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Abstract: Reactions of a series of 3-oxo-2-arylhydrazonopropanal derivatives with two molar ratio of
ammonium acetate afforded a library of tetrasubstituted 2,3,6,7,9-pentaazabicyclo[3.3.1]nona- 3,7-diene
derivatives in good to excellent isolated yields. The reaction was activated with triethylamine catalyst
under three different heating modes: thermal, ultrasonic and microwave irradiating conditions in ethanol
solvent. The structures of the isolated products were fully characterized by spectral and analytical data
as well as X-ray single crystal of selected examples.
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1. Introduction

The azabicyclo[3.3.1]nonane moiety is a privileged scaffold embedded in the structures of
numerous bioactive natural products (Figure 1) [1,2]. The azabicyclo[3.3.1]nonane derivatives are
reported to have diverse biological applications. For example, 1-azabicyclo[3.3.1]nonanes are useful for
the treatment of psychotic and neurodegenerative disorders [3,4]. The 2-azabicyclo[3.3.1]nonane
skeleton is present in several important narcotic analgesics and marine alkaloids [5–7].
3-Azabicylo[3.3.1]nonane is the core substructure of the marine natural product; Haliclonin A
(Figure 1) [8,9]. 9-Azabicyclo[3.3.1]nonane derivatives possess cytotoxic [10], dopamine D3
receptor ligands [11], high sigma-2 receptor affinities [12], and are used for the treatment of
diabetes mellitus [13]. Furthermore, 1,4-diazabicyclo[3.3.1]nonane derivatives are reported to
exhibit high in vivo affinity and selectivity for the dopamine transporter (DAT) blockers [14,15].
3,7-Diazabicyclo[3.3.1]nonanes are reported to be useful in the treatment of cardiac arrhythmias [16],
and exhibited anti-platelet, antithrombotic activities [17], as well as high affinities at various nicotinic
acetylcholine receptors (nAChRs) [18–20]. 3,9-Diazabicyclo[3.3.1]nonanes showed the 5-HT3 receptor
antagonist [21] and opioid δ and µ-receptor activities [22,23]. Triazabicyclo[3.3.1]nonane derivatives
such as 2,6,9- and 3,7,9-triazabicyclo[3.3.1]nonanes [24–28] were synthesized from dimerization of
α,β-unsaturated carbonyl compounds with alkylamines. Some 1,3,5,7-tetraazabicyclo[3.3.1]nonane
derivatives have antithrombotic activities [29]. Although tremendous progress has been achieved
in the synthesis of mono-, di-, and tri-azabicyclo[3.3.1]nonanes [1–27], the synthesis of tetra-
and penta-azabicyclo[3.3.1]nonane frameworks has rarely been disclosed in the literature [30–33].
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The microwave irradiation methodology is widely employed in organic reactions because it 
has several advantages over conventional heating, resulting in high yields, low by-products, rapid 
heating and easy purification [34–41]. Mechanistically, microwave irradiation affects the reaction 
through internal heating by direct coupling of microwave energy with the bulk reaction mixture. 
Furthermore, the eco-friendly ultrasound platform has receiving much interest due to its 
high impacts on organic synthesis, medicinal chemistry and materials science [42–46]. It leads 
to the formation of pure products in high yields and selectivity in a shorter reaction time. In 
continuation of our research work employing ultrasound and microwave irradiations in the 
synthesis of biologically active heterocycles [47–57], we envisaged herein an efficient and 
versatile one-pot protocol for rapid assembly of novel C2-symmetric 
2,3,6,7,9-pentaazabicyclo[3.3.1]nonane derivatives through dimerization of 
3-oxo-2-arylhydrazonopropanals with ammonium acetate via a double Mannich-type reaction 
under three different heating platforms: conventional, ultrasound and microwave irradiation. 
The structures of the obtained products are established from their single crystal X-ray 
analysis and spectral data (IR, MS, HRMS, 1H- and 13C-NMR). 
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Figure 1. Azabicyclo[3.3.1]nonane-based natural products. 

2. Results 

The intermolecular Mannich reaction is considered to be a powerful route for the synthesis of 
azacyclic products from acyclic substrates [58]. At first, the investigations focused on screening 
various reaction parameters (e.g., solvents, bases and heating techniques) for optimizing the reaction 
conditions of the double-Mannish reaction of the 3-oxo-2-arylhydrazonopropanal derivative 1a with 
ammonium acetate were thoroughly evaluated and the reaction was followed by TLC till almost full 
conversion of the starting substrates and the results are depicted in Table 1. Heating the 
3-oxopropanal derivative 1a with double equivalents of ammonium acetate in ethanol under either 
reflux temperature (15 h), ultrasound irradiation (US) (120 min at 80 °C and 110 W), or microwave 
irradiation (MW) (30 min at 80 °C and 200 W) in the absence of catalysts, only a trace amount of 
product was detected by TLC (run 1, Table 1). When the reaction was heated at reflux using 
triethylamine (Et3N) as catalyst (15 mol%) for 4 h (as examined by TLC), it led to the formation of 
the 2,3,6,7,9-pentaazabicyclo[3.3.1]nonane derivative 2a in 70% isolated yield (run 2, Table 1). The 
structure of reaction product 2a was confirmed from its spectral data (IR, MS, HRMS, 1H- and 
13C-NMR). 1H-NMR spectrum of compound 2a showed triplet at δ 4.30 (D2O-exchangeable) 
assigned to the NH proton and a doublet at δ 6.76 due to the symmetric-bridgehead H1 and 
H5-protons in addition to a multiplet at δ 7.3–7.95, corresponding to 16 aromatic protons. 13C-NMR 
spectrum of 2a exhibited symmetric 11 signals at δ 56.48, 118.94, 127.70, 127.98, 128.92, 129.99, 132.15, 
136.98, 138.37, 141.88 and 189.39, corresponding to 30 aromatic and aliphatic carbons. When the 
same reaction was repeated under US (for 60 min) and MW (for 5 min), the product 2a was 
obtained in 82% and 87% yields, respectively (run 2, Table 1). For the same reaction, use of 25 mol% 

Figure 1. Azabicyclo[3.3.1]nonane-based natural products.

The microwave irradiation methodology is widely employed in organic reactions because
it has several advantages over conventional heating, resulting in high yields, low by-products,
rapid heating and easy purification [34–41]. Mechanistically, microwave irradiation affects the reaction
through internal heating by direct coupling of microwave energy with the bulk reaction mixture.
Furthermore, the eco-friendly ultrasound platform has receiving much interest due to its high impacts
on organic synthesis, medicinal chemistry and materials science [42–46]. It leads to the formation
of pure products in high yields and selectivity in a shorter reaction time. In continuation of our
research work employing ultrasound and microwave irradiations in the synthesis of biologically active
heterocycles [47–57], we envisaged herein an efficient and versatile one-pot protocol for rapid assembly
of novel C2-symmetric 2,3,6,7,9-pentaazabicyclo[3.3.1]nonane derivatives through dimerization of
3-oxo-2-arylhydrazonopropanals with ammonium acetate via a double Mannich-type reaction under
three different heating platforms: conventional, ultrasound and microwave irradiation. The structures
of the obtained products are established from their single crystal X-ray analysis and spectral data
(IR, MS, HRMS, 1H- and 13C-NMR).

2. Results

The intermolecular Mannich reaction is considered to be a powerful route for the synthesis of
azacyclic products from acyclic substrates [58]. At first, the investigations focused on screening various
reaction parameters (e.g., solvents, bases and heating techniques) for optimizing the reaction conditions
of the double-Mannish reaction of the 3-oxo-2-arylhydrazonopropanal derivative 1a with ammonium
acetate were thoroughly evaluated and the reaction was followed by TLC till almost full conversion of
the starting substrates and the results are depicted in Table 1. Heating the 3-oxopropanal derivative
1a with double equivalents of ammonium acetate in ethanol under either reflux temperature (15 h),
ultrasound irradiation (US) (120 min at 80 ◦C and 110 W), or microwave irradiation (MW) (30 min
at 80 ◦C and 200 W) in the absence of catalysts, only a trace amount of product was detected by TLC
(run 1, Table 1). When the reaction was heated at reflux using triethylamine (Et3N) as catalyst (15 mol%)
for 4 h (as examined by TLC), it led to the formation of the 2,3,6,7,9-pentaazabicyclo[3.3.1]nonane
derivative 2a in 70% isolated yield (run 2, Table 1). The structure of reaction product 2a was confirmed
from its spectral data (IR, MS, HRMS, 1H- and 13C-NMR). 1H-NMR spectrum of compound 2a
showed triplet at δ 4.30 (D2O-exchangeable) assigned to the NH proton and a doublet at δ 6.76 due to
the symmetric-bridgehead H1 and H5-protons in addition to a multiplet at δ 7.3–7.95, corresponding
to 16 aromatic protons. 13C-NMR spectrum of 2a exhibited symmetric 11 signals at δ 56.48, 118.94,
127.70, 127.98, 128.92, 129.99, 132.15, 136.98, 138.37, 141.88 and 189.39, corresponding to 30 aromatic
and aliphatic carbons. When the same reaction was repeated under US (for 60 min) and MW (for 5 min),
the product 2a was obtained in 82% and 87% yields, respectively (run 2, Table 1). For the same reaction,
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use of 25 mol% of Et3N resulted in a significant increase in the product yield, to 78%, 89% and 94% when
the reaction was carried out at reflux (3 h), US (50 min) and MW (3 min), respectively (run 3, Table 1).
Further increase in the amount of Et3N (30 mol%) could not significantly improve the yield, as shown
in run 4, Table 1. Further evaluation of the effect of the molar ratio of 1a and ammonium acetate in
the presence of 25 mol% of Et3N was attempted, where product 2a was formed in 66%, 73% and 80%
yields after heating at reflux (3 h), US (50 min) and MW (3 min), respectively, when 1a and ammonium
acetate (1:1 molar ratio) were employed (run 5, Table 1). Repeating the reaction of 1a and ammonium
acetate (2:1 molar ratio) gave 60%, 68% and 73% yields of 2a upon heating at reflux (3 h), US (50 min)
and MW (3 min), respectively (run 6, Table 1). Using methanol or isopropanol solvents instead of
ethanol in the presence of Et3N (25 mol%) and 1:2 molar ratio of 1a and ammonium acetate had little
effect on the product yields under all heating modes, as shown in runs 7 and 8, Table 1. Non-alcoholic
solvents lowered the reaction yields and increased the reaction time, where employing n-hexane,
acetic acid, dimethylformamide (DMF) or toluene as reaction solvents resulted in the formation of 2a
in 30~35%, 40~52% and 50~65% yields, under reflux, US and MW conditions, respectively, as shown in
runs 9–12, Table 1. Keeping ethanol as solvent, further attempts to evaluate the effect of base-types
(pyridine, DABCO, DBU, NaHCO3, K2CO3, NaOH) on the reaction yields were studied and in all cases,
regardless of whether an organic or inorganic base catalyst was employed (25 mol%), the overall yields
decreased sharply; 10~20%, 10~28% and 15~35% yields, under the applied activation modes—thermal,
US and MW—respectively (runs 13–18, Table 1). From the obtained data in Table 1, it can be concluded
that EtOH/Et3N is the most effective reaction condition for achieving the stated goals.Molecules 2019, 24, x 4 of 14 
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Figure 2. ORTEP diagrams of the crystal structures of 2f (a), 2k (b), 2p (c). 
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Table 1. Optimization the dimerization condition of 3-oxo-2-arylhydrazonopropanals 1a with
ammonium acetate a.
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Run Base-Catalyst 
(mol%) Solvent 

Conv. Heating Sonication MW Irradiation 
Yield b 

% 
Time 

(h) 
Yield b 

% 
Time 
(min) 

Yield b 
% 

Time 
(min) 

1 No catalyst EtOH trace 15 trace 120 trace 30 
2 Et3N (15) EtOH 70 4 82 60 87 5 
3 
4 

Et3N (25) 
Et3N (30) 

EtOH 
EtOH 

78 c 
71 

3 
3 

89 d 
85 

50 
60 

94 
90 

3 
4 

5 Et3N (25) e EtOH 66 e 3 73 e 50 80e 3 
6 Et3N (25) f EtOH 60 f 3 68 f 50 73f 3 
7 Et3N (25) MeOH 71 4 82 50 89 4 
8 Et3N (25) isopropanol 70 4 80 60 88 4 
9 Et3N (25) n-hexane 34 6 52 80 63 10 
10 Et3N (25) acetic acid 32 4 40 70 50 6 
11 Et3N (25) DMF 30 6 45 100 55 10 
12 Et3N (25) toluene 35 5 50 90 65 10 
13 pyridine (25) EtOH 20 4 28 60 35 5 
14 DABCO (25) EtOH 17 5 20 80 28 7 
15 DBU (25) EtOH 15 5 18 70 25 8 
16 NaHCO3 (25) EtOH 10 6 10 80 15 10 
17 K2CO3 (25) EtOH 10 5 12 90 15 10 
18 NaOH (25) EtOH 12 5 14 80 18 9 

a Reaction conditions: Arylhydrazonopropanal 1a (5 mmol), ammonium acetate (10 mmol) and 
base-catalyst (15~30 mol%) in solvent (7 mL) at reflux temperature for conventional heating 3~6 h, 
ultrasonic irradiation at 80 °C (110 W) for 50~100 min, or microwave irradiation at 80 °C (200 W) for 
3~10 min. b isolated yield. c Yield was 20% after 50 min. d Yield was 35% after 15 min. e Compound 1a (5 
mmol) and ammonium acetate (5 mmol) were used. f Compound 1a (10 mmol) and ammonium 
acetate (5 mmol) were used. Conv. = conventional, MW = microwave. 

Run Base-Catalyst (mol%) Solvent
Conv. Heating Sonication MW Irradiation

Yield b % Time (h) Yield b % Time (min) Yield b % Time (min)

1 No catalyst EtOH trace 15 trace 120 trace 30
2 Et3N (15) EtOH 70 4 82 60 87 5
3 Et3N (25) EtOH 78 c 3 89 d 50 94 3
4 Et3N (30) EtOH 71 3 85 60 90 4
5 Et3N (25) e EtOH 66 e 3 73 e 50 80e 3
6 Et3N (25) f EtOH 60 f 3 68 f 50 73f 3
7 Et3N (25) MeOH 71 4 82 50 89 4
8 Et3N (25) isopropanol 70 4 80 60 88 4
9 Et3N (25) n-hexane 34 6 52 80 63 10

10 Et3N (25) acetic acid 32 4 40 70 50 6
11 Et3N (25) DMF 30 6 45 100 55 10
12 Et3N (25) toluene 35 5 50 90 65 10
13 pyridine (25) EtOH 20 4 28 60 35 5
14 DABCO (25) EtOH 17 5 20 80 28 7
15 DBU (25) EtOH 15 5 18 70 25 8
16 NaHCO3 (25) EtOH 10 6 10 80 15 10
17 K2CO3 (25) EtOH 10 5 12 90 15 10
18 NaOH (25) EtOH 12 5 14 80 18 9

a Reaction conditions: Arylhydrazonopropanal 1a (5 mmol), ammonium acetate (10 mmol) and base-catalyst
(15~30 mol%) in solvent (7 mL) at reflux temperature for conventional heating 3~6 h, ultrasonic irradiation at 80 ◦C
(110 W) for 50~100 min, or microwave irradiation at 80 ◦C (200 W) for 3~10 min. b isolated yield. c Yield was 20%
after 50 min. d Yield was 35% after 15 min. e Compound 1a (5 mmol) and ammonium acetate (5 mmol) were used.
f Compound 1a (10 mmol) and ammonium acetate (5 mmol) were used. Conv. = conventional, MW = microwave.

Next, a variety of C2-symmetric tetrasubstituted 2,3,6,7,9-pentaazabicyclo[3.3.1]nona-3,7-diene
derivatives were prepared in accordance with the above optimized reaction conditions. The use
of several 3-oxo-2-arylhydrazonopropanal derivatives 1a–p with ammonium acetate afforded
the corresponding double Mannich-type products 2a–p in good to excellent isolated yields
and the reactions were followed by TLC until full conversion of the starting substrates (Table 2).
It was gratifying to see that the reaction proceeds well, with high isolated yields (81~94%) for all
derivatives under microwave irradiation within 3~9 min at 80 ◦C (200 W). Reaction yields were
slightly decreased by conducting the reaction under ultrasound at 80 ◦C (110 W), with the products
being obtained in 73~89% isolated yields. When reactions were carried out under conventional
heating mode, the isolated yields varied from 62 to 86% after 3~8 hours when followed by TLC.
All the resulted products were established based on their elemental analyses and spectral data (IR, MS,
HRMS, 1H- and 13C-NMR), as well as single crystal X-ray crystallography, of three examples, 2f, 2k
and 2p, as shown in Figure 2a–c [59]. It is worth mentioning that the bicyclic scaffolds adopt a unique
C2-symmetric V-shaped structures [60].
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Table 2. Et3N-catalyzed synthesis of 2,3,6,7,9-pentaazabicyclo[3.3.1]nona-3,7-dienes 2a–p.
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Data were corrected for the absorption effects using the multi-scan method (SADABS). 
Sonication was performed in MKC6, Guyson ultrasonic bath (Model-MKC6, operating frequency 38 
kHz ± 10% and an output power of 110 Watts) with a digital timer (6 s to 100 min) and a heater, 
allowing solution heating to be set from 20 to 80 °C in 1 °C increments. The inside tank dimensions 
are 150 × 300 × 150 mm (length × width × depth) with a fluid capacity of 6 L. The 
3-oxo-2-arylhydrazonopropanal derivatives 1a–p were prepared following reported procedures in 
the literature [62]. 

3.2. Synthesis of 2,3,6,7,9-Pentaazabicyclo[3.3.1]nona-3,7-diene Derivatives 2a–p 

3.2.1. General Method A  

A mixture of the appropriate arylhydrazonopropanals 1a–p (5 mmol) and ammonium acetate 
(10 mmol) was dissolved in of ethanol (7 mL), then triethylamine (25 mol%) was added and the 
reaction mixture was refluxed for 3–8 h (monitored by TLC using a mixture of petroleum ether (bp 
60–80):EtOAc (2:1)). The reaction mixture was then evaporated under reduced pressure and the solid 
product, so formed, was recrystallized from EtOH/DMF to give the corresponding 
2,3,6,7,9-pentaazabicyclo[3.3.1]nonane products 2a–p. 

3.2.2. General Method B 

4pt
Run

4pt
Products

4pt R 4pt Ar Conv. Heating a Sonication a MW a Irradiation

Yield b% Time (h) Yield b % Time (min) Yield b % Time (min)

1 2a 4-FC6H4 4-ClC6H4 78 3 89 50 94 3
2 2b 4-FC6H4 4-BrC6H4 77 4 87 60 93 4
3 2c C6H5 4-ClC6H4 70 3 81 50 89 4
4 2d C6H5 4-BrC6H4 72 5 82 70 90 6
5 2e C6H5 2-NO2C6H4 68 4 80 70 86 5
6 2f 4-ClC6H4 C6H5 71 3 83 40 90 3
7 2g 4-ClC6H4 4-BrC6H4 73 5 84 70 91 5
8 2h 4-BrC6H4 4-ClC6H4 86 4 87 70 92 5
9 2i 4-BrC6H4 4-BrC6H4 84 5 86 80 92 6

10 2j 4-OMeC6H4 C6H5 66 5 77 70 82 5
11 2k 4-OMeC6H4 4-ClC6H4 65 6 77 90 81 6
12 2l 4-OMeC6H4 4-BrC6H4 67 8 78 100 83 7
13 2m 4-NO2C6H4 4-ClC6H4 67 7 79 110 84 7
14 2n 4-NO2C6H4 4-BrC6H4 71 8 80 100 86 8
15 2o CH3 4-ClC6H4 62 7 73 90 81 8
16 2p CH3 4-BrC6H4 64 6 75 110 81 9

a Reaction conditions: 3-Oxo-2-arylhydrazonopropanals 1a–p (5 mmol), ammonium acetate (10 mmol) and Et3N
(25 mol%) in EtOH (7 mL) at reflux temperature for conventional heating 3~8 h, ultrasonic irradiation at 80 ◦C (110 W)
for 50~110 min, or microwave irradiation at 80 ◦C (200 W) for 3~9 min. b Isolated yields. Conv. = conventional,
MW = microwave.

A plausible mechanism is proposed, as outlined in Scheme 1, on the basis of the aforementioned
results for the tandem formation of the 2,3,6,7,9-pentaazabicyclo[3.3.1]nonane derivatives 2a–p
through a Mannich-type reaction. At first, ammonium acetate is dissociated into ammonia
and acetic acid. Then, nucleophilic addition of ammonia to the aldehydic carbonyl of compound 1,
followed by dehydration through the intermediary A~C furnished the iminium ion intermediate D.
A second molecule of structure 1 is deprotonated by Et3N as basic catalyst to form the arylazo-enolate
ion intermediate E. The resonated intermediate F attacks the iminium ion intermediate D to
form the non-isolated Mannich adduct G that cyclizes to form the triazacyclic intermediate H by
intramolecular attacking of the amine function to the aldehyde function. Finally, loss of water molecule
from H produced the pentaazabicyclo[3.3.1]nonane system 2.
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Scheme 1. Suggested reaction mechanism for 2,3,6,7,9-pentaazabicyclo[3.3.1]nonanes 2. 
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Scheme 1. Suggested reaction mechanism for 2,3,6,7,9-pentaazabicyclo[3.3.1]nonanes 2.

3. Materials and Methods

3.1. General Information

Melting points were recorded on a Griffin melting point apparatus and are reported uncorrected.
IR spectra were recorded using KBr disks using a Perkin-Elmer System 2000 FT-IR spectrophotometer
(Perkin Elmer, Shelton, CT, USA). 1H-NMR (600 MHz) and 13C-NMR (150 MHz) spectra were
recorded at 25 ◦C using DMSO-d6 as solvent with TMS as internal standard on a Bruker DPX 600
super-conducting NMR spectrometer (Bruker, Karlsruhe, Germany). Chemical shifts δ are reported in
ppm. Low-resolution electron impact mass spectra [MS (EI)] and high-resolution electron impact mass
spectra [HRMS (EI)] were performed using a high-resolution GC-MS (DFS) thermo spectrometer
at 70.1 eV using a magnetic sector mass analyzer (Thermo, Bremen, Germany). Follow-up of
the reactions and checking homogeneity of the prepared compounds was carried out by using thin
layer chromatography (TLC). Microwave experiments were carried out using a CEM Discover Labmate
microwave apparatus (300 W with CHEMDRIVER software; Matthews, NC, USA). Reactions were
conducted under microwave irradiation in heavy-walled Pyrextubes fitted with PCS caps (closed vessel
under pressure). The X-ray crystal structures were determined by using a Rigaku R-AXISRAPID
diffractometer (Rigaku, Tokyo, Japan) and Bruker X8 Prospector and the collection of single crystal
data was made at room temperature by using Cu-Kα radiation. The data were collected at room
temperature. The structures were solved by using direct methods and expanded using Fourier
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techniques. The non-hydrogen atoms were refined anisotropically. The structures were solved
and refined using the Bruker SHELXTLSoftware Package (Structure solution program-SHELXS-97
and Refinement program-SHELXL97) [61].

Data were corrected for the absorption effects using the multi-scan method (SADABS). Sonication was
performed in MKC6, Guyson ultrasonic bath (Model-MKC6, operating frequency 38 kHz ± 10%
and an output power of 110 Watts) with a digital timer (6 s to 100 min) and a heater, allowing solution
heating to be set from 20 to 80 ◦C in 1 ◦C increments. The inside tank dimensions are 150× 300× 150 mm
(length ×width × depth) with a fluid capacity of 6 L. The 3-oxo-2-arylhydrazonopropanal derivatives
1a–p were prepared following reported procedures in the literature [62].

3.2. Synthesis of 2,3,6,7,9-Pentaazabicyclo[3.3.1]nona-3,7-diene Derivatives 2a–p

3.2.1. General Method A

A mixture of the appropriate arylhydrazonopropanals 1a–p (5 mmol) and ammonium
acetate (10 mmol) was dissolved in of ethanol (7 mL), then triethylamine (25 mol%) was added
and the reaction mixture was refluxed for 3–8 h (monitored by TLC using a mixture of petroleum
ether (bp 60–80):EtOAc (2:1)). The reaction mixture was then evaporated under reduced pressure
and the solid product, so formed, was recrystallized from EtOH/DMF to give the corresponding
2,3,6,7,9-pentaazabicyclo[3.3.1]nonane products 2a–p.

3.2.2. General Method B

In a round-bottomed three-necked flask, a mixture of the appropriate arylhydrazonopropanals
1a–p (5 mmol) and ammonium acetate (10 mmol) in of ethanol (7 mL), then triethylamine (25 mol%)
was added and the reaction mixture was sonicated in a MKC6, Guyson ultrasonic bath (Model-MKC6,
operating frequency 38 kHz± 10% and an output power of 110 W) for 50–110 min at 80 ◦C. The reaction
was controlled by TLC and continued until the starting substrates were completely consumed,
then left to cool to room temperature. In each case, the solid product, so formed, was collected by
filtration, washed with ethanol, dried and recrystallized from EtOH/DMF to give the corresponding
products 2a–p.

3.2.3. General Method C

In a process glass vial, a mixture of the appropriate arylhydrazonopropanals 1a–p (5 mmol)
and ammonium acetate (10 mmol) in ethanol (7 mL), then triethylamine (25 mol%) was added. The vial
was capped properly, and thereafter, the mixture was heated under microwave irradiating conditions
at 80 ◦C and 300 W for the appropriate reaction time as listed in Table 2. After cooling to room
temperature, the products were isolated by filtration, washed with ethanol, dried and recrystallized
from EtOH/DMF to give the corresponding products 2a–p, see Supplementary materials.

2,6-Di(4-chlorophenyl)-4,8-di(4-fluorobenzoyl)-2,3,6,7,9-pentaazabicyclo[3.3.1]nona-3,7-diene (2a):
Pale yellow color; m.p. 245–246 ◦C; IR (KBr): 3331, 3073, 1636, 1597 cm−1; 1H-NMR (DMSO-d6):
δ = 4.30 (t, 1H, J = 2.4 Hz, NH), 6.76 (d, 2H, J = 2.4 Hz, H-1 and H-5), 7.31 (t, 4H, J = 9 Hz), 7.45 (d, 4H,
J = 9.6 Hz), 7.65 (d, 4H, J = 9 Hz), 7.93–7.95 (m, 4H); 13C-NMR (DMSO-d6): δ = 56.93, 115.45, 115.60,
119.49, 128.25, 129.44, 133.39, 133.45, 133.92, 138.74, 142.35, 164.03, 165.69, 188.35; MS (EI, 70 eV): m/z
(%) = 588.90 (M+, 6), 463.0 (34), 314.0 (18), 138.0 (5), 123.0 (100), 95 (29); HRMS (EI): m/z calcd for
C30H19Cl2F2N5O2: 589.0884; found: 589.0878.

2,6-Di(4-bromophenyl)-4,8-di(4-fluorobenzoyl)-2,3,6,7,9-pentaazabicyclo[3.3.1]nona-3,7-diene (2b):
Yellow color; m.p. 216–217 ◦C; IR (KBr): 3332, 3065, 1633, 1597 cm−1; 1H-NMR (DMSO-d6): δ = 4.30
(t, 1H, J = 2.4 Hz, NH), 6.76 (d, 2H, J = 2.4 Hz, H-1 and H-5), 7.29–7.33 (m, 4H), 7.56–7.60 (m, 8H),
7.92–7.95 (m, 4H); 13C-NMR (DMSO-d6): δ = 56.37, 114.97, 115.12, 115.83, 119.36, 131.84, 132.91,
132.97, 133.39, 133.41, 138.28, 142.26, 163.55, 165.21, 187.84; MS (EI, 70 eV): m/z (%) = 678.80 (M+, 5),
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508.9 (19), 498.8 (3), 359.9 (10), 181.9 (3), 154.9 (8), 123.0 (100), 95.0 (27); HRMS (EI): m/z calcd for
C30H19Br2F2N5O2: 676.9874; found: 676.9865.

4,8-Di(benzoyl)-2,6-di(4-chlorophenyl)-2,3,6,7,9-pentaazabicyclo[3.3.1]nona-3,7-diene (2c): Pale yellow
color; m.p. 223–224 ◦C; IR (KBr): 3323, 3066, 1648, 1600 cm−1; 1H-NMR (DMSO-d6): δ = 4.31 (t, 1H,
J = 2.4 Hz, NH), 6.76 (d, 2H, J = 2.4 Hz, H-1 and H-5), 7.44 (d, 4H, J = 1.8 Hz), 7.49 (t, 4H, J = 7.8 Hz),
7.59 (t, 2H, J = 7.5 Hz), 7.63–7.65 (m, 4H), 7.83 (d, 4H, J = 7.2 Hz); 13C-NMR (DMSO-d6): δ = 56.48, 118.94,
127.70, 127.98, 128.92, 129.99, 132.15, 136.98, 138.37, 141.88, 189.39; MS (EI, 70 eV): m/z (%) = 553.30
(M+, 15.9), 448.2 (4), 427.2 (70), 138.1 (5), 127.0 (10), 105.1 (100), 77.0 (33); HRMS (EI): m/z calcd for
C30H21Cl2N5O2: 553.1072; found: 553.1067.

4,8-Di(benzoyl)-2,6-di(4-bromophenyl)-2,3,6,7,9-pentaazabicyclo[3.3.1]nona-3,7-diene (2d): Pale yellow
color; m.p. 245–247 ◦C; IR (KBr): 3334, 2919, 1634, 1593 cm−1; 1H-NMR (DMSO-d6): δ = 4.34 (t, 1H,
J = 2.4 Hz, NH), 6.78 (s, 2H, H-1, H-5), 7.48 (t, 4H, J = 7.8 Hz), 7.55–7.60 (m, 10H), 7.83 (t, 4H, J = 7.8 Hz);
13C-NMR (DMSO-d6): δ = 56.43, 115.79, 119.31, 127.99, 130.01, 131.81, 132.17, 136.96, 138.41, 142.28,
189.38; MS (EI, 70 eV): m/z (%) = 643.1 (M++2, 27), 538.1 (6), 471.1 (97), 354.1 (4), 340.1 (36), 171.0 (10),
105.0 (100), 77 (17); HRMS (EI): m/z calcd for C30H21Br2N5O2: 641.0062; found: 641.0048.

4,8-Di(benzoyl)-2,6-di(2-nitrophenyl)-2,3,6,7,9-pentaazabicyclo[3.3.1]nona-3,7-diene (2e): Pale yellow
color; m.p. 233–234 ◦C; IR (KBr): 3302, 3063, 1664, 1577 cm−1; 1H-NMR (DMSO-d6): δ = 4.52 (t, 1H,
J = 2.4 Hz, NH), 6.71 (d, 2H, J = 2.4 Hz, H-1 and H-5), 7.38 (t, 4H, J = 7.5 Hz), 7.44 (t, 2H, J = 7.8 Hz),
7.50 (t, 2H, J = 7.8 Hz), 7.50 (d, 4H, J = 7.2 Hz), 7.80–7.86 (m, 4H), 8.00 (d, 2H, J = 7.8 Hz); 13C-NMR
(DMSO-d6): δ = 58.65, 125.62, 125.74, 126.77, 127.92, 128.93, 131.57, 133.89, 136.93, 137.71, 139.64, 143.16,
189.91; MS (EI, 70 eV): m/z (%) = 575.20 (M+, 70), 558.2 (48), 527.2 (5), 438.2 (35), 410.2 (10), 305.1 (12),
214.1 (16), 105.0 (100), 77.0 (35); HRMS (EI): m/z calcd for C30H21N7O6: 575.1553; found: 575.1549.

4,8-Di(4-chlorobenzoyl)-2,6-diphenyl-2,3,6,7,9-pentaazabicyclo[3.3.1]nona-3,7-diene (2f): Yellow color;
m.p. 215–216 ◦C; IR (KBr): 3337, 3029, 1632, 1589 cm−1; 1H-NMR (DMSO-d6): δ = 4.25 (t, 1H, J = 2.4 Hz,
NH), 6.77 (d, 2H, J = 2.4 Hz, H-1 and H-5), 7.11 (t, 2H, J = 7.5 Hz), 7.38–7.41 (m, 3H), 7.54–7.57
(m, 3H), 7.64–7.66 (m, 3H), 7.86–7.88 (m, 3H); 13C-NMR (DMSO-d6): δ = 56.46, 117.44, 123.85, 128.04,
129.10, 131.89, 135.80, 136.86, 137.77, 142.98, 188.04; MS (EI, 70 eV): m/z (%) = 553.10 (M+, 10), 461.0
(36), 414.1 (7), 387.1 (5), 321.0 (4), 296.1 (42), 139.0 (100), 111.0 (23), 77.0 (22); HRMS (EI): m/z calcd
for C30H21Cl2N5O2: 553.1072; found: 553.1068.; Crystal Data, C30H21Cl2N5O2, M = 554.42, triclinic,
crystal size = 0.140 × 0.260 × 0.370 mm, a = 6.3807(7) Å, b = 12.9107(13) Å, c = 16.2532(17) Å,
α = 94.517(5)◦, β = 97.765(5)◦, γ = 99.214(5)◦, V = 1302.6(2) Å3, T = 296(2) K, space group: P -1,
Z = 2, calculated density = 1.414 g/cm3, no. of reflection measured 20549, θ max = 66.87◦, R1 = 0.0557
(CCDC 1885322) [59].

2,6-Di(4-bromophenyl)-4,8-di(4-chlorobenzoyl)-2,3,6,7,9-pentaazabicyclo[3.3.1]nona-3,7-diene (2g):
Orange color; m.p. 261–262 ◦C; IR (KBr): 3344, 2980, 1635, 1587 cm−1; 1H-NMR (DMSO-d6): δ = 4.30
(t, 1H, J = 2.4 Hz, NH), 6.76 (d, 2H, J = 3 Hz, H-1 and H-5), 7.55 (dd, 4H, J =1.8 Hz, J = 1.8 Hz), 7.59
(s, 8H), 7.86 (dd, 4H, J = 1.8 Hz, J=1.8 Hz); 13C-NMR (DMSO-d6): δ = 56.42, 115.97, 119.43, 128.09,
131.84, 131.96, 135.57, 138.16, 142.22, 188.04; MS (EI, 70 eV): m/z (%) = 710.9 (M++2, 4), 540.9 (25), 514.9
(7), 480.9 (3), 437.0 (5), 375.9 (15), 154.9 (15), 139.0 (100), 111.0 (40), 90.0 (5), 75.0 (15); HRMS (EI): m/z
calcd for C30H19Br2Cl2N5O2: 708.9283; found: 708.9279.

2,6-Di(4-chlorophenyl)-4,8-di(4-bromobenzoyl)-2,3,6,7,9-pentaazabicyclo[3.3.1]nona-3,7-diene (2h):
Pale yellow color; m.p. 255–256 ◦C; IR (KBr): 3350, 3090, 1634, 1585 cm−1; 1H-NMR (DMSO-d6):
δ = 4.33 (t, 1H, J = 2.4 Hz, NH), 6.76 (d, 2H, J = 2.4 Hz, H-1 and H-5), 7.47 (d, 4H, J = 9 Hz), 7.66 (d, 4H,
J = 9 Hz), 7.70 (d, 4H, J = 8.4 Hz), 7.80 (d, 4H, J = 8.4 Hz); 13C-NMR (DMSO-d6): δ = 56.50, 119.11,
126.13, 127.88, 128.97, 131.05, 132.09, 135.95, 138.09, 141.83, 188.22; MS (EI, 70 eV): m/z (%) = 710.7
(M++2, 6), 584.8 (47), 556.8 (3), 387.9 (7), 375.9 (22), 182.9 (100), 154.9 (36), 127.0 (33), 111.0 (26), 75.0 (15);
HRMS (EI): m/z calcd for C30H19Br2Cl2N5O2: 708.92825; found: 708.9278.

4,8-Di(4-bromobenzoyl)-2,6-di(4-bromophenyl)-2,3,6,7,9-pentaazabicyclo[3.3.1]nona-3,7-diene (2i):
Yellow color; m.p. 264–265 ◦C; IR (KBr): 3346, 2990, 1638, 1592 cm−1; 1H-NMR (DMSO-d6): δ = 4.31
(t, 1H, J = 2.7 Hz, NH), 6.73 (d, 2H, J = 2.4 Hz, H-1 and H-5), 7.58–7.64 (m, 8H), 7.68 (d, 4H, J = 9 Hz),
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7.80 (d, 4H, J = 8.4 Hz); 13C-NMR (DMSO-d6): δ = 56.43, 115.97, 119.46, 126.15, 131.04, 131.85, 132.10,
135.92, 138.12, 142.22, 188.19; MS (EI, 70 eV): m/z (%) = 800.7 (M++4, 2), 630.8 (18), 587.8 (6), 560.8 (12),
480.9 (16), 419.9 (8), 208.9 (12), 182.9 (100), 154.9 (80), 90.0 (12), 76.0 (46); HRMS (EI): m/z calcd for
C30H19Br4N5O2: 796.8272; found: 796.8268.

4,8-Di(4-methoxybenzoyl)-2,6-diphenyl-2,3,6,7,9-pentaazabicyclo[3.3.1]nona-3,7-diene (2j): Pale yellow
color; m.p. 237–238 ◦C; IR (KBr): 3328, 2974, 1626, 1596 cm−1; 1H-NMR (DMSO-d6): δ = 3.82 (s, 6H,
2OCH3), 4.24 (t, 1H, J = 2.4 Hz, NH), 6.76 (d, 2H, J = 2.4 Hz, H-1, H-5), 7.03 (dd, 4H, J = 1.8 Hz,
J = 1.8 Hz), 7.08 (t, 2H, J = 7.2 Hz), 7.37–7.39 (m, 4H, ArH), 7.64 (d, 4H, J = 8.4 Hz), 7.87–7.91 (m, 4H);
13C-NMR (DMSO-d6): δ = 55.41, 56.43, 113.38, 117.10, 123.42, 129.13, 129.45, 132.40, 138.53, 143.13,
162.57, 187.74; MS (EI, 70 eV): m/z (%) = 545.0 (M+, 11), 453.0 (25), 383.0 (3), 292.0 (22), 135.0 (100), 107.0
(5), 92.0 (12), 77.0 (20); HRMS (EI): m/z calcd for C32H27N5O4: 545.2063; found: 545.2058.

2,6-Di(4-chlorophenyl)-4,8-di(4-methoxybenzoyl)-2,3,6,7,9-pentaazabicyclo[3.3.1]nona-3,7-diene (2k):
Yellow color; m.p. 247–249 ◦C; IR (KBr): 3319, 3007, 1597, 1566 cm−1; 1H-NMR (DMSO-d6): δ = 3.81
(s, 6H, 2CH3O), 4.30 (t, 1H, J = 2.4 Hz, NH), 6.76 (d, 2H, J = 2.4 Hz, H-1, H-5), 7.03 (d, 4H, J = 9 Hz),
7.45 (d, 4H, J = 9 Hz), 7.66 (d, 4H, J = 9 Hz), 7.91 (d, 4H, J = 9 Hz); 13C-NMR (DMSO-d6): δ = 55.40,
56.03, 56.43, 113.18, 113.42, 118.48, 118.71, 118.92, 127.42, 128.96, 132.46, 138.83, 141.97, 162.41, 162.64,
162.84, 187.69; MS (EI, 70 eV): m/z (%) = 613.10 (M+, 7), 487.1 (25), 450.1 (3), 421.1 (5), 326.1 (10), 161.0 (3),
135.0 (100), 77.0 (10); HRMS (EI): m/z calcd for C32H25Cl2N5O4: 613.1284; found 613.1278. Crystal Data:
C32H25Cl2N5O4, M = 614.49, monoclinic, crystal size = 0.200 × 0.120 × 0.020 mm, a = 25.381(2) Å,
b = 7.6990(3) Å, c = 25.477(2) Å, α = 90◦, β = 145.50(1)◦, γ = 90◦, V = 2819.7(8) Å3, T = -123.0 ◦C, space
group: P21/c, Z = 4, calculated density = 1.447 g/cm3, no. of reflection measured 15678, θ max = 50.1◦,
R1 = 0.0403 (CCDC 1885339) [59].

2,6-Di(4-bromophenyl)-4,8-di(4-methoxybenzoyl)-2,3,6,7,9-pentaazabicyclo[3.3.1]nona-3,7-diene (2l):
Pale yellow color; m.p. 255–256 ◦C; IR (KBr): 3321, 2968, 1673, 1596 cm−1; 1H-NMR (DMSO-d6):
δ = 3.82 (s, 6H, 2CH3O), 4.28 (t, 1H, J = 2.4 Hz, NH), 6.73 (d, 2H, J = 2.4 Hz, H-1, H-5), 7.01–7.03 (m, 4H),
7.55–7.59 (m, 8H), 7.88–7.89 (m, 4H); 13C-NMR (DMSO-d6): δ = 55.44, 56.34, 113.45, 115.46, 119.08,
129.22, 131.85, 132.46, 138.84, 142.35, 162.66, 187.68; MS (EI, 70 eV): m/z (%) = 702.8 (M++1, 5), 532.9 (20),
371.9 (7), 181.9 (3), 170.9 (6), 135.0 (100), 107.0 (7), 77.0 (13); HRMS (EI): m/z calcd for C32H25Br2N5O4:
701.0273; found: 701.0266.

2,6-Di(4-chlorophenyl)-4,8-di(4-nitrobenzoyl)-2,3,6,7,9-pentaazabicyclo[3.3.1]nona-3,7-diene (2m):
Orange color; m.p. 221–222 ◦C; IR (KBr): 3329, 2971, 1659, 1599 cm−1; 1H-NMR (DMSO-d6): δ = 4.36
(t, 1H, J = 2.4 Hz, NH), 6.80 (d, 2H, J = 2.4 Hz, H-1 and H-5), 7.46–7.48 (m, 4H), 7.66 (dd, 4H, J = 2.4 Hz,
J = 2.4 Hz), 8.04–8.07 (m, 4H) 8.30–8.32 (m, 4H); 13C-NMR (DMSO-d6): δ = 56.71, 119.43, 122.98, 128.24,
128.95, 131.18, 137.88, 141.73, 142.64, 149.04, 162.24, 187.98; MS (EI, 70 eV): m/z (%) = 642.7 (M+, 4),
516.8 (18), 464.8 (16), 435.9 (22), 401.9 (20), 352.9 (16), 302.9 (12), 176.0 (10), 150.0 (100), 110.9 (58), 76.0
(32); HRMS (EI): m/z calcd for C30H19Cl2N7O6: 643.0774; found: 645.0741.

2,6-Di(4-bromophenyl)-4,8-di(4-nitrobenzoyl)-2,3,6,7,9-pentaazabicyclo[3.3.1]nona-3,7-diene (2n):
Yellow color; m.p. 271–272 ◦C; IR (KBr): 3329, 3073, 1650, 1601 cm−1; 1H-NMR (DMSO-d6): δ = 4.36
(t, 1H, J = 2.4 Hz, NH), 6.80 (d, 2H, J = 3 Hz, H-1 and H-5), 7.59–7.63 (m, 8H), 8.06 (d, 4H, J = 8.4 Hz),
8.31 (d, 4H, J = 9 Hz); 13C-NMR (DMSO-d6): δ = 56.65, 116.38, 119.80, 123.03, 131.23, 131.89, 137.93,
142.15, 142.65, 149.07, 162.28, 188.02; MS (EI, 70 eV): m/z (%) = 732.7 (M+, 6), 562.8 (36), 532.8 (21), 509.8
(8), 479.8 (14), 398.9 (20), 386.9 (13), 243.0 (10), 181.9 (23), 170.9 (37), 150.0 (100), 120.0 (22), 104.0 (63),
76.0 (56); HRMS (EI): m/z calcd for C30H19Br2N7O6: 732.9744; found: 732.9739.

4,8-Diacetyl-2,6-di(4-chlorophenyl)-2,3,6,7,9-pentaazabicyclo[3.3.1]nona-3,7-diene (2o): Pale yellow
color; m.p. 228–230 ◦C; IR (KBr): 3248, 2995, 1656, 1593 cm−1; 1H-NMR (DMSO-d6): δ = 2.33
(s, 6H, 2CH3), 4.05 (t, 1H, J = 2.4 Hz, NH), 6.41 (d, 2H, J = 2.4 Hz, H-1 and H-5), 7.47 (d, 4H, J = 9 Hz),
7.79 (d, 4H, J = 9 Hz); 13C-NMR (DMSO-d6): δ = 24.22, 55.99, 119.08, 127.54, 128.69, 139.15, 141.85,
194.72; MS (EI, 70 eV): m/z (%) = 429.2 (M+,28), 386.1 (14), 359.1 (7), 332.1 (3), 303.1 (100), 261.1 (30),
234.1 (77), 198.1 (15), 138.0 (36), 111.0 (57), 75.0 (12); HRMS (EI): m/z calcd for C20H17Cl2N5O2: 429.0760;
found: 429.0752.
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4,8-Diacetyl-2,6-di(4-bromophenyl)-2,3,6,7,9-pentaazabicyclo[3.3.1]nona-3,7-diene (2p): Yellow color;
m.p. 236–237 ◦C; IR (KBr): 3245, 3006, 1655, 1581 cm−1; 1H-NMR (DMSO-d6): δ = 2.33 (s, 6H, 2CH3),
4.06 (t, 1H, J = 2.4 Hz, NH), 6.40 (s, 2H, H-1 and H-5), 7.59–7.58 (m, 4H), 7.74–7.72 (m, 4H); 13C-NMR
(DMSO-d6): δ = 24.29, 55.92, 115.64, 119.46, 131.63, 139.19, 142.25, 194.78; MS (EI, 70 eV): m/z (%) = 519.1
(M+, 44), 476.1 (20), 449.1 (10), 422.0 (5), 347.1 (100), 305.1 (27), 280.1 (70), 266.1 (10), 182.0 (25),
157.0 (33), 143.0 (3), 91.1 (8); HRMS (EI): m/z calcd for C20H17Br2N5O2: 518.9729; found: 518.9727.
Crystal Data, C20H17Br2N5O2, M = 519.19, monoclinic, crystal size = 0.130 × 0.090 × 0.020 mm,
a = 11.766(2) Å, b = 10.114(2) Å, c = 17.408(3) Å, α = 90◦, β = 103.573(8) ◦, γ = 90◦, V = 2013.8(6)Å3,
T = 20.0 ◦C, space group: P21, Z = 4, calculated density = 1.712 g/cm3, no. of reflection measured
11322, θmax = 51.1◦, R1 = 0.0862 (CCDC 1888859) [59].

4. Conclusions

A new series of C2-symmetric 2,3,6,7,9-pentaazabicyclo[3.3.1]nonane derivatives were
synthesized in high yields through one-pot double Mannich-type reaction of Et3N-catalyzed
3-oxo-2-arylhydrazonopropanals with double equivalents of ammonium acetate under three different
heating platforms: conventional, ultrasound and microwave irradiation. Single crystal X-ray analysis
supported the elucidation of the structures of the obtained products.

Supplementary Materials: Supplementary materials (1H and 13C-NMR spectral sheets) are available online.
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