of the developed ET (R2:
0.998) and the SVM (R2: 0.994) models in predicting
the AOP and Pb, respectively, compared to the AI/ML
models used in the present research work.

3- Generally, the accuracy of the PC-SAFT model is more
than that of the AI/ML models. However, our results
confirm that the AI/ML approach is an acceptable
alternative for the PC-SAFT model when we face lack of
data and/or complex mathematical equations.

Table 7. Compression between the Experimental Data, the PC-SAFT Model, and the AI/ML Models Developed in This
Research Work

AOP Pb

experimental PC-SAFT ET KNN DT SVM experimental PC-SAFT ET KNN DT SVM

5% gas injection 3414.94 3414.94 2473.64 1925.92 1806.88 2723.20 1761.71 2003.65 1520.96 1559.37 1483.48 1696.12
2766.24 2604.95 2005.80 1563.16 1466.70 2207.42 1959.79 2121.08 1691.71 1734.74 1649.98 1886.77
3397.26 3360.37 2460.89 1916.03 1797.61 2709.14 2155.25 2301.37 1860.19 1907.26 1814.29 2074.90
2958.90 2776.26 2144.75 1670.90 1567.73 2360.60 2301.37 2447.49 1986.15 2036.43 1937.11 2215.54

15% gas
injection

4285.71 4489.80 3101.64 2412.85 2263.51 3415.55 2285.71 2489.80 1972.65 2022.59 1923.95 2200.47
3714.29 4040.82 2689.54 2093.31 1963.86 2961.21 2775.51 2693.88 2395.86 2455.57 2335.68 2671.90
4740.74 4740.74 3429.81 2667.3 2502.13 3777.34 2444.44 2481.48 2109.47 2162.90 2057.38 2353.24
4037.04 3851.85 2922.30 2273.79 2133.11 3217.83 2518.52 2592.59 2173.33 2228.39 2119.65 2424.54
3703.70 3592.59 2681.90 2087.39 1958.31 2952.79 2888.89 2814.81 2492.59 2555.80 2430.98 2781.03

30% gas
injection

9183.67 9183.67 6634.05 5151.79 4832.00 7309.92 3020.41 3020.41 2605.96 2672.06 2541.54 2907.61
7020.41 6489.80 5073.91 3942.09 3697.59 5589.91 3428.57 3265.31 2957.79 3032.87 288.64 3300.47
8444.44 8222.22 6100.92 4738.41 4444.35 6722.15 3037.04 3296.30 2620.30 2686.76 2555.52 2923.62
6185.19 6370.37 4471.55 3475.04 3259.60 4925.82 3555.56 3370.37 3067.26 3145.13 2991.39 3422.70

R2 0.99 0.79 0.62 0.48 0.76 0.99 0.97 0.94 0.88 0.99
RMSE 1.50 7.51 10.16 11.87 7.99 1.07 1.71 1.84 2.51 0.79

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c03192
ACS Omega 2022, 7, 30113−30124

30121

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c03192?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


4- The error analysis results revealed that the AI/ML
model performance in predicting the Pb is more reliable
than the AOP.

5- The outcomes of the present research work show a
promising pathway in estimating the probability of
asphaltene precipitation during gas injection using smart
computational techniques. The gas injection rate can
affect the AOP and Pb. Hence, it would be interesting to
consider this parameter in future AI/ML modeling
efforts.
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CPA Cubic Plus Association
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OBM oil-based mud
OFVF oil formation volume factor
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theory
PR Peng Robinson
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SRK Soave−Redlich−Kwong
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SVM support vector machine
SVR support vector regression
UAOP upper asphaltene onset pressure
Variables and Parameters
ãres total residual Helmholtz free energy
ãdisp force between nonpolar and weakly polar molecules
ãassoc association contribution
ãhc hard-chain contribution
d sphere diameter
k Boltzmann constant
mi number of the segment in the chain
N number of molecules
T temperature
x molar fraction of chain component
Greek Letters
ε segment energy
εAiBi

associate energy
κAiBi

associate volume
σ segment diameter
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