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Next-generation sequencing of transcriptomes (RNA-Seq) is being used increasingly in studies of nonmodel organisms. Here, we
evaluate the effectiveness of normalising cDNA libraries prior to sequencing in a small-scale study of the zebra finch. We find that
assemblies produced from normalised libraries had a larger number of contigs but used fewer reads compared to unnormalised
libraries. Considerably more genes were also detected using the contigs produced from normalised cDNA, and microsatellite
discovery was up to 73% more efficient in these. There was a positive correlation between the detected expression level of genes
in normalised and unnormalised cDNA, and there was no difference in the number of genes identified as being differentially
expressed between blood and spleen for the normalised and unnormalised libraries. We conclude that normalised cDNA libraries
are preferable for many applications of RNA-Seq and that these can also be used in quantitative gene expression studies.

1. Introduction

Next-generation sequencing (NGS) has revolutionised bio-
logical research and opened up the field of genomics for
small-scale projects in nonmodel organisms [1–3]. A prac-
tical approach for studies of species with no prior genomics
information available, and where budgets are limited, is to se-
quence only the expressed parts of the genomes (transcrip-
tomes). This method, known as RNA-Seq [4], has the advan-
tage that sequence characterisation is focused on functionally
important regions of the genomes. An additional benefit is
that information is obtained not only about gene sequence
variation but also regarding gene expression levels [5]. While
most publications on transcriptome characterisation in non-
model organisms remain rather descriptive, question-orient-
ed papers are also emerging in a number of fields, including
speciation [6], conservation [7], and local adaptation [8].
The Roche 454 sequencing technology is probably still the
most widely used NGS method for de novo characterisation
of transcriptomes of nonmodel organisms, but other meth-
ods such as Illumina/Solexa and ABI SOLiD are becoming
increasingly popular [9, 10].

Data from small-scale RNA-Seq studies are routinely
used for a number of different purposes such as gene

finding, marker identification, and expression studies [1].
Data from related species, genomic reference species [11],
are often utilised to annotate whole-transcriptome sequence
datasets or to identify specific genes of interest. Molecular
markers such as microsatellites, indels, and SNPs can be ef-
ficiently mined from NGS transcriptome datasets, as report-
ed in a number of recent publications (e.g., [12–15]). RNA-
Seq studies can also address questions about differential ex-
pression between for example different tissues, life stages,
individuals or populations, differences that may be impor-
tant for understanding gene function, development, pheno-
typic plasticity, local adaptation and speciation [6, 16, 17].
Even small amounts of sequencing, using only a fraction
of a sequencing run, may enable these aims to be achieved
efficiently in nonmodel organisms. But it is important to
plan the sequencing effort carefully in advance to invest opti-
mally in a methodology that will enable the posed questions
to be answered.

Several methods exist for improving transcriptome data
in order to get a more even coverage of genes and to avoid
spending a large part of the sequencing effort on a few very
highly transcribed genes. The most common of these is the
duplex-specific nuclease (DSN) normalization procedure
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[18], but other cDNA normalisation methods are also
available [19]. In general, cDNA normalisation is applied
in studies in which the main aim is to characterise as
many genes as possible or when using the sequence data
to identify molecular markers. Unnormalised libraries are
instead mainly used to characterise gene expression levels
or investigate differential expression between samples. The
normalisation of cDNA libraries for NGS has previously
been evaluated in the lake sturgeon (Acipenser fulvescens).
Here, Hale and coworkers [20] demonstrated, using rarefac-
tion analysis, that normalisation has only a rather limited
influence on improving gene discovery, provided that a
large enough number of sequence reads are available. Gene
discovery efficiency was also compared between normalised
and unnormalised 454-sequenced cDNA libraries of bitter
melon (Momordica charantia) seeds [21]. Here, it was found
that normalised libraries produced more and longer contigs
compared to unnormalised libraries and that, in contrast
to the results of Hale et al., normalisation considerably
enhanced the rate of gene discovery. These results may
however be biased since the number of sequencing reads
produced from the unnormalised library was almost twice
as large as the number of reads from the normalised library.
An increase in gene discovery in normalised compared to
unnormalised libraries has also been reported from a study
of milkweed bug (Oncopeltus fasciatus) embryos [22]. An
alternative to cDNA normalisation is to specifically remove
only rRNA [1], which may represent a large fraction of the
RNA in a sample. Another way to increase the sequencing
efficiency and quality of NGS cDNA libraries may be to
remove specifically the poly(A) tails prior to sequencing,
using restriction enzymes [23].

The aim of this study was to compare the efficiency of
sequencing transcriptomes, using the 454-technology, from
normalised and unnormalised cDNA libraries in a small-
scale RNA-Seq study of two zebra finch (Taeniopygia guttata)
tissues (blood and spleen). We consider several downstream
applications such as gene discovery, differential expression
studies and microsatellite marker identification. In order
to conduct an unbiased comparison between normalised
and unnormalised libraries we compare sequence datasets
that have identical numbers of reads and read-length dis-
tributions. This is accomplished by drawing subsamples of
reads from the full-read datasets and conducting de novo
assemblies and downstream analyses on these subsamples
separately.

2. Methods

2.1. Library Preparation and Sequencing. Blood and spleen
tissue samples were obtained from one adult zebra finch
male from the University of Sheffield captive colony [24] and
immediately stored in RNAlater (Ambion Inc.). RNA was
extracted from the samples using the RNeasy kit (QIAGEN),
and cDNA was synthesised using the MINT kit (Evrogen).
cDNA was purified through QIAquick PCR Purification
columns (QIAGEN) and diluted to a concentration of
∼100 ng/µL (measured on a Nanodrop, Thermo Scientific).

Bl No Bl Un Sp No Sp Un

Figure 1: Electrophoresis (in 1% agarose) of the sequenced
cDNA libraries. Bl: blood, Sp: spleen, Un: unnormalised, and No:
normalised. The ladder in the leftmost lane has the following band
sizes (in bp from below): 250, 500, 750, 1000 (bright), 1500, 2000,
2500, 3000 (bright), and 3500–10000 (smear).

Half of the cDNA from both blood and spleen was nor-
malised using the Trimmer kit (Evrogen, [18]). Briefly, cDNA
was mixed with hybridisation buffer and heated to 98◦C
for 2 minutes and then to 68◦C for 5 hours. DSN (Duplex
Specific Nuclease) master buffer and dilutions of the DSN
enzyme were added and incubated at 68◦C for 25 minutes.
A control containing no DNS enzyme was also included.
Reactions were stopped by adding DSN stop solution, and
samples were kept on ice. The primary amplification of
the cDNA was performed according to the manufacturer’s
protocol, and aliquots were taken at two-cycle intervals. Each
of the aliquots was run on a 1% agarose gel to determine the
respective cycle numbers during which the PCR was still in
its exponential phase; 22 cycles were chosen for blood and
nine cycles for spleen.

Samples obtained using these optimal numbers of cycles
were again run on a 1% gel to verify the effect of normali-
sation (Figure 1) and to determine the best DSN treatment
concentration. The samples with the least DSN were selected
and subjected to a secondary amplification. The resulting
cDNA libraries were sent for 454 sequencing (Roche, FLX)
at the Centre for Genomic Research, University of Liv-
erpool (http://www.liv.ac.uk/cgr/index.html). Each sample
was sequenced on 1/8th of a 454-sequencing plate. The
raw read data from the sequencing were deposited in the
NCBI sequence read archive under project accession number
SRP003283.1.

2.2. Sequence Analysis and Assembly. Raw 454-sequence
reads were trimmed of low-quality sequence, adaptor and
primer sequence and poly(A) tails using SeqMan NGen
version 2.0 (DNASTAR, Inc.). In order to compare the
efficiency of reads from different libraries (normalised and
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unnormalised), we randomly subsampled (without replace-
ment) ten sets of sequences from each library with identical
numbers of reads (29500 for blood and 45800 for spleen)
and distributions of read lengths (from 30 to 499 base pairs),
for both the normalised and the unnormalised libraries.
The read-length distribution used was the same as that
in the full sequence data. This jackknifing procedure was
performed to create comparable estimates of the mean of
each relevant metric in the downstream analyses. Each of
the 40 subsampled sequence sets was then independently de
novo assembled using the default settings in Newbler (Roche,
gsAssembler version 2.0).

2.3. Gene Discovery. All contigs produced by the 40 de novo
assemblies (ten subsampled sequence data sets from each of
normalised blood, unnormalised blood, normalised spleen,
and unnormalised spleen libraries) were blasted (BLASTN
version 2.2.17) [25] against the chicken gene predictions
(WASHUC 2.57) downloaded from the Ensembl [26] FTP
site. Only the best hit per contig and only hits with an e-
value less than 10−5 were kept. Numbers of overlapping genes
between libraries were calculated using the LIMMA library
implemented in R [27, 28] and visualised in a Venn diagram.

2.4. Expression Analysis. The number of reads per gene was
calculated by summing the number of reads for each of the
contigs that had a best blast match for the gene in question
(often more than one contig matched the same gene,
presumably due to incomplete coverage of genes and possibly
also representing different alleles or isoforms). Differential
expression between blood and spleen was assessed using
the TMM normalisation procedure included in the edgeR,
Bioconductor package [29, 30]. Genes were defined as being
differentially expressed in the two tissues if they had a
probability of less than 0.05 after adjusting for multiple
testing using the Benjamini and Hochberg [31] method for
controlling the false discovery rate (FDR).

2.5. Microsatellite Discovery. The contigs produced from all
subsampled sequence sets were independently searched for
microsatellite repeats using the software MsatCommander
[32]. A microsatellite was called if the contig contained a
motif that was repeated for at least six units for dinucleotides
and at least four units for tri-, tetra-, penta-, and hex-
anucleotides. When comparing the microsatellite discovery
efficiency between normalised and unnormalised libraries,
the numbers of all types of repeats (di-, tri-, tetra-, penta-,
and hexanucleotides) were summed for each subsampled
sequence set separately.

2.6. Statistical Analyses. All statistical analyses and handling
of large output data files were conducted in R version 2.11.1
[28]. All reported significance tests are two-tailed.

Table 1: Summary of output from 454 sequencing (full dataset) and
statistics from the full data de novo assemblies.

Normalised Unnormalised

Number of raw reads 191312 287576

Number of reads after trimming 145939 247783

Percent of reads retained 76.3 86.2

Mean read length after trimming 290 322

Number of contigs in assembly 5563 2703

Mean contig length (bp) 660 865

Maximum contig length (bp) 1412 4382

3. Results and Discussion

3.1. Sequencing. In total, 478,888 raw reads were produced
by 454 sequencing (Table 1). For normalised and unnor-
malised libraries from blood we obtained in total 73,602
and 119,770 reads, respectively, while 117,710 and 167,806
reads were produced from the normalised and unnormalised
spleen libraries. After quality trimming and removal of
primer, adaptor, and poly(A) sequences, 393,722 sequence
reads remained (Table 1). From the normalised blood library
there were 59,616 trimmed reads with a mean read length
of 304 base pairs, and from unnormalised blood there were
100,516 reads with a mean length of 352 base pairs. There
were 86,323 reads (mean length = 281 base pairs) available
for the normalised spleen library and 147,267 reads (mean
length = 301 base pairs) for unnormalised spleen. Our
unnormalised libraries thus produced more sequence data
than normalised libraries. The unnormalised data were also
of higher quality since a smaller proportion of the reads
was removed during trimming and the resulting trimmed
reads were longer (Table 1). These differences could simply
be due to random events in the sequence reactions and
plate partitions used, but it is seems more likely that they
represent some intrinsic properties of the library treatments
since similar metrics have also been reported from other
studies [20–22].

3.2. De Novo Assembly. In order to make direct and unbiased
comparisons between normalised and unnormalised cDNA
libraries, we estimated the mean of each relevant metric
from ten subsamples of sequences (with identical numbers
of reads and read length distributions) from each library.
These were assembled separately, and the contigs from these
assemblies were used in downstream analyses. De novo
assemblies of reads produced from normalised libraries had
a larger number of contigs but used fewer of the reads com-
pared to assemblies from unnormalised libraries (Table 2).
Contigs from unnormalised libraries were also shorter than
normalised library contigs (Table 2), with both smaller mean
(first subsample of blood: t = 6.8, df = 1473, P < 0.0001;
first subsample of spleen: t = 9.1, df = 2713, P < 0.0001)
and maximum contig lengths. We also found strikingly
similar results using our full dataset, even though this
included a much higher number of reads (and with higher



4 Comparative and Functional Genomics

Table 2: Summary of statistics (means with standard errors estimated through jackknifing) of contigs produced by de novo assembly of
454-sequencing reads from normalised and unnormalised transcriptome libraries.

Blood Spleen

Normalised Unnormalised Normalised Unnormalised

Number of sampled reads 29500 (0) 29500 (0) 45800 (0) 45800 (0)

Number of assembled reads 13998 (89.0) 20703 (25.9) 15980 (29.6) 22487 (23.3)

Number of contigs in assembly 3221 (6.1) 1240 (7.4) 3487 (12.8) 2078 (10.6)

Mean contig length 413.7 (0.8) 501.6 (1.8) 385.7 (0.6) 455.2 (1.2)

Maximum contig length 2014 (105) 4777 (240) 1428 (15) 3117 (54)

Mean number of reads per contig 4.7 (0) 13.4 (0.2) 4.7 (0.05) 14.2 (0.3)

Maximum number of reads per contig 48 (1.1) 1944 (108.2) 230 (3.8) 1944 (165.8)

Number of transcripts detected 1184 (5.3) 586 (14.7) 1238 (5.9) 924 (6.0)

Mean number of reads per transcript 7.1 (0.04) 23.9 (0.6) 6.6 (0.03) 22.0 (0.5)
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Figure 2: The distributions of the depths of contigs (y-axis: number of reads) for (a) blood and (b) spleen. Black bars represent number of
contigs from normalised libraries, and grey bars represent number of contigs from unnormalised libraries. The mean position of the bins is
given on the x-axis.

quality, see the previous paragraph) for unnormalised than
normalised libraries (Table 1).

The maximum number of reads per contig (contig
depth) was lower for normalised libraries than for unnor-
malised (Table 2) and so was the mean contig depth (first
subsample of blood: t = 3.8, df = 1241, P < 0.001; first
subsample of spleen: t = 5.1, df = 2140, P < 0.0001). A large
majority of contigs from normalised libraries had a contig
depth of only a few reads. At the other extreme several contigs
from each subsampled unnormalised library had more than
a thousand reads (Figure 2). With all reads included in the
assemblies the mean number of reads per contig was 9.3
for normalised libraries and 31.0 for unnormalised. Similar
observations to these were made when assemblies from
normalised and unnormalised cDNA were compared in
milkweed bug [22].

3.3. Gene Discovery. We annotated the contigs for all sub-
sampled sequence sets separately by comparing them to

annotated transcripts in the chicken genome. Considerably
more genes (transcripts) were detected in the contigs
produced from normalised cDNA libraries compared to
unnormalised library contigs (Table 2). This was true both
for sequences from blood and spleen (Figure 3). However,
the mean number of reads for each gene was larger for the
unnormalised libraries (Mann-Whitney test; blood: U =
1.9 × 106, df = 4113, P < 0.0001; spleen: U = 2.8 × 106,
df = 4113, P < 0.0001, Table 2). The highest expression
in the normalised blood library was for the ATRX gene,
with up to 85 reads per subsampled sequence library.
In contrast, two genes (Haemoglobin alpha-A and -B)
were represented by over a thousand sequence reads in the
unnormalised blood library. By far the most highly expressed
gene in the unnormalised spleen library was a mitochondrial
rRNA gene, with over five thousand reads present. In the
normalised spleen library the gene with the highest expres-
sion (Reticulocalbin-2) had only a maximum of 90 reads
present. These results are in contrast to one previous study,
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Table 3: Number of microsatellite repeats found in contigs produced from ten subsampled datasets of normalised and unnormalised zebra
finch transcriptome libraries (means with standard errors estimated through jackknifing).

Repeat type
Blood Spleen

Normalised Unnormalised Normalised Unnormalised

Dinucleotide 17.8 (0.9) 7.8 (0.9) 30.4 (1.3) 10.8 (0.5)

Trinucleotide 60.1 (1.6) 39.1 (1.4) 72.6 (1.5) 52.5 (1.6)

Tetranucleotide 6.5 (0.3) 3.7 (0.3) 12.5 (0.7) 5.5 (0.5)

Pentanucleotide 0.1 (0.1) 0.2 (0.1) 3.5 (0.5) 0.2 (0.1)

Hexanucleotide 0 (0) 0.1 (0.1) 1.0 (0.1) 0.2 (0.1)

Total 84.5 (1.2) 50.9 (2.0) 120.0 (2.6) 69.2 (1.5)
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Figure 3: Venn diagram showing the number of genes identified
in the different sequenced libraries. Blue areas represent sequences
from blood and green sequences from spleen. Dark colours
represent sequences from normalised libraries, and light colours
represent sequences from unnormalised libraries. Numbers in
overlapping areas represent genes identified in more than one
library.

in which normalisation of the cDNA library did not enhance
gene finding in a 454-sequenced transcriptome dataset of
the milkweed bug [22]. Similarly, gene finding efficiency was
only marginally improved by normalisation of the libraries
in the sturgeon [20]. Differences among the results in these
studies may be due to differences in the degree of sequencing
effort. As the total number of sequence reads increases, the
difference in gene-finding efficiency between normalised and
unnormalised libraries should become smaller.

3.4. Expression Analysis. Most RNA-Seq studies of gene
expression levels have used unnormalised cDNA libraries
in order to introduce as little bias as possible in the re-
lative abundance of sequence reads from different genes.
However, given that there is enough variation in cDNA
levels remaining after normalisation and that the relative
normalised read abundance is positively correlated with
the original expression level, such studies can also be
conducted on normalised libraries [33, 34]. We found a
highly significant positive correlation between the detected
expression level (log number of reads) of genes between
normalised and unnormalised libraries (blood: r = 0.36,

df = 803, P < 0.0001; spleen: r = 0.39, df = 1145,
P < 0.0001). In a previous study Kristiansson and coworkers
[17] similarly found a strong correlation between expression
level (in this case measured by a microarray approach) and
number of 454 reads from a normalised cDNA library. In our
data there was also a weak correlation between the detected
expression levels of genes between the two different tissues
sampled (unnormalised library: rS = 0.13, df = 4112,
P < 0.0001; normalised library: rS = 0.07, df = 4112,
P < 0.0001). Means of 311 and 328 genes (7.6 and 8.0
per cent of all genes) were differentially expressed between
blood and spleen for normalised and unnormalised libraries,
respectively (Figure 4). Nonetheless, as expected, genes from
the unnormalised libraries had a larger maximum log-fold
difference in expression compared to genes in the normalised
library (Figure 4).

3.5. Microsatellite Discovery. NGS transcriptome data has
been extensively utilised for identifying microsatellites, also
known as SSRs (simple sequence repeats), in nonmodel
organisms (e.g., [12, 35, 36]). Repeat motifs are usually
present in the untranslated regions of the transcripts
[37]. Normalised cDNA libraries seem to be very effective
for this application, providing a broad representation of
the transcriptome. But a formal comparison between the
efficiency of normalised and unnormalised libraries for
identifying microsatellites has, to the best of our knowledge,
not previously been performed. Using our whole dataset
(including contig sequences produced using all sequence
reads from both tissues), in total 502 microsatellite repeats
(dinucleotides to hexanucleotides) were found (318 from
normalised and 184 from unnormalised libraries) with the
software MsatCommander [32]. When comparing the ten
subsampled datasets from each library, we found, on average,
66% more microsatellites in normalised blood libraries
and 73% more in normalised spleen libraries than in the
unnormalised libraries (Table 3). Since our sequence data
were obtained from one single individual and the coverage
of contigs was rather low, we did not address the level
of variation in the identified markers. However, in other
cases where microsatellites have been identified using this
approach, around 50% of the markers have been found to be
amplifiable and polymorphic in validation studies [13, 38],
suggesting that this method is very efficient for finding useful
molecular markers. Another advantage of this method of
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Figure 4: Differential expression of genes between spleen and blood, data from (a) normalised cDNA libraries and (b) unnormalised
libraries. Positive log-fold differences indicate higher expression in spleen than in blood. The blue horizontal lines represent fourfold
differences in expression between tissues. Genes expressed in only one tissue are plotted in yellow smears to the left of the graphs. Red
points represent genes showing significant expression divergence between tissues (P < 0.05, after applying an FDR multiple test correction).

identifying molecular markers is that variation can often be
associated with annotated genes, facilitating interpretation of
outlier loci and candidate genes for adaptation [1].

4. Conclusions

In contrast to some previous studies we find a much higher
efficiency of gene discovery when using normalised cDNA
libraries compared to unnormalised libraries in RNA-Seq
studies. The normalised libraries were also more efficient
for finding microsatellite markers. We also demonstrate that
normalised cDNA can be used in characterising expression
variation due to a correlation between the relative number
of reads per gene in the contigs from normalised and
unnormalised libraries. Some of these results are different
from those of other studies, concluding that gene-finding
efficiency is only marginally improved by normalisation
[20, 22]. It is hard to speculate about the exact causes of
these discrepancies but differences in technologies used and
sequencing efforts are both likely to affect the outcome of
this kind of comparison. The results from our study are
mainly applicable to small-scale investigations of nonmodel
organisms. However, as sequencing technologies continue
to improve and the cost of sequencing drops further, even
small-scale studies may be able to produce high enough cov-
erage of transcriptomes to make the normalisation procedure
superfluous.
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