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stratification tool than any clinical parameter alone.

Background and aim: Lipid metabolic reprogramming is considered to be a new hallmark of malignant tumors.
The purpose of this study was to explore the expression profiles of lipid metabolism-related genes (LMRG) in

Methods: The lipid metabolism statuses of 500 CRC patients from the Cancer Genome Atlas (TCGA) and 523 from
the Gene Expression Omnibus (GEO GSE39582) database were analyzed. The risk signature was constructed by
univariate Cox regression and least absolute shrinkage and selection operator (LASSO) Cox regression.

Results: A novel four-LMRG signature (PROCAT, CCKBR, CPT2, and FDFT1) was constructed to predict clinical
outcomes in CRC patients. The risk signature was shown to be an independent prognostic factor for CRC and was
associated with tumour malignancy. Principal components analysis demonstrated that the risk signature could
distinguish between low- and high-risk patients. There were significantly differences in abundances of tumor-
infiltrating immune cells and mutational landscape between the two risk groups. Patients in the low-risk group
were more likely to have higher tumor mutational burden, stem cell characteristics, and higher PD-L1 expression
levels. Furthermore, a genomic-clinicopathologic nomogram was established and shown to be a more effective risk

Conclusions: This study demonstrated the prognostic value of LMRG and showed that they may be partially
involved in the suppressive immune microenvironment formation.
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Background

Colorectal cancer (CRC) has the third highest incidence
among malignancies worldwide and is the second most
common cause of cancer-related deaths [1]. As the most
common gastrointestinal malignancy, CRC is associated
with well-known risk factors, including poor dietary
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patterns, obesity, alcoholic abuse, smoking, and physical
inactivity. Besides environmental influences, divergent
genomic factors also contribute to the complexity of
CRC [2]. Despite clinical application of cancer screening
procedures and effective treatments, the morbidity and
mortality of CRC remain consistently elevated in most
countries, especially in economically underdeveloped re-
gions [3]. Conventional therapeutic approaches, such as
surgical resection combined with chemotherapy, have
been shown to improve survival and quality of life;
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however, the overall survival (OS) of CRC patients re-
mains unsatisfactory [4]. Although the 5-year survival
rate of patients with early CRC (stage I and II disease) is
more than 60%, it is less than 10% for stage IV patients
and some stage III patients with metachronous distant
metastasis [3, 5]. Hence, a reliable risk prediction model
is essential to improve the clinical prognosis of CRC by
providing targeted screening and individualized inter-
vention measures [6]. At present, the tumor node metas-
tasis (TNM) staging is still the most widely used method
for prognostic evaluation in CRC [7]. Other predictive
factors include pathological type, differentiation degree
and microvascular/serosa invasion, etc. However, these
clinicopathological biomarkers cannot provide precise
prognostic guidelines as they do not fully capture disease
information. With advances in next-generation sequen-
cing, inter- and intra-tumor molecular heterogeneity has
been highlighted, increasing the difficulty of risk stratifi-
cation [8]. Therefore, molecular characteristics of tu-
mors need to be included in new prognostic risk models.

Accumulating evidence indicates that tumor metabolic
heterogeneity is related to clinical outcome, epigenetics
status, and treatment resistance [9-11]. Oncogene-
driven metabolic reprogramming improves cellular
fitness to meet bioenergetic, biosynthetic, and redox bal-
ance demands, thereby providing a selective advantage
during tumorigenesis [12]. Metabolic reprogramming is
considered to be a new hallmark of malignant tumors
[13]. Although most studies of alterations in cancer me-
tabolism have focused on glucose metabolism (i.e., the
Warburg effect), the role of abnormal lipid metabolism
in cancer cells has been gradually recognized over the
past few years [14, 15]. A rapidly proliferating cancer cell
requires more energy than a normal cell and meets its
biological needs by activating an endogenous production
pathway or increasing its intake [16]. ATP generated by
fatty acid oxidation is an important energy source for
cancer cells when energy provision is insufficient. Adipo-
cytes and free fatty acids in the hypoxic tumor micro-
environment are markedly conducive to cancer
proliferation, progression, invasion, and metastasis [17, 18].
It has been reported that cancer cells rely mostly on en-
dogenous adipogenesis rather than uptake of exogenous
fatty acids, which is more common in normal cells [19].
Hence, abnormal lipid metabolism, especially fatty acid syn-
thesis and oxidation, is increasingly regarded as an import-
ant feature of metabolic reprogramming.

Epidemiological studies have shown that serum tri-
glyceride levels are associated with susceptibility to
CRC [20, 21]. Wang et al. confirmed that alterations
in the abundances of individual lipids were present in
CRC using shotgun lipidomics [22]. The study showed
increased expression of lipogenic enzymes involved in
de novo adipogenesis (fatty acid synthesis) in CRC,
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including fatty-acid synthase, acetyl-CoA carboxylase,
and carnitine palmitoyltransferase, whereas enzymes
involved in fatty acid oxidation showed decreased
expression. As a mitochondrial serine/threonine phos-
phatase, PGAMS5 regulates a variety of metabolic path-
ways in vivo. Research by Zhu et al. showed that
blocking PGAMS5 would reduce lipid metabolism and
inhibit the occurrence of CRC in mice [23]. Gong and
his colleagues showed that metabolism reprogram-
ming in tumor-associated fibroblasts significantly en-
hanced the invasion and metastasis of CRC [24].
Besides, drug resistance to antiangiogenic therapy fre-
quently arises during cancer treatment; the underlying
molecular mechanism of this resistance might include
lipid metabolism reprogramming [25]. Iwamoto et al.
observed that blocking carnitine palmitoyl transferase
1A (CPT1A), a key enzyme in lipid metabolism, could
restore sensitivity to antiangiogenic therapy [18]. Thus,
they introduced a promising approach to overcoming
drug resistance to cancer therapies by combining conven-
tional therapy and targeted lipid metabolism.

Previous studies have confirmed the close relation-
ship between altered lipid metabolism and CRC in
tumorigenesis, progression and treatment. A signature
of lipid metabolism-related genes (LMRG) was shown
to have high prognostic value in papillary thyroid
cancer and diffuse glioma [26, 27]. In-depth study of
lipid metabolomics characteristics could lead to better
understanding of the progression of tumors and pro-
vide potential metabolic targets for the development
of new treatment methods [28]. However, the prog-
nostic value of LMRG in CRC has not been verified
by large-sample studies. The present study aimed to
develop a novel risk signature based on LMRG to
provide additional information for use in risk assess-
ment and clinical decision-making in CRC.

Methods

Data collection

A flow chart of this research is presented in Fig. 1. Level 3
RNA sequencing data (RNA-seq) data, mutation data, and
matched clinical information were obtained from the TCGA
CRC cohort (Data Release 25.0 - July 22, 2020, https://
portal.gdc.cancer.gov/repository). The data search and selec-
tion strategy were as follows. (1) The keywords for cases
were “colon and rectum [Primary Site]”, “TCGA [Program]”,
“TCGA-COAD, TCGA-READ [Project]”, “Adenomas and
Adenocarcinomas [Disease Type]”. (2) The keywords for
files were “Transcriptome Profiling [Data Category]”, “Gene
Expression Quantification [Data Category]”, “RNA-Seq [Ex-
perimental Strategy]”, “HTSeq-FPKM [Workflow Type]”,
“txt Format [Data Format]” . The RNA-seq matrix file was
annotated using the human General Transfer Format (hun-
man.gtf) from the Ensembl database (https://www.ensembl.
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org/) with the Strawberry Perl software (version 5.282.1,
https://strawberryperl.com/). The RNA-seq transcriptome
data (FPKM) from the TCGA cohort were converted to
log,(TPM + 1) to obtain normalized counts.

Raw CEL and clinical data for CRC were downloaded
from the Gene Expression Omnibus (GEO) (https://
www.ncbi.nlm.nih.gov/geo/); the search used the key-
words “colon cancer”, “rectum cancer”, “adenocarcin-
oma”, “Homo sapiens”, and “Expression profiling.” The
gene expression microarray dataset GSE39582 was se-
lected and downloaded because it had the largest sample
size for CRC [29]. Probe IDs were matched to gene sym-
bols using the GPL570 platform (Affymetrix Human
Genome U133 Plus 2.0 Array). The mean expression
value of the probes was used as the expression value for
the gene in question if multiple probes were mapped to
a single gene. The robust multichip average (RMA) was
used to normalize the raw data from GEO cohort by the
R package affy [30].

Criteria for study exclusion were: (1) patients with un-
known survival status, follow-up information, and dis-
ease stage; and (2) patients who died within a follow-up
period of 30 days. Consequently, 544 cases (500 tumor
and 44 normal samples) meeting the criteria were in-
cluded in the training set, and 542 cases (523 tumor and
19 normal samples) were included in the validation set
(Supplementary Table 1). The TCGA cohort was used to
establish a risk signature, and the GEO set was used for
validation. Both the TCGA and GEO databases are
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publicly available; therefore, the present study did not
require approval from the local ethics committees.

Identification of LMRG

The five LMRG sets were collected from the Molecular
Signature Database [27, 31] (Supplementary Table 2). A
total of 1044 genes were found to be involved in the lipid
metabolism process after removal of overlapping genes.

Construction of risk signature based on LMRG

The shared LMRG in the GEO and TCGA sets were se-
lected for subsequent analysis. Differentially expressed
genes (DEGs) between tumor and normal samples were
screened in the TCGA cohort using the R package limma
and sva with a false discovery rate (FDR) < 0.05 [32, 33].
Gene ontology (GO) and KEGG analyses of DEGs were
performed using R package clusterProfiler, org. Hs.eg.db,
enrichplot and ggplot2 [34, 35]. The LMRG with prognos-
tic value was identified using univariate Cox analysis.
Next, the overlapping genes between DEGs and
prognostic-related genes were identified using a Venn dia-
gram for subsequent analysis (http://bioinformatics.psb.
ugent.be/webtools/Venn/). Least absolute shrinkage and
selection operator (LASSO) Cox regression was used to
select the best prediction model based on these mutual
genes in TCGA CRC patients [36]. LASSO analysis was
performed using R package glmnet and survival, and the
optimal value of the penalty parameter was determined by
10-fold cross-validation [37]. Risk signatures were
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Fig. 1 Flowchart of study design
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generated from the TCGA and GEO cohorts based on the
expression levels of LMRG and the corresponding coeffi-
cients. The risk score of each sample was calculated by the
following formula: (expGene: the expression level of
LMRG in the TCGA or GEO cohort; Coef: the coefficient
of LMRG in the LASSO Cox regression model in the
training set).

n

risk score = Z( expGenei x Coefi)

i=1

Prognostic value of the risk signature in training and
validation group

The patients were stratified into high- and low-risk
groups according to the median value of the risk score.
Kaplan Meier (K-M) survival curves with the Log-rank
test were constructed to demonstrate the prognostic
ability of the risk signature. In addition, the area under
the curve values (AUCs) of the receiver operating char-
acteristic (ROC) curves for 1-, 3-, and 5-year survival
were calculated using R package survivalROC to evaluate
the performance of those two signatures [38].

Gene set enrichment analysis (GSEA)

To explore potential molecular mechanism between the
two groups, GSEA was carried out between the high-
and low-risk groups. The annotated gene set list,
h.all.v7.2.symbols.gmt (Hallmarks), was selected as the
reference gene set from the Molecular Signature Data-
base [31].

Independence of the risk signature from other
clinicopathological parameters

To determine the independence of the risk signature
from other clinical parameters, univariate and multivari-
ate analyses of the risk score with age, gender, and
tumor stage were performed. Forest plots were used to
show the independence of the risk score.

Correlation between the risk signature and other
clinicopathological parameters
The associations between the risk signature and clinico-
pathological parameters in TCGA -CRC cohort, includ-
ing age, gender, tumor stage, pathological T stage, N
stage, and M stage, were further explored. Patients were
stratified into subgroups of age <65 years and age > 65
years, female and male, pathological tumor stage I+ 1I
and stage III+IV, T1+ T2 and T3 +4, NO and N1 +2,
MO and M1. K-M survival analysis of the aforemen-
tioned paired subgroups was performed.

Cancer stem cells are highly dependent on lipid me-
tabolism to maintain their stem cell characteristics. One
study showed that cancer stem cells in CRC have higher
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lipid metabolism levels than tumor cells or normal
colonic epithelial cells [39]. Malta et al. had developed a
novel analysis tool to assess stemness features based on
gene expression [40]. In this study, the mRNA
expression-based stemness index (mRNAsi) for each
CRC patient was obtained from the results of Malta
et al. Besides, CD133 is a marker gene of many tumor
stem cells. Hence, the relationships of the risk score with
the mRNAsi score and CD133 mRNA were also
analyzed.

Nomogram construction and validation

A nomogram integrating the risk signature and other
clinicopathological factors was established for prog-
nostic evaluation using the R package rms (https://
CRAN.R-project.org/package=rms). The AUCs of the
ROC curve were demonstrated to assess the predict-
ive capability of the nomogram. Calibration curves
were also established to evaluate the predictive accur-
acy of the nomogram.

Estimation of relative abundance of immune cell types in
different risk groups

The CIBERSORT algorithm (https://cibersort.stanford.
edu), which quantifies the relative abundance of im-
mune cells based on specific gene expression profiles,
is used to assess the distribution of 22 immune cell
types in CRC samples from TCGA cohort [41]. The
P-value, correlation coefficient, and root mean
squared error were also calculated to evaluate the
accuracy of the results for each patient. Samples with
P<0.05 were used to compare immune cell abun-
dance in different risk groups.

Mutation analysis

The top 20 genes with the highest mutation frequency
in TCGA -CRC cohort were analyzed in both high- and
low-risk groups using the R package GenVisR [42].
Visualization based on the somatic mutation data in
Mutation Annotation was performed using the R pack-
age maftoools [43]. Tumor mutational burden (TMB) is
known to be associated with the efficacy of adjuvant
chemotherapy (fluoropyrimidine plus oxaliplatin regi-
men) in CRC [44, 45]. TMB is also an independent pre-
dictor of immunotherapy response in a variety of tumors
[38, 39]. Therefore, the relationship between risk score
and TMB was also explored in this study. The TMB
score was generated as the total number of somatic mu-
tations divided by the number of exons in each sample
[46]. The exon size is often approximately estimated at
38 megabases.
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Statistical analysis

All the statistical analyses and drawings in this study used
R (version 3.6.3) or GraphPad Prism (version 8.3.0). Dif-
ferences between continuous variable were analyzed using
t-test. Fisher’s exact test or chi-square test was employed
for comparisons of categorical variables. Log-rank test was
used to estimate the differences among K-M survival
curves. P < 0.05 (two-tailed) was considered significant.

Results

Identification of differentially expressed and prognosis-
related genes in LMRG

Expression data of LMRG were extracted from the
TCGA and GEO cohorts. A total of 945 shared LMRG
were matched. There were 729 DEGs between normal
and tumor tissues, including 365 upregulated and 364
downregulated genes, in the training cohort when the
cut-off was set to FDR <0.05 (Fig. 2A). Univariate Cox
analysis was employed to filter genes with prognostic
value from the 945 intersecting genes. Finally, 57 LMRG
were shown to be related to prognosis in the training
set. A total of 47 shared LMRG were found to be both
DEGs and prognostic genes according to the Venn dia-
gram (Fig. 2B, C).
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Functional enrichment analysis identified terms related
to lipid metabolism. The top five biological process terms
were glycerolipid metabolic process, glycerophospholipid
metabolic process, lipid modification, phospholipid meta-
bolic process, and regulation of lipid metabolic process
(Fig. 2D). Kyoto Encyclopedia of Genes and Genomes
(KEGQG) analysis showed that the 47 shared LMRG were
mainly involved in glycerophospholipid metabolism, phos-
phatidylinositol signaling system, PPAR signaling pathway,
fatty acid degradation, and fatty acid metabolism (Fig. 2E).

Construction and validation of gene signature
Next, the expression profiles of the 47 LMRG were used
to establish a risk signature using LASSO Cox regression
analysis (Fig. 3A, B). Finally, four LMRG, namely
PROCA1, CCKBR, CPT2, and FDFT1, were used to es-
tablish the optimal lipid metabolism-related risk signa-
ture. The risk score for each patient was calculated by
the following formula: risk score = (PROCA1*0.03071) +
(CCKBR*0.58956) + (CPT2*0.00972) + (FDFT1*0.01381).
The predictive value of this risk signature was evalu-
ated using ROC curves. The AUCs of the signature were
0.6901 at 1year, 0.6776 at 3 years, and 0.5945 at 5 years
in the training set (Fig. 3C). The patients were dichoto-
mized into two risk group according to the median risk
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Fig. 2 Identification of the differentially expressed and prognosis-related genes in the TCGA cohort. (A) Volcano map showing the differentially
expressed genes between normal and tumor tissues. The X axis indicates the -log(P-value), and the Y axis indicates the log,(fold change). Red
dots represent upregulated genes; green dots represent downregulated genes. (B) Venn diagram showing the 47 DEGs that also had prognostic
value. The left half of the Venn diagram shows the differentially expressed genes between normal and tumor tissues. The right half of the
diagram shows the prognosis-related genes. (C) Univariate Cox regression analysis of the 47 overlapping genes. (D-E) The gene ontology (GO)
enrichment terms (D) and KEGG pathways (E) of the 47 overlapping genes were both concentrated mainly in lipid metabolic processes
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score. K-M survival curves showed that high-risk pa-
tients had significantly shorter OS than low-risk cases in
the training set (Fig. 3D, P <0.001). As shown in Fig. 3E,
more patients died in the high-risk group, whereas the
majority survived in the low-risk group. In the training
set, principal components analysis (PCA) was used to
obtain expression patterns in the low- and high-risk
groups. There was no significant difference in risk status
between the two groups when PCA was performed with
all genes (Fig. 3F). However, the risk groups could be
distinguished using the risk signature (Fig. 3G).

In the validation set, the high-risk patients again had
significantly shorter OS than those in the low-risk group
(Fig. 3H, P<0.05). The AUCs were 0.6152 at 1 year,
0.6332 at 3 years, and 0.6358 at 5 years (Fig. 3I). The risk
score distribution curve and survival status are shown in
Fig. 3J.

Independent prognostic value of the risk signature

The results showed that the risk score based on the
four-LMRG signature was an independent prognostic
factor in the training set, with hazard ratio (HR) = 6.146
(95% confidence interval (CI) =3.376-11.190 (P < 0.001;
Fig. 4A) by univariate Cox analysis, and HR = 4.315 (95%
CI =2.321-8.022; P <0.001; Fig. 4B) by multivariate Cox
analysis. Similar results were obtained in the validation
set, showing the independence of the risk signature with
HR =5.822 (95% CI =2.567-13.205; P<0.001; Fig. 4C)
and HR=5.395 (95% CI=2.272-12.809; P<0.001;
Fig. 4D) by univariate and multivariate Cox analysis,
respectively.

Relationships between risk score and clinicopathological
features

Risk score was significantly associated with age (P<
0.0001; Fig. 5A) but not gender (P =0.4168; Fig. 5B). In
addition, the relationship between obesity and risk score
was explored. Obesity was defined as a body mass index
(BMI) equal to or greater than 30 [47]. Interestingly, no
significant difference in lipid metabolism-related risk
score was found between the normal weight and obese
groups (P = 0.4168; Fig. 5C).

The results showed that risk score was positively cor-
related with the degree of tumor progression. For in-
stance, the risk scores in TNM stage III + IV patients
were markedly higher than those in tumor stage I+1I
(P<0.0001; Fig. 5D). Similar results were obtained in
other subgroups, including pathological T stage (I +1I
vs. III + IV, P<0.0001; Fig. 5E), N stage (NO vs. N1 + 2,
P <0.0001; Fig. 5F), M stage (MO vs. M1, P=0.0024;
Fig. 5G), and tumor location (left vs. right, P < 0.0001;
Fig. 5H). There were also more stem cell characteristics
in the low-risk group, including significantly higher
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levels of CD133 mRNA (P=0.0479; Fig. 5I) and
mRNAsi (P < 0.0001; Fig. 5]).

Subgroup analysis was performed to further assess
whether the risk signature still had independent prog-
nostic value within specific clinical parameters. The
results showed that the risk signature retained its
powerful prognostic prediction ability in subgroups
based on age (age > 65 or <65, Fig. 5K and L), gender
(male or female, Fig. 5M or 5N), tumor stage (III +
IV, Fig. 50), T stage (III + IV, Fig. 5P), N stage (N1 +
2 or NO, Fig. 5Q and R), M stage (MO, Fig. 5S). The
OS of high-risk patients was significantly shorter than
that of low-risk patients in the different clinicopatho-
logical characteristic subgroups.

Construction and validation of a nomogram combining
clinicopathological features and risk signature

A nomogram was constructed based on several factors,
namely age, gender, disease stage, and risk score, to pro-
vide a visualization tool for clinicians to predict the
probability of 1-, 3- and 5-year OS in CRC patients. A
total score could be calculated for each patient using this
nomogram, where a higher total score indicates a worse
outcome (Fig. 6A). This nomogram had high potential
for clinical utility, with ROC AUC values of 0.7652 at 1
year, 0.8058 at 3years, and 0.7972 at 5years in the
training set (Fig. 6B). Moreover, the calibration plots
indicated that the actual observation probability was
very close to the predictive probability of the nomo-
gram (Fig. 6D-F).

The nomogram for the validation set is shown in
Fig. 6D. The AUCs of the ROC curve were 0.7325 at 1
year, 0.7280 at 3 years, and 0.7173 at 5 years (Fig. 6C).
The predictive probabilities obtained using the nomo-
gram showed good consistency with the actual ob-
served values (Fig. 6G-I). Hence, the prognostic
nomogram model was considered to be robust.

Immune landscapes differ among two risk subgroups in
TCGA -CRC cohort

The differences in abundances of immune cells be-
tween the high- and low-risk groups were further in-
vestigated. The proportions of 22 immune cells in
each sample varied markedly (Fig. 7A and B). When
the cut-off value was set to P<0.05, 487 samples of
the total set were included in the subsequent ana-
lysis. The results showed that monocytes (P =0.011),
MO (P =0.001), and M2-like macrophages (P < 0.001)
were substantially enriched in the high-risk group,
whereas patients in low-risk group had higher levels
of plasma cells (P=0.012), resting memory CD4 T
cells (P=0.008), and activated dendritic cells (P=
0.004) (Fig. 7C). Additionally, we also assessed the
correlation between risk score and relative
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Fig. 3 Development and validation of the risk signature. (A) LASSO Cox regression coefficient profiles of the 47 LMRG. Each curve represents the
changing trajectory of one LMRG. (B) 10-fold cross-validation for tuning parameter selection in LASSO model. Each red dot represents a lambda
value with a confidence interval. The two dotted lines indicate the optimal values by minimum criteria and 1-SE criteria by 10-fold cross-
validation (standard error; SE). The Y-axis shows partial likelihood deviance values with error bars, and the X-axis shows the penalization
coefficient (logh). (C) Time-dependent ROC curves for 1-, 3-, and 5-year OS in the training group. (D) The survival curves showed significant
differences between the high- and low-risk groups (P < 0.001). (E) Risk score distribution (above) and survival status (below) of CRC patients in
different risk groups. (F) PCA showed no significant difference in risk status of CRC patients on the basis of the whole gene set. Different color
points represent patients with different risk groups. (G) PCA showed that the high-risk group could be distinguished effectively from the low-risk
groups based on the risk signature. (H) The survival curves showed significant differences between high- and low-risk patients in the validation
set (P < 0.001). (I) Time-dependent ROC curves for 1-, 3-, and 5-year OS in the validation set. (J) Risk score distribution (above) and survival status
(below) of CRC patients in the validation set

abundances of immune cells. As shown in the cor-
relation heatmap, the results revealed that the risk
score was negatively correlated with most of the im-
mune cells (Supplementary Fig. 1A). PD-L1, as an im-
mune checkpoint molecule, is often closely related to
immunotherapy response [44, 48]. In this study, the risk
score was negatively correlated with PD-L1 mRNA in the

Several gene signatures related to cancer invasion,
including invasiveness signature, epithelial-
mesenchymal transition (EMT), pan-fibroblast TGFb
response signature (Pan-F-TBRS) and two key im-
mune cells in tumor microenvironment (effector
CD8+ T and cancer associated fibroblasts (CAFs))
were chosen to further investigation of the role of

training set (R = - 0.13, P = 0.0046) (Fig. 7D). LMRG score in tumorigenesis and metastasis [49, 50].
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Fig. 5 Stratified analysis of the risk signature. (A-J) Relationships between the risk signature and age (A), gender (B), BMI (C), tumor stage (D), T stage
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The enrichment score of each gene signature was cal-
culated using sample gene set enrichment analysis
(ssGSEA) algorithm. Notably, compared with the low-
risk group, the high-risk group had a higher enrich-
ment score of EMT- and CAFs-related signatures,
while lower enrichment score of CD8+ T effector,
which was a critical component for the antitumor im-
mune response (Fig. 7E; Supplementary Fig. 1B-H).

Mutation landscape of the risk signature in TCGA -CRC
cohort

The top 20 genes with the highest mutation frequency
in CRC are shown in the waterfall plots in Fig. 8A and

B. The high- and low-risk groups had different genetic
mutation landscapes. Genes with crucial biological func-
tions in tumorigenesis, including TP53, PIK3CA, and
MUCI16, showed significant differences in mutation fre-
quency between the two groups (Fig. 8C). Besides, the
top 20 most common mutant genes in CRC, including
FAT4, FUT9, LRP1B and ZFHX4, showed significant dif-
ferences in risk score between mutated- and wild-type
group (Supplementary Fig. 2A-D).

A total of 429 samples of TMB data were obtained for
this analysis. The results of the analysis showed that the
TMB score was higher in the low-risk group than in the
high-risk group (P =0.0002, Fig. 8D). We also evaluated
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nomogram for predicting 1-, 3-, and 5-year overall survival rate in the training set. (C) Prognostic value of the nomogram for predicting 1-, 3-, and
5-year OS rates in the validation set. (D-F) Calibration plots suggest that the nomogram's predictions of 1-year (D), 3-year survival (E), and 5-year
survival (F) match well with the actual observed probabilities in the training set. The actual survival rate and nomogram-predicted probabilities
were plotted on the vertical and horizontal axes, respectively. Dashed line at 45° represents perfect prediction and the actual performances of our
nomogram are red line. The more the blue lines and dashed lines in the graph coincide, the better the predictive performance of the
nomogram. The calibration curve of the nomogram is mainly assessed by observing the degree of consistency between the predicted curve and
the ideal curve in the graph. (G-1) The calibration plots showed that the actual observed probabilities were in agreement with the predictive
values from the nomogram for 1-year (G), 3-year (H), and 5-year survival (I) in the validation set
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in CRC. (A) The nomogram included four variables (age, gender, disease

the correlation between the risk score and TMB, and
found a remarkable correlation between the two vari-
ables (r=-0.19, P =5.7e-05, Supplementary Fig. 2E).
This could be one of the reasons for the better prognosis
of patients in the low-risk group.

Distinct biological function pathways characterize high-
and low-risk CRC patients in TCGA -CRC cohort

GSEA was also performed to explore whether relevant sig-
naling pathways differed between the two risk groups. The
results showed that the high-risk group was associated
with Hedgehog signaling, KRAS signaling, Wnt/p catenin

signaling, apical junction, epithelial-mesenchymal transi-
tion, and angiogenesis. Functional enrichment in the low-
risk group was focused on energy-metabolism-related
functions, including fatty acid metabolism and oxidative
phosphorylation (Fig. 9).

Discussion

In this study, the lipid metabolism statuses of 1023 CRC
samples were analyzed using gene expression data from
the public databases, and a risk signature (comprising
PROCA1, CCKBR, CPT2, and FDFT1) was constructed.
This is the first reported CRC prognostic risk signature
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based on LMRG. Patients with high risk scores had sig-
nificantly shorter OS than those with low risk scores, in
both training and validation sets. The risk signature
could well distinguish high-risk CRC patients. The risk
signature, as an independent prognostic indicator, might
be a beneficial supplement to TNM staging to provide
more accurate prognostic information. A nomogram
combining the risk signature and clinical characteristics
showed better capacity for risk stratification than any
clinical parameter alone. Consistent results were ob-
tained in an external cohort from the GEO database
(dataset GSE39582). In general, the prediction model
based on the four-LMRG risk signature has potential to
be an effective and robust prognostic indicator in CRC.
CRC remains the leading cause of cancer-related deaths
worldwide, yet it is one of the most preventable cancers.
Appropriate screening strategies can reduce the incidence
and mortality of CRC by early detection and elimination
of precancerous disease. Current CRC screening guide-
lines are based mostly on two main risk factors: age and
family history [51]. However, the fact is that more than
80% of CRC cases occur in individuals with no positive
family history in primary relatives [6]. Obviously, the use
of these criteria does not fully take into account the het-
erogeneity of CRC. Lipid metabolic reprogramming fre-
quently emerges in intestinal tumor cells and has been

reported to have crucial biological roles in cell prolifera-
tion, energy homeostasis, and signal-transduction [52, 53].
Metabolic status is associated with various clinical out-
comes in tumor patients, and a metabolism-related risk
signature could serve as a prognostic predictor in cancers
[54]. Thus, a predictive model that integrates metabolism-
related genomic data and clinicopathological characteris-
tics provides hope for primary and secondary prevention
of CRC. The value of this signature is to identify high-risk
individuals with CRC so that targeted treatment and more
stringent postoperative follow-up can be adopted. It could
also be used to distinguish low-risk patients to prevent ex-
cessive treatment and unnecessary screening.

Another important finding of this work was that lipid
metabolism status was significantly correlated with im-
mune infiltration levels in CRC. According to our inves-
tigation, the risk signature based on lipid metabolism
was related to abundance of monocyte infiltration, espe-
cially M2-like macrophages. The high-risk group had
higher levels of M2-like macrophages, suggesting that
high-risk patients might have a suppressive tumor im-
mune microenvironment (TIME). In this study, patients
with low risk score usually have high-level immune cell
infiltration, especially CD8+ T effector, exhibiting a
“hot” tumor phenotype. In concordance with previous
studies, inflammatory phenotype always has better



Yang et al. BMC Cancer (2021) 21:1182

Page 12 of 15

Translational Effect
W oo
[ e—

>
)_
r——
F

| \
bﬂlll ’nll”l |I
'v..' !

I
Y
- i I||||!|I I]|'|h

ow I I Mo
o I ’I It II II AR
I

|

C P<0.0001
1

P=0.0003 P=0.0200
1 L——

B Mutation
- Wild

0.5

0.0-
Low High Low High Low High

TP53 PIK3CA Muc1e

-

Mutations per M8

3 Translational Effect
2 I svroomon
[ —
.
sl

o IHIIIII

- | Wl
rl'M‘L

s 1
- || oIkl

(RN
II| I[

-
e

s # I

- I ’ | | | I

- M“w T _lllﬂ

FI Mutation Type
!

I | J

nh ™
[

i

b

[||||'Il

II[[
[II[II

[ 1] r[II
I1| I[”|

Il ||I

L

Fig. 8 Mutation landscapes of high- and low-risk groups. (A-B) Waterfall plots showing detailed mutation information for the top 20 most
commonly mutated genes in CRC patients in the high-risk (A) and low-risk (B) groups. Gene names and mutation frequency are shown in the bar
chart on the left. Somatic mutation types are indicated by different colors. The bar plot above the diagram shows the translational effects and
numbers of mutations per million bases (MB). (C) Key genes, including TP53, PIK3CA, and MUC16, showed significant differences in mutation
frequency between the high- and low-risk groups. (D) The low-risk group had a higher TMB level (P =0.0002)

LX)
St

10

Log,(TMB)
n
1

]
high

risk score

prognosis [55, 56]. Meanwhile, it is found that significant
activation of EMT, TGF-f3 pathway and CAFs in high-
risk group, which are hallmarks of stromal activation,
showing an immune-excluded phenotype. In immune-
excluded tumors, immune cells, especially CD8+ T ef-
fector cells, reside in the stroma surrounding tumor cell
making direct contact with CAFs rather than tumor cells,
resulting in restricting anti-tumor immune response [57,
58]. Furthermore, CAFs-derived exosomes can strikingly
shape cancer-promoting microenvironment through in-
volved in multifarious metabolicl processes [59]. It may
partly explain significant difference in the clinical out-
comes among different metabolic subgroups.
Tumor-associated macrophages (TAMs) are the most
important immune cell component of the TIME. Meta-
bolic reprogramming of TAMs shapes their functional
subtype [60]. TAMs are often characterized by M2-like
macrophages and have a variety of tumor-promoting ef-
fects on the tumor microenvironment. Studies have found
different metabolic patterns between pro-inflammatory
and anti-inflammatory macrophages [61, 62]. Activated

pro-inflammatory macrophages often depend on the
glycolytic pathway for energy, whereas immunosuppressed
macrophages are more inclined to use fatty acid oxidation
[63]. Wu et al. found that fatty acids in the TIME, espe-
cially unsaturated fatty acids, might promote the
polarization of monocytes to M2-like macrophages with a
strong immunosuppressive phenotype [64]. Therefore, the
lipid-related metabolism risk signature represents alter-
ations in the TIME of CRC. In addition, the risk signature
was associated with the immune checkpoint marker PD-
L1, suggesting that it has potential as a metabolic marker
for immunotherapy in CRC.

Some metabolic regulators have been considered as
oncogenes or tumor suppressors. Carnitine palmitoyl
transferase II (CPT2) is a rate-limiting enzyme for mito-
chondrial fatty acid transportation, with a critical role in
regulating fatty acid oxidation. Gastric cancer and CRC
patients with lower CPT2 expression level have better
disease control rates than those with higher CPT2 ex-
pression [65]. Blocking fatty acid oxidation by knocking
out CPT1A/CPT2 via CRISPR-mediated has been shown
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