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Abstract
With the emergence of analytical software for the inference of viral evolution, a number of

studies have focused on estimating important parameters such as the substitution rate and

the time to the most recent common ancestor (tMRCA) for rapidly evolving viruses. Coupled

with an increasing abundance of sequence data sampled under widely different schemes,

an effort to keep results consistent and comparable is needed. This study emphasizes com-

monly disregarded problems in the inference of evolutionary rates in viral sequence data

when sampling is unevenly distributed on a temporal scale through a study of the foot-and-

mouth (FMD) disease virus serotypes SAT 1 and SAT 2. Our study shows that clustered

temporal sampling in phylogenetic analyses of FMD viruses will strongly bias the inferences

of substitution rates and tMRCA because the inferred rates in such data sets reflect a rate

closer to the mutation rate rather than the substitution rate. Estimating evolutionary parame-

ters from viral sequences should be performed with due consideration of the differences in

short-term and longer-term evolutionary processes occurring within sets of temporally sam-

pled viruses, and studies should carefully consider how samples are combined.

Introduction
Foot-and-mouth disease (FMD) is a highly contagious vesicular disease that occurs in cloven-
hoofed livestock and wildlife animals [1]. The causative agent, FMD virus (FMDV), is a small
non-enveloped virus with a positive sense single-stranded RNA genome approximately 8.4kb
long. It belongs to the genus Aphthovirus within the family Picornaviridae [2]. The viral
genome encodes a polyprotein, which is cleaved and processed into several structural and non-
structural proteins [2]. The FMDV polyprotein produces 15 different mature proteins, where
VP1–3 constitute the structural proteins that are responsible for the surface of the capsid. The
VP1 contains important epitopes that are recognized by neutralizing antibodies generated by
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the mammalian immune system [2] and also the integrin receptor binding motif. In conse-
quence of these constraints, the VP1 coding sequence has been found to be under both positive
and negative selection [3]. Additionally, the VP1 coding region has been used extensively to
study the evolutionary relationship within serotypes, including the inference of substitution
rates and time to the most recent common ancestor (tMRCA) [4–8].

FMD viruses are widely distributed and are divided into seven serotypes (SAT 1, SAT 2, SAT
3, O, A, C, and Asia 1) [8] with some of these being further differentiated into topotypes [9]. The
SAT serotypes are generally confined to sub-Saharan Africa [10], but SAT 2 has recently been
found in North Africa and the Middle East [11], whereas serotypes O, A, and Asia 1 are found on
a larger geographical scale. Serotype C was most recently been recorded in Kenya and from an
outbreak in Brazil, both in 2004 [12,13], and may now be extinct. Many rapidly evolving viruses
occur in outbreaks interspersed with periods where they occur at lower frequency, which clearly
shape the genealogies and genetic diversity patterns of viruses sampled over time [14,15]. Duch-
êne et al. [16] and Ho et al. [17] found a strong negative relationship between estimates of substi-
tution rates and the evolutionary time scale for major groups of viruses. They relate this
observation to the combined effect of site saturation and purifying selection and argue that sub-
stitution rates must be considered as a dynamic property of molecular evolution.

Studies by Duffy et al. [18] and Sangula et al. [3] stressed the potential biases caused by
opportunistic sampling schemes in regards to FMDV; whenever multiple samples are collected
when the viral population is largest (during an outbreak), the inferred rates will reflect a value
more akin to the mutation rate than the substitution rate. During outbreaks, high levels of poly-
morphisms are generated due to the combination of an explosive growth phase and the error-
prone RNA dependent RNA polymerase [18]. The majority of these polymorphisms are lost
over time and do not contribute to fixed substitutions in the subsequent virus lineages. This
leads to variable levels and patterns of polymorphisms as temporal sampling distance increases.
Consequently, evolutionary analyses investigating temporally sampled sequences, including
densely sampled sequence data, can result in a biased estimate of the substitution rate [18].
Inference of the long-term substitution rate and correspondingly the tMRCA are likely to be
affected by a failure to recognize this variability, and this is problematic since these parameters
are crucial for tracking transmission events through evolutionary analyses [19] and for obtain-
ing a more complete understanding of RNA virus dynamics in general.

In this study, we assessed the problems associated with the temporal structure of sampling
in FMD virus studies with a particular focus on sequences obtained from Africa. We accom-
plish this by inferring the substitution rates and tMRCA in samples from two different serotypes
of FMD virus sampled either in a temporally clustered fashion or more uniformly. Using this
approach, we tested the hypothesis that FMDV sequence data sets including densely sampled
sequences can bias overall estimates of evolutionary rates and associated parameters such as
the time to the most recent common ancestor.

Materials and Methods

Virus isolates
The FMDV serotypes investigated in this study were a combination of sequences retrieved
from GenBank (see accession numbers in S1 Appendix) and sequences provided by the FAO
World Reference Laboratory for FMD. SAT 1 sequences included in this study had been sam-
pled between 1937 and 2010 and include two densely sampled outbreaks, one from Niger-
Nigeria in 1975–1976 and a more recent outbreak in Kenya 2010 (both outbreaks are indicated
by an asterisk in S1 Appendix). SAT 2 isolates had been sampled between 1948 and 2012 and
include four densely sampled outbreaks: South African sequences from 2001, Kenyan
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sequences from 2007, Ethiopian sequences from 2009 and sequences from Egypt sampled in
2012 (indicated by an asterisk in S1 Appendix). Input files for BEAST v. 1.8.2 [20] (http://
beast.bio.ed.ac.uk/) are produced using the BEAUti package. These files contain the settings for
each data set and are in the XML format. All individual XML files used for this study can be
seen in S2 Appendix.

Definition of temporal sample clusters
An FMD outbreak is defined by The World Organization for Animal Health (OIE) as: “One or
more cases (individuals infected) found within an epidemiological unit (a group of animals
which share the same risk of pathogen exposure)” [21]. We defined temporal sample clusters
(CLU) as groups of samples that fulfilled the following three requirements: they were i) sam-
pled in relatively close geographical proximity (within the same or neighbouring countries) ii)
sampled within 18 months of time and iii) belonged to the same topotype [9]. Samples that did
not fulfil these requirements were assigned to chronologically sampled (CHR) data sets. Excep-
tions were samples collected less than 18 months apart that belonged to different topotypes,
which were instead included in the CHR data sets by randomly choosing a sample from each
topotype within the 18 month window. In addition, we analysed combined data sets for both
serotypes that included both the temporal sample clusters and the chronologically sampled
sequences. The overall phylogenetic divergence and tree topology of the two serotypes, includ-
ing the CLU sequences, can be seen in Figs 1 and 2. The settings used to construct these trees
can be seen in the next section. Furthermore, we found two cases of identical DNA sequences
from different sampling sites (i.e. geographical origin) and sampling years. These samples were
collected 7 years apart. Considering the high substitution rate in FMDV it is extremely unlikely
to have identical FMD isolates circulating over such a time span. Consequently, we assumed
these to represent cases of contamination or mislabelling and the samples were removed.

Phylogenetic analyses
Sequences were aligned using the ClustalW-algorithm [22] implemented in Geneious version
6.1.6 (http://www.geneious.com/). JModelTest version 2.1.3 [23] was used to determine the
best fitting nucleotide substitution model. Twenty four different substitution models were
compared through a hierarchical likelihood ratio test using this tool, and all were evaluated by
using both Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC)
which produced identical model choices. The GTR+I+Γ [24] was selected for the SAT 1 and
SAT 2 CHR and combined data sets. The HKY+I+Γmodel [25] was selected for the SAT 1 and
SAT 2 CLU data sets. We constructed the maximum clade credibility trees using TreeAnnota-
tor (http://beast.bio.ed.ac.uk/treeannotator) discarding the first 10% of sampled trees as burn-
in. These trees were visualized using FigTree version 1.4.2 (http://beast.bio.ed.ac.uk/figtree).

Substitution rates and phylogenetic tree depths were estimated using a Bayesian statistical
approach implemented in BEAST v. 1.8.2 using the selected substitution models. The method
exploits temporally sampled data with known sampling times to infer substitution rates along
lineages while co-estimating phylogenetic trees and tMRCA.

Three demographic models (the constant population size model, the exponential growth
population model and the Bayesian skyline coalescent model) were investigated and compared.
We chose these models as they are the most commonly used and collectively cover a large span
of demographic priors. As the posterior for the coefficient of variation in the relaxed clock
models always excluded zero–meaning there was a clear signal of rate heterogeneity–we used a
relaxed exponential clock throughout the analyses. We used a UPGMA starting tree and the
MCMC chains were run long enough (1 × 108) to obtain Effective Sample Size (ESS) above 200
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for all parameters. This approach was used for both the CLU and CHR data sets. The results
were assessed with Tracer software v. 1.5 [26] with a 10% burn-in. Statistical uncertainty in the
results was presented as the lower 2.5%, the average and the upper 97.5% of the highest proba-
bility density (HPD) interval.

We conducted ten date permutations for each data set and investigated these alongside the
original data set to test for temporal signal (similar to what was done by Ramsden et al. [27]).
Specifically, we wanted to see whether the substitution rates obtained from the permuted data
sets overlap with the substitution rates inferred for the true data set. We considered that tempo-
ral signal was present when the mean estimate (shown by a circle in our plots) from the true
data set did not overlap with the 95% HPD intervals of the estimates from the date-permuted
data sets [28]. We limited this analysis to the constant and exponential demographic models.

Detecting selection and recombination
The two serotypes were analysed separately and further subdivided as described above. We
assessed dN/dS ratios using the single-likelihood ancestor counting (SLAC) method (P = 0.1)

Fig 1. SAT 1 Phylogenetic Tree.Markov Chain Monte Carlo phylogenetic tree generated using the combined SAT 1 data set including both chronologically
sampled (CHR) data sets and temporal sample clusters (CLU). Temporal sample clusters are collapsed and coloured. Posterior probabilities are given for
each node and the scale bar indicates a branch length corresponding to 25 years.

doi:10.1371/journal.pone.0143605.g001
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[29] available within the HyPhy-package and accessed through the Datamonkey webserver
(www.datamonkey.org). This likelihood approach estimates the best fitting codon model using
fixed substitution rates and branch lengths to infer the global dN/dS ratio.

To test for recombination we used the Single Break Point (SBP) method [30] available on
the Datamonkey server. We tested both serotypes individually and combined in an all-
sequence data set. To add confidence to this analysis, additional methods implemented within
RDP 4.22 software [31] were used on all data sets, including Chimaera [32], GENECONV [33]
and MaxChi [34].

Results

Date permutation
We conducted date permutations for each data set to test for a temporal signal. For SAT 1, we
found the strongest signal in the combined and the NIGER/NIGERIA 75/76 data sets while the
KENYA 2010 CLU and SAT 1 CHR data sets carried minor or no evidence of temporal signal.
These findings were identical across demographic models (See S1–S4 Figs for the exponential
demographic model and S11–S14 Figs for the constant demographic model). The results for the

Fig 2. SAT 2 Phylogenetic Tree.Markov Chain Monte Carlo phylogenetic tree generated using the combined SAT 2 data set including both chronologically
sampled (CHR) data sets and temporal sample clusters (CLU). Temporal sample clusters are collapsed and coloured. Posterior probabilities are given for
each node and the scale bar indicates a branch length corresponding to 25 years.

doi:10.1371/journal.pone.0143605.g002
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SAT 2 serotype showed contrasting results. Using the exponential demographic model, we observed
strong support for a temporal signal in all but the Kenya 2007 CLU data set. However, under the
constant model, only the combined, Ethiopian 2009 CLU and the CHR data sets showed a temporal
signal (see S5–S10 Figs for the exponential model and S15–S20 Figs for the constant model).

Phylogenetic and rate inferences
The SAT 1 phylogenetic tree shows two main clades. The first clade includes primarily the
northern sequences and the KENYA 2010 CLU, while the second clade contains the southern
and western sequences including the NIGER/NIGERIA 75/76 CLU. Both of the CLUs are
monophyletic with maximum posterior probability (Fig 1). For SAT 2, we observed divergence
of two main clades (Fig 2). Estimates from the BEAST analyses of the two serotypes revealed
elevated evolutionary rates for the CLU data sets compared to both the CHR and combined
data sets in all serotypes (Table 1). This difference was found under all demographic models.
The SAT 1 combined data set yielded median rates of 2.8 (1.7–4.1), 3.0 (2.0–4.3) and 1.5 (0.9–
2.1) × 10−3 substitutions/nucleotide/year (s/nt/y) for constant, exponential and skyline demo-
graphic models, respectively. The median rates for the SAT 1 CHR data set were much smaller,
0.1 (0.00001–0.4), 0.2 (0.01–0.6) and 0.1 (0.0001–0.4) × 10−3 s/nt/y. Data sets including only
SAT 1 CLU (both either SAT 1 KENYA 2010 or SAT 1 NIGER/NIGERIA 75/76) displayed an
even higher rate of evolution than the CHR data set (Table 1).

The results for the SAT 2 serotype showed a similar pattern, where the SAT 2 combined
data set exhibited higher median rates (3.2 (2.0–4.4), 3.2 (2.1–4.4) and 1.0 (0.7–1.4) × 10−3 s/
nt/y) than the SAT 2 CHR data set (0.5 (0.004–1.0), 0.5 (0.01–1.0) and 0.5 (0.1–1.0) × 10−3 s/
nt/y) for constant, exponential and skyline demographic models, respectively. As for SAT 1 the
SAT 2 CLU data sets displayed higher median rates (here 18–90 times higher) compared to the
SAT 2 CHR data set (Table 1).

The analyses of both serotypes further revealed that including sequences from CLUs in the
data sets decreased the tMRCA, which is a natural consequence of the observed rate acceleration
in CLUs. The combined SAT 1 data set including both CLU sequences had median depths for
tMRCA of 223 (121–395), 191 (127–278) and 386 (233–590) years before present (y BP), while
the results for the CHR data set had median depths for tMRCA of 4738 (491–56857), 2623 (399–
11241) and 5287 (416–66330) y BP. SAT 2 data sets showed a similar difference, where the
combined data set yielded median depths for tMRCA of 217 (108–366), 165 (114–230) and 426
(300–584) y BP and the CHR median depths for tMRCA of 866 (289–3646), 799 (291–2279) and
794 (323–2198) y BP (Table 1).

The choice of demographic model had an effect on the estimation of substitution rates. The
exponential demographic model produced rates that were slightly higher than the substitution
rate estimates using the constant and skyline demographic models when considering the com-
bined and CHR data sets (Table 1). This underlines that the problem of rate inference cannot
be considered separate from the problem of demographic inference. In the present study we
treat demographic history as a ‘nuisance parameter’, and we also highlight that the data set–
given its complex temporal and geographical structuring–is not suitable for demographic infer-
ence through the demographic models implemented in BEAST. Overall, however, this effect of
the demographic prior did not change the relation between substitution rates and tMRCA for
the CHR and CLU data sets.

Recombination and selection
We tested for the predominant type of selection acting on all codons within sequences and for
evidence of recombination in the sequence data, as this is known to distort evolutionary
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analysis by overestimating substitution rate heterogeneity [35]. The SBP method found no sta-
tistical evidence for recombination within or between the two serotypes according to AIC and
BIC scores; this result was confirmed by all methods in the RDP software. This corroborates
earlier studies stressing that recombination is mainly constrained to non-structural proteins,
with few observations in structural proteins [36]. We show results for dN/dS ratios in Table 2.
All CLU data sets showed higher dN/dS ratios compared to the combined data set and the
CHR data sets. We randomly subsampled the CHR data sets to match the sample sizes in the
smallest of the corresponding CLU data sets; this was also done for the Kenya 2010 CLU, mak-
ing the results from the selection analysis more comparable between sampling schemes. Ran-
domly subsampled CHR data sets and CLU data sets showed considerable differences in dN/dS
(Table 2).

Table 2. dN/dS ratios for all datasets.

SAT1 data sets Mean dN/dS

n Coverage SLAC

SAT 1 combined 96 1937–2010 0.12 (0.11–0.13)

KENYA 2010 outbreak 56 2010 0.24 (0.16–0.33)

SAT 1 KENYA random 1 12 2010 0.40 (0.14–0.85)

SAT 1 KENYA random 2 12 2010 0.18 (0.09–0.32)

SAT 1 KENYA random 3 12 2010 0.29 (0.15–0.51)

SAT 1 KENYA random 4 12 2010 0.30 (0.15–0.51)

SAT 1 KENYA random 5 12 2010 0.23 (0.09–0.47)

NIGER/NIGERIA outbreak 12 1975–1977 0.18 (0.10–0.31)

SAT 1 random 1 12 1948–1999 0.12 (0.11–0.14)

SAT 1 random 2 12 1937–2007 0.10 (0.09–0.12)

SAT 1 random 3 12 1949–2006 0.11 (0.10–0.13)

SAT 1 random 4 12 1949–2003 0.11 (0.09–0.13)

SAT 1 random 5 12 1976–2006 0.11 (0.09–0.12)

SAT 1 chronologically sampled 28 1937–2008 0.12 (0.11–0.13)

SAT2 data sets Mean dN/dS
n Coverage SLAC

SAT 2 combined 83 1948–2010 0.09 (0.09–0.10)

KENYA 2007 outbreak 11 2007 0.21 (0.11–0.35)

EGYPT 2012 outbreak 18 2012 0.18 (0.04–0.46)

ETHIOPIA 2009 outbreak 19 2009–2010 0.15 (0.05–0.35)

SOUTH AFRICA 2001 outbreak 11 2001 0.33 (0.12–0.71)

SAT 2 random 1 11 1948–2000 0.07 (0.06–0.08)

SAT 2 random 2 11 1948–2007 0.09 (0.08–0.10)

SAT 2 random 3 11 1981–2007 0.09 (0.08–0.11)

SAT 2 random 4 11 1948–2007 0.08 (0.08–0.10)

SAT 2 random 5 11 1948–2004 0.10 (0.08–0.12)

SAT 2 chronologically sampled 24 1948–2007 0.09 (0.08–0.10)

Single likelihood ancestor counting (SLAC) P < 0.1. Serotype sequences constituted 221 amino acids (SAT

1), 216 amino acids (SAT 2).

doi:10.1371/journal.pone.0143605.t002
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Discussion

Phylogenetic Analysis
This study demonstrates an overlooked problem in RNA virus sequence analysis. Duchêne
et al. [16] recently investigated a similar issue across major groups of viruses and found declin-
ing substitution rates over time both within and between diverse groups of viruses. In this
study, we found that substitution rates and the most recent common ancestor inferred for
FMDV can be biased by the inclusion of temporally clustered sequences due to the effect of
confounding mutation rates with longer-term substitution rates. This phenomenon has also
been referred to as time-dependent rate variation [37]. These results have important implica-
tions. Specifically, we advocate avoiding using densely sampled sequences which temporally
cover one to a few years when the long-term substitution rates is the subject of interest.

Selection pattern
All clustered data sets showed considerably higher dN/dS values compared to both the combined
and the evenly sampled data sets respectively (see Table 2). This suggests that there are fewer
codons experiencing purifying selection for the clustered data sets and reveal putative different
molecular evolutionary patterns over different time scales in FMDV, confirming the distinction
between a short-term mutation rate (where selection has not had time to work) and a longer-
term substitution rate (where selection is more evident). The different number of codons under
selection in the clustered data sets will affect the substitution rates differently. Whereas the clus-
tered data sets–having higher dN/dS ratios–will have substitution rates closer to the mutation
rate, samples with larger temporal spacing will show the effects of purifying selection and be
closer to the true long-term substitution rate. This observation emphasizes the need for further
studies to test the impact of variable selection pressures within and between outbreaks.

Date permutation and sampling considerations
The results from the date permutation test revealed discrepancies between serotypes. Whereas
support for a sufficient temporal signal was absent from half of the SAT 1 data sets, we saw
strong support for the temporal signal in the SAT 2 serotype data sets using the exponential
demographic model. Our approach for this test followed that of Ramsden et al. [27], where all
tip-dates are included in the permutation. However, later studies [38,39] proposed an improve-
ment to this method by performing ‘clustered permutation’, where sequences are divided into
groups according to their sampling time. This was not feasible in our study due to the way
CLU and CHR data sets were divided (see Definition of temporal sample clusters). Further-
more, our procedure for selecting sequences to be put in to the CHR data sets may cause a bias
in the estimated tMRCA, as choosing samples from different geographical areas and topotypes
naturally causes longer coalescence times. For example, the SAT 1 CHR data set, using the
exponential demographic model, had very long terminal branches (see Fig 1), which means
that tip-date permutation (shuffling tip dates within a 73 year time span) has a relatively minor
effect. In this case there will be little difference between the real and the date-permuted rates,
suggesting a lack of temporal signal. Instead the effect is probably more due to the effect of the
demographic prior (exponential demographic model) which in this case appears to dominate
the temporal signal of the samples. However, a previous study has shown that high temporal
information content tends to overcome the demographic prior under different sampling
regimes resembling ours [40].

Important decisions about the composition of sequences must be made to avoid biases in
estimates of tMRCA and substitution rates in FMDV analyses. As mentioned, one part of this
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issue could be resolved by avoiding too dense temporal sampling in analyses of long-term evo-
lutionary rates. Another issue involves geographical structure [3,41,42], which we did not
investigate here. Uncritical sampling from a structured population, while assuming panmixia,
could lead to spurious demographic signals with a strong recent decline in effective population
size and hence result in a biased estimate of the tMRCA [43].

Conclusion
This study emphasizes the sensitivity of evolutionary analyses to the temporal sampling struc-
ture in FMDV. This is evident from considerable differences in substitution rates and tMRCA as
well as different levels of selection between temporally clustered and temporally dispersed data
sets. Based on our results, we suggest that careful consideration of the sampling scheme is
needed to assess the unbiased long-term evolutionary parameters within FMDV and other
RNA viruses.
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