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ABSTRACT
A new approach for improved RT-PCR is described. It is based on primers designed to form controlled stem–loop and homodimer configurations,
hence the name ‘double-bubble’ primers. The primers contain three main regions for efficient RT-PCR: a 3′ short overhang to allow reverse
transcription, a stem region for hot start and a template-specific region for PCR amplification. As proof of principle, GAPDH, SARS-CoV-2 synthetic
RNA and SARS-CoV-2 virus-positive nasopharyngeal swabs were used as templates. Additionally, these primers were used to positively confirm
the N501Y mutation from nasopharyngeal swabs. Evidence is presented that the double-bubble primers offer fast, specific, robust and cost-
effective improvement in RT-PCR amplification for detection of gene expression in general and for diagnostic detection and genotyping of SARS-
CoV-2 in particular.

METHOD SUMMARY
A new approach for improved RT-PCR is described. It is based on primers designed to form controlled stem–loop and homodimer configurations
hence the name ‘double-bubble’ primers. It is fast, specific, robust and cost-effective. The method is applied to detect wild-type and mutated
SARS-CoV-2 virus.
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RT-PCR-based techniques are used to detect gene expression in diagnostic as well as research labs. Ideally, they are highly accurate,
avoiding false-negative and false-positive results, thereby affording early and accurate detection of gene expression. Conventional PCR
primers are designed to avoid creation of homo- and hetero-primer dimers [1]. When primers dimerize with 5′ overhangs, the polymerase
fills in the overhangs, thus changing the sequence of the 3′ end of the primers such that they can no longer serve their specific goal of
extension by the polymerase. In order to obtain specificity of the PCR reaction, various hot-start approaches have been proposed [2]. A
variety of techniques are based on the stem–loop DNA configuration including, for example, hot-start PCR with improved specificity [3],
quantification of miRNAs [4] or real-time PCR detection probes [5]. The above publications assume the stem–loop configuration as a
basis for their methods. We reasoned that a more stable configuration than the stem–loop primer is its homodimer configuration. This
distinction is important since the homodimer is more thermodynamically stable (i.e., it has a higher melting temperature).

SARS-CoV-2 is a highly transmissible and pathogenic coronavirus that emerged in late 2019 and has caused a pandemic of acute
respiratory disease, named COVID-19, which threatens human health and public safety [6]. Effective, sensitive and reliable diagnostic
reagents are of paramount importance for combating the ongoing COVID-19 pandemic. Based on genotyping of 31,421 SARS-CoV-2
genome samples collected up to 23 July 2020, Wang et al. revealed that essentially all of the current COVID-19 diagnostic targets have
undergone mutations [7].

In the current studies, our primers are designed, against conventional assumptions, to deliberately create mixed primers with
intramolecular stem–loop bubble and intermolecular homodimer bubble configurations, both with 3′ overhangs that allow reverse-
transcription and thus one-step RT-PCR. The segments of both monomer and dimer primer configurations form non-annealed bubbles.
We refer to these primer configurations as double-bubble (D-B) primers. We performed exhaustive PCR experiments (different gene
targets and regions, assorted primers, one- or two-step, end point or real-time, TaqMan R© or SYBR R© Green, standard or fast conditions,
normal versus hot-start, cheap versus expensive Taq polymerases) to show the efficacy of the D-B primers in detecting and genotyping
SARS-CoV-2 and to demonstrate that these primer configurations offer fast, specific, robust and cost-effective improvement in PCR
amplification.
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Materials & methods
Materials
All reagents were purchased from Millipore-Sigma (Oakville, ON, Canada) unless otherwise stated. Primers were purchased from
Millipore-Sigma or Integrated DNA Technologies (CA, USA). VIC-TqM–NFQ-MGB probe, FAM-TqM–NFQ-MGB probe, SYBR Green 2× mix,
ROX reference dye, dNTPs, DNase I and ultra-low-range DNA ladder were from Thermo Fisher Scientific (MA, USA). Taq polymerases were
part of the PCR kits (SYBR Green standard [4367659], Fast [4472908]) and TaqMan kits: Gene Expression + uracil-DNA glycosylase (UDG)
(4369016), Fast Advanced (A44360), Fast Advanced + UDG (4444557); all Thermo Fisher Scientific. Non-hot-start Taq polymerases were
from FroggaBio (ON, Canada) and New England BioLabs (NEB; ON, Canada). The 100-bp DNA ladder was from FroggaBio. iScript reverse
transcriptase was a product of Bio-Rad Laboratories (ON, Canada). SARS-CoV-2 synthetic RNA: ORF, E, N, 8.0 × 105 genome copies/μl
was from ATCC (VR-3276SD; VA, USA).

Primers & TaqMan probes design
We designed D-B as well as conventional control PCR primers from two main regions of the SARS-CoV-2 genome, namely the N (nucle-
oprotein) gene and the S (spike) gene. A few primers were designed and utilized interchangeably in order to further demonstrate the
efficacy of the D-B primers. Two TqM probes were also designed. The maximal length allowed for TqM probes is 45 nt, since the reporter
dye on longer probes is considered too far from the nonfluorescent quencher (NFQ) molecule and thus it is not quenched. The VIC-TqM-
NFQ-MGB probe #12 from region 1 has 45 nucleotides and the FAM-TqM–NFQ-MGB probe #13 from region 2 has 44 nucleotides. Primer
analysis was performed using Oligo Analyzer Version 3.1 from Integrated DNA Technologies. For example, antisense primer 8′ was de-
signed to form stem–loop and homodimer configurations with free energy �G = -6.34 and -10.01 kcal/mol, respectively. The annealing
temperature to its target was 73.5◦C. Its counterpart, sense primer 8, had similar values. It should be noted that the primer set 8 and 8′

form a few heterodimers; the most stable of them has �G = -7.81 kcal/mole. This is inconsequential to the PCR reaction as long as the
heterodimer is less stable than the specific primers and the heterodimers do not form a stable 5′ overhang that would annul the primers.
This is also not consequential to the primers’ performance in the PCR reaction because the reaction is cycled between 95 and 70◦C, tem-
peratures at which the nonspecific heterodimer would melt. The primers’ assignments and locations are elaborated in Supplementary
Figure 2 & Supplementary Table 1.

RT-PCR protocols
RNA was extracted from Huh cells (ATCC) using RNeasy extraction kit (Qiagen, ON, Canada). Virus RNA was extracted from heat-
inactivated nasopharyngeal swabs (kindly supplied by St. Michael’s Hospital molecular diagnostic lab) using Monarch R© RNA Cleanup
Kit (NEB). TqM probe and primers were used at concentrations of 0.9 and 0.3 μM, respectively. RT-PCR including real-time qPCR
was performed under standard or fast conditions in a 10-μl reaction. Standard conditions were: 95◦C, 10 min, then 40 cycles of
95◦C, 15 s and 70◦C, 1 min. Fast conditions were: 95◦C, 20 s, then 30 cycles of 95◦C, 1 s and 70◦C 20 s. For one-tube RT-PCR a 42◦C, 15 min
→ 95◦C, 1 min pre-cycling step was added. For end point RT-PCR, an additional stage of 72◦C, 5 min → 4◦C hold was added. PCR was
performed with UDG to avoid DNA carryover adding a 50◦C, 5 min → 95◦C, 1 min pre-cycling step. One-tube RT-PCR was performed
without UDG to avoid possible degradation of the nascent cDNA. For cDNA synthesis, iScript reverse-transcriptase kit was employed:
25◦C, 5 min, 42◦C, 15 min 95◦C, 1 min, 4◦C hold (BioRad, 1708891). RT-PCR individual protocol changes are elaborated in the ’Results &
discussion’ section as well as in the figure legends. Reverse transcription and end point PCR were performed with a Veriti 96-well thermal
cycler, and real-time RT-qPCR was performed with Quant Studiob7 Flex (both Thermo Fisher Scientific).

Results & discussion
D-B primer design
We have shown previously that stem–loop (also known as panhandle, hairpin, loop-incorporated, bulge or bubble) primer configurations
offer a more specific hot start for PCR reactions [3]. However, with this blunt-end configuration, it is not possible to use the primers for
reverse transcription. We therefore wished to include a 3′ overhang to enable reverse transcription from this primer and thus provide the
option of one-tube RT-PCR. It has been shown that self-complementary DNA octamers can occur in both hairpin and dimer configurations
under suitable concentrations and temperatures [8]. However, techniques that employ stem–loop primers have usually overlooked the
dimer configuration [3,4,9]. We surmised that in addition to the self-annealing stem–loop monomer, a more thermodynamically stable
configuration of a primer dimer exists in our system (Figure 1A & Supplementary Figure 1A & B). Recognizing the existence of the more
stable homodimer is crucial for primer design because its annealing temperature is higher than that of the stem–loop configuration.
The primers in both configurations create D-B primers.

In order to show experimentally the existence of both primer configurations, we performed a melt curve experiment with consecutive
double dilutions of D-B antisense primer #8 (Figure 1D & Supplementary Figure 2 & Supplementary Table 1). Melt curve is performed
in the PCR machine, mixing the oligos with SYBR Green, a dye that binds preferentially to double-stranded DNA, resulting in emitted
fluorescence that is proportional to the number of Watson–Crick base pairings. A similar technique has been used with PicoGreen dye
(which has similar properties to SYBR) to elucidate hairpin probes opening [10]. As can be noted in the derivative plot of the melt curve,
at higher concentrations (Figure 1D: 10 μM), the derivative peak (turquoise arrow) was narrower. As the concentrations of the primer
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Figure 1. Double-bubble primer configurations, reverse transcription and amplification and melt curve of double dilutions of double-bubble anti-sense
primer #8′ or PCR amplicon from SARS-CoV-2 synthetic RNA gene N. There are four regions to the D-B primer. Regions 3 and 4 are template-specific
nucleotides. Region 4 is the 3′ overhang and region 3 is a self-annealing sequence to region 1. Region 2 is a random sequence that forms the
non-annealed bubble in the self- and homo-dimer primer, hence ‘double bubble’ (D-B) primer. (A) Primer configurations: (1) stem–loop
self-annealing; (2) homodimer head-to-tail annealing. (B) 3′ overhang of antisense primer annealed to RNA target during reverse transcription: (1)
stem–loop primer; (2) homodimer primer. Note that in the homodimer configuration, each 3′ overhang can potentially anneal to the target RNA. (C)
Primer annealed to cDNA target during PCR. Note that at the initial PCR cycles, only regions 3 and 4 are annealed to the template DNA, while in
subsequent cycles, regions 1 through 4 are annealed to the PCR amplicon and amplified exponentially. (D & E) Melt curves: (D) antisense primer #8′ or
(E) PCR amplicon were subjected to double dilutions. SYBR and ROX dyes were added and melt curve was performed. The data show derivative
reporter. Note a left shift (D) of the derivative peak as a function of the concentration (0.04–10.00 μM) and temperature (40–95◦C) indicating shifting
of antisense primer #8′ from the homodimer to the stem–loop configuration. The Gibbs free energy for stem–loop and homodimer was �G = -6.34 and
-10.01 kcal/mole, respectively. A melt curve was possible with the D-B primer because in both configurations it forms a double-stranded DNA that binds
SYBR Green efficiently. In contrast, a single-stranded normal random-coiled DNA primer has lower binding affinity for SYBR green. Therefore, to
compare versus a normal single amplicon as a control, we performed (E) a melt curve of double dilutions of a PCR amplicon (#1 the most concentrated,
#9 the most diluted and #10 no amplicon), amplified from SARS-CoV-2 N synthetic RNA template using D-B primer mix #8. Note that there is no left
shift in the peak as a function of concentration and temperature.
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declined (e.g., at 0.31 μM) a broader peak was observed with two prominent peaks apparent (orange arrows in Figure 1D), consistent
with more than one primer configuration. Moreover, with the declining temperatures, a temperature left shift of the peak was observed,
consistent with a primer configuration shift to form more stem–loop configured primers (Supplementary Figure 1). This observation is
consistent with previous publications suggesting that at high concentrations, there is a preference for the homodimer over the hairpin
configuration [1,8,11]. It is interesting to note that the shift from the hairpin to the homodimer configuration was shown using polyethylene
glycol, a reagent known to enhance the concentration of the oligo by molecular crowding [12]. In contrast, when a single PCR amplicon
underwent double dilutions and was subjected to melt curve analysis (Figure 1E), no shifts in the derivative peaks were observed between
the various concentrations and temperature changes, further confirming that the temperature left shifts of the derivative peaks of the
D-B primer melt curve indicated the existence of at least two primer configurations. Similar results were obtained with double dilutions
of amplicons derived from RT-PCR using SARS-CoV-2 RNA template and D-B primer mix #8 (Supplementary Figure 3).

Proof of principle of D-B primers with GAPDH
As preliminary proof of principle for the performance of the D-B primers in a PCR reaction, we designed GAPDH primers in both normal
and D-B configurations (Supplementary Table 1: primer pairs 1 and 2, respectively). We utilized RNA from HuH-7 cells as template for
the RT-PCR reaction. Of note, human GAPDH has 67 pseudogenes [13] and therefore genomic DNA can serve as template for a PCR
reaction, with amplicons similar in size to cDNA that is reverse-transcribed from its mRNA. Supplementary Figure 4 compares end point
PCR amplifications utilizing both normal and D-B primers on agarose gel. Both primers amplified the GAPDH template whether using
a column-derived RNA preparation, known to contain contaminations of genomic DNA which in turn contains GAPDH pseudogenes
(Supplementary Figure 4, lanes 2 and 3) or cDNA reverse-transcribed from DNase I-treated RNA (Supplementary Figure 4, lanes 6 and 7).
When RNA preparation was treated with DNase I and subjected to PCR without reverse transcription, no GAPDH amplicon was detected,
further showing the specificity of both normal and D-B primers. As expected, there was a size difference of the PCR amplicon between
the normal and D-B primers (135 and 152 bp, respectively), and as a result of the amplicon size, the signal of the amplicon of the D-B
primer was more intense than the normal primer, because it binds more SYBR Green molecules.

Validation of D-B primers using SARS-CoV-2 synthetic RNA N
In order to further assess the efficacy of the D-B primers, we performed an intra-assay reproducibility test using TaqMan qPCR in ten repli-
cates with SARS-CoV-2 synthetic RNA as template and D-B primer mix #8. As can be observed in Supplementary Figure 5, high Ct repro-
ducibility was achieved with the D-B primers (Ct mean ± SD = 31.950 ± 0.140; n = 10; coefficient of variation = 0.437%).

Next we utilized one-tube RT-qPCR using SARS-CoV-2 synthetic RNA as template with decimal dilutions of 8 × 105 to 8 × 102 copies
per tube (Figure 2A–C) with D-B primer mix #8 from region 1 and VIC-TqM probe #12. The template was amplified in a dose-related
manner, as shown in the amplification plot (Figure 2A). Figure 2B shows the PCR reaction products from Figure 2A in an agarose gel.
Figure 2C depicts the plot of Ct values versus log RNA copy number. The slope of the equation -3.3359 represents 99.42% amplification
efficiency with linearity of R2 = 0.9816. We also used primer mix #10 and FAM-TqM probe #13 from region 2 to demonstrate one-tube
RT-qPCR amplification of SARS-CoV-2 synthetic RNA N (Figure 2D). The amplification in the one-tube RT-qPCR reaction suggests that
the reverse transcription reaction at 42◦C (a temperature at which the primers are expected to be in D-B configurations) was primed by
the 3′ overhang of the antisense D-B primers, as illustrated in Figure 1B.

Exploring D-B primers with fast PCR systems
One of the features that proved to be crucial during the COVID-19 pandemic was the need for prompt results of the PCR tests. In order to
evaluate the D-B primers under rapid PCR conditions, we explored their performance with TqM fast systems. First, we used D-B primer
mix #10 from region 2 with synthetic SARS-CoV-2 cDNA equivalent to 2 × 104 RNA copies as template with TqM probe #13 and TqM
fast kit (Figure 3A). Amplification was noted both at the real-time amplification plot and agarose gel (Figure 3A, insert). We also utilized
D-B primer mix #8 in one-tube RT-qPCR with 2 × 105 synthetic RNA SARS-CoV-2 copies as template, TqM fast kit without UDG and TqM
probe #12 (Figure 3B). Shown are the amplification plot as well as the agarose gel (Figure 3B, insert). We also studied real-time duplex
qPCR using cDNA from SARS-CoV-2 synthetic RNA N as template, TqM fast kit with UDG and D-B primer mixes #8 and #10. Figure 3C
& D show amplification plot and agarose gel of PCR, respectively; arrows indicate duplex amplification. Thus different D-B primers are
compatible with fast one- and two-tube PCR as well as duplex amplification.

Next we explored the use of the D-B primers for SARS-CoV-2 detection in nasopharyngeal swabs from patients. Supplementary Figure
6A depicts the amplification plot of three decimal dilutions of cDNA reverse transcribed from virus RNA extracted from nasopharyngeal
swab of patient S1, using SYBR Green qPCR with primer mix #8, and the efficiency plot (insert) with a slope of -3.2942 (101.17% effi-
ciency, R2 = 0.9934). Supplementary Figure 6B shows the melt curve of the PCR reaction suggesting one pure amplicon for each of the
three dilutions.

We tested the D-B primers with the fast TqM system, using cDNA obtained from three nasopharyngeal swabs of patients (S1, S2, S3)
who tested positive for SARS-CoV-2. Supplementary Figure 7A shows the amplification plot of patients’ cDNAs and control cDNA from
reverse-transcribed SARS-CoV-2 synthetic RNA, with D-B primer mix #8. We also tested the TqM fast kit with one-tube RT-qPCR with RNA
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Figure 2. One-tube RT-qPCR using double-bubble primer mixes #8 and #10. (A–C) Dose–response curves using double-bubble primer mix #8 and
VIC-TqM probe #12 and decimal dilutions of SARS-CoV-2 synthetic RNA N. (A) Real-time amplification plot. Ct values: 8 × 105 copies, 22.82; 8 × 104

copies, 26.27; 8 × 103 copies, 30.55; 8 × 102 copies, 32.51. (B) 5% agarose gel of the PCR amplification products. Lane 1: ultra-low-range ladder; lanes
2–5: 139-bp amplicons of 8 × 105 to 8 × 102 RNA copies per tube. Also included in the PCR reaction mix were 2× TqM buffer without UDP and iScript
reverse-transcriptase. (C) Efficiency plot of the PCR reaction depicted in panel A. Slope = -3.3359 represents PCR reaction efficiency of 99.42%;
R2 = 0.9816. (D) One-tube RT-qPCR using double-bubble primer mix #10 from region 2 using SARS-CoV-2 synthetic RNA (2 × 104 copies per tube) and
FAM-TqM probe #13. RT-qPCR was performed with standard conditions.

extracted from positive patient S2 and control synthetic RNA. Shown in Supplementary Figure 7B is the amplification plot as well as the
agarose gels of the samples (insert).

We next evaluated the efficiency of the D-B primers in detecting SARS-CoV-2 with the fast TqM system. Figure 4 show a dose–
response curve of decimal dilutions of SARS-CoV-2 RNA from the nasopharyngeal swab of patient S1. Synthetic RNA of the N gene
of SARS-CoV-2 served as positive control. One-tube RT-qPCR using fast TqM buffer kit was performed. Figure 4A & B show the PCR
amplification plot and agarose gel, respectively. Figure 4C shows the efficiency plot (slope = -3.1843, efficiency = 106.08%; R2 = 0.9988).
Compared with synthetic RNA and allowing for the sample dilutions, it is calculated that patient S1’s nasopharyngeal swab contains
1.4 × 106 virus RNA copies per microliter, and the limit of detection is 3.76 SARS-CoV-2 virus copies per reaction.

To test the validity of several D-B primers from different regions of the SARS-CoV-2 genome to detect SARS-CoV-2 virus, we performed
one-tube RT-qPCR with the TqM fast system (Figure 5). The primers are from both region 1 and 2 of the SARS-CoV-2 N gene (as specified
in Supplementary Figure 2 & Supplementary Table 1). We used normal control primer mix #3, D-B primer mix #4 and D-B primer mix #8
from region 1; primer mixes #3, #4 and #8 can use the same VIC-TqM probe #12. We also used D-B primer mix #10 from region 2. Figure 5
shows the amplification plot as well the agarose gel with primer mixes #3, #4, #8 and #10 with SARS-CoV-2 RNA from patient S3. Note
the amplifications with the D-B primer mixes #4, #8 and #10 and no amplification with the normal shorter primer mix #3 because of the
high annealing/extension temperature used (70◦C) as well as the shorter times for the cycling between 95 and 70◦C, conditions that
favor the longer D-B primers’ performance. It should be noted that primer mix #3 contains the normal 20-nt primers that are routinely
used in PCR reactions. The fact that they did not amplify under these conditions further demonstrates the advantage of using the D-B
primers.
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glycosylase (UDG) assayed in duplicates. Insert depicts 5% agarose gel; lane 1: ultra-low-range (ULR) ladder; lanes 2 & 3: template cDNA; lanes 4 & 5:
non-template control (NTC). Ct average values: cDNA, 28.60; NTC, undetermined. (B) One-tube RT-qPCR using SARS-CoV-2 synthetic RNA N template
and D-B primer mix #8, VIC-TqM probe #12, TqM fast kit without UDG iScript reverse transcriptase, assayed in duplicate. Insert depicts 5% agarose
gel; lane 1: ULR ladder; lanes 2 and 3: template RNA; lanes 4 and 5: NTC. Ct average values: RNA, 24.63, NTC, undetermined. (C) Duplex qPCR using
SARS-CoV-2 synthetic RNA N template and TqM fast kit with UDG. Ct values: primer 8, 26.13; primer 10, 32.19; duplex primers 8 + 10, 26.36 and 30.27,
respectively; NTC, undetermined. (D) 5% agarose gel of samples shown in panel C. Lane 1: ULR ladder; lane 2: primer D-B mix #8 (amplicon 139 bp);
lane 3: D-B primer mix #10 (amplicon 158 bp); lane 4: duplex of both primers #8 and #10 (amplicons 139 and 158 bp). Arrows (C & D) show duplex
amplifications in the same tube with D-B primers #8 and #10. PCR was performed using fast conditions with 40 (A, C & D) and 30 (B) cycles.

Cost–effectiveness of D-B PCR evaluation
With the advancement of the RT-PCR reaction, one of its most important components, Taq polymerase, has constantly improved, en-
hancing specificity, processivity and speed. As of today, most commercial PCR kits include the more advanced Taq polymerases. The
improvements in Taq polymerase performance were naturally accompanied with increased prices: up to tenfold per unit between the
most advanced compared with the original enzymes. Given that the D-B primers provide hot-start properties and hence improved speci-
ficity, we wished to explore this feature by comparing the D-B primers with conventional primers of matching size and configuration. In
addition, we used the less expensive Taq polymerases without hot-start capabilities and introduced to the experiment less favorable
PCR conditions (see Figure 6 legend) that are known to promote nonspecificity and reduced efficiency. Figure 6 shows an agarose gel of
end point PCR reaction comparing four primers and two non-hot-start Taq polymerases (from NEB and FroggaBio) and cDNA template
reverse-transcribed from synthetic RNA of the N gene of SARS-CoV-2. It can be seen that both Taq polymerase sources were generally
comparable. D-B primer mix #8 exhibited the most robust and specific amplification with both enzyme sources, compared with the con-
trol primer mixes #5 (20-nt normal), #6 (30-nt normal) and #7 (20-nt sequence-specific plus 10-nt random). Primer mixes #5, #6 and #7
resulted in extra amplification bands and weaker signal. Note that a priori, a weaker signal was anticipated from primer mix #5 because
it produces a shorter amplicon and hence lower reporter dye binding on the agarose gel. Taken together, this experiment demonstrates
the advantage of the D-B primers compared with the control primers.

Next we wished to test the efficacy of the D-B primers in real-time qPCR with the non-hot-start Taq polymerases from NEB and
Bio-Helix, and under fast conditions. Supplementary Figure 8 (upper panels) shows the amplification with D-B primer mix #8, using
cDNA reverse transcribed from synthetic RNA of gene N of SARS-CoV-2 with NEB Taq polymerase. Supplementary Figure 8 (lower
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shown in panel A; lane 1: ultra-low-range ladder; lanes 2–8: decimal dilutions of virus RNA; lane 9: SARS-CoV-2 synthetic RNA N; lane 10: NTC. (C)
Efficiency plot of Ct versus log RNA dilutions depicted in panel A (slope = -3.1843; R2 = 0.9988; efficiency = 106.8%). Taking into consideration the
dilution of the nasopharyngeal swab and using the synthetic RNA as guide, patient S1 has 1.4 × 106 virus RNA copies per microliter nasopharyngeal
swab and the limit of detection is 3.76 SARS-CoV-2 virus copies per reaction. Ct values of decimal dilutions: 10: 19.71; 10-1: 23.14; 10-2: 26.12; 10-3:
29.60; 10-4: 32.83; 10-5: 35.49; 10-6: 36.39; synthetic RNA 2 × 104 copies: 24.31; NTC: undetermined. RT-qPCR was performed under fast conditions with
40 cycles.

panels) shows one-tube RT-qPCR using synthetic RNA of gene N of SARS-CoV-2 as a template. These results demonstrate that the D-B
primers are compatible with the original Taq polymerase and with the TaqMan system under fast conditions.

In order to apply all the special improved features described above for the D-B primers, we performed one-tube real time RT-qPCR on
RNA of nasopharyngeal swabs from patients who tested either positive or negative (Figure 7; lanes 2 and 3, respectively) for SARS-CoV-2
at St. Michael’s Hospital molecular diagnostic lab. We also used non-template control (lanes 4 and 5) or synthetic RNA of gene N of
SARS-CoV-2 (lane 6) as negative or positive controls, respectively. The reagents used in this experiment were D-B primer mix #4, Taq
polymerase (FroggaBio), iScript reverse transcriptase, VIC-TqM probe #12, added dNTPs and ROX as reference dye. The reaction was
assembled at room temperature and subjected to real time RT-qPCR using the following conditions: 42◦C, 15 min → 95◦C, 1 min; 30
cycles of 95◦C, 1 s → 70◦C, 20 s. After considering the volumes of the nasopharyngeal swabs and dilutions of the viral RNA taken for the
assay, the volume of the RNA sample is equivalent to 0.067 μl of the nasopharyngeal swabs. Taken together, the results shown in Figure 7
demonstrate the fast, specific and robust attributes of the D-B primers and their compatibilities with cost-effective Taq polymerases for
detecting SARS-CoV-2.

The difference between the melting temperature (95◦C) and the annealing/extension temperature (70 vs 60◦C, for the 20- and 30-nt
primers) is lower for the D-B primers. This results in a 71.4% reduction in cycling time of D-B 30-nt primers compared with the 20-nt
primers. Due to the robust qPCR amplification with the D-B primers, we were able to reliably use the reaction with 30 cycles. Compared
with the 40 cycles used in regular qPCR reactions, this resulted in a further 75% reduction in cycling time using D-B primers compared with
normal primers. Together, this could bring the total cycling time to about 50% using the D-B primers. Taken together, using cheaper Taq
polymerases as shown here which are also compatible with fast PCR conditions with the D-B primers, renders the method cost-effective
compared with the more expensive Taq polymerases that are used routinely in diagnostic kits.
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Figure 5. Comparison of double-bubble primers from different regions of SARS-CoV-2 gene N using the fast system. One-tube RT-qPCR was
performed utilizing a fast TqM system without uracil-DNA glycosylase and RNA extracted from nasopharyngeal swabs of patient S3 as
template, double-bubble (D-B) primer mix #10 with FAM-TqM probe #13 from region 2, D-B primer mixes #4 and #8 and normal primer mix #3 with
VIC-TqM probe #12 from region 2. (A) Amplification plot. (B) 5% agarose gel of PCR products depicted in panel A. Lane 1: ultra-low-range ladder; lane 2:
D-B primer #10 (amplicon 158 bp); lane 3: D-B primer #8 (amplicon 139 bp); lane 4: normal primer #3 (expected amplicon 96 bp); lane 5: D-B primer #4
(amplicon 115 bp). Note no amplification in lane 4 with normal primer mix #3, presumably because of the shorter standard primers that did not amplify
under 70◦C annealing/extension and the fast conditions. Ct values: primer #10, 19.24; primer #8, 19.75; primer #4, 19.44; primer #3 and non-template
control, undetermined.

Using D-B primers to detect the N501Y mutation
The N501Y mutation has been detected in three variants of concern (VOC) – �, � and � – that have been associated with increased trans-
missibility or detrimental change in COVID-19 epidemiology, possible increased virulence and decreased effectiveness of public health
measures [14]. The method of choice for detecting VOCs is by on-site PCR and then genotyping the SARS-CoV-2 VOC by sequencing,
usually utilizing off-site facilities. It could be useful to accelerate both the detection and genotyping calling by using the PCR machinery.
We posited that the D-B primers might be useful for both detection and genotyping using RT-PCR. The amino acid asparagine is encoded
by the codon aAT; the a→t mutation yields the codon tAT, which encodes tyrosine. Most advanced Taq polymerases employed in PCR
reactions have proofreading 3′ to 5′ exonuclease activity which could remove the 3′ t nucleotide at the end of the mutant primer when
it is used with a wild-type template and thus both mutant and wild-type viruses would yield a positive call. Hence using Taq polymerase
without proofreading capabilities offers an advantage over the more advanced Taq polymerases. Our D-B primers’ hot-start properties
can replace Taq polymerases with hot-start capabilities. To demonstrate the proof of principle of the D-B primers for distinguishing be-
tween the wild-type and the mutated virus, we opted to use end point PCR. Although end point PCR is less sensitive than real-time qPCR,
it is more accurate in detecting non-specific amplicons on agarose gels. In addition, in rural areas where access to expensive real-time
PCR machines and reagents is limited, end point PCR is more affordable. To determine whether a D-B primer might be able to detect the
N501Y mutation, we designed it with the point mutation a→t at the 3′ end, as described previously [15]. To confirm the D-B primer’s utility
with authentic patient samples, we ran a one-tube end point RT-PCR with RNA from N501Y-mutated VOC3 RNA extracted from nasopha-
ryngeal swabs of patients with a confirmed mutation (Figure 8, lanes 2–4) or wild-type (Supplementary Figure 1, lanes 5–7). D-B primer
mix #8 served as positive control (lanes 2 and 5). There is an obvious distinction between the bands’ intensity when using wild-type or
mutation primers with the opposite genotype RNA (compare lanes 3 vs 4 and lanes 6 vs 7 in Figure 8A; and the bands’ densitometry in
Figure 8B). These results suggest that wild-type and mutation primer mixes can be used for both detecting and genotyping an unknown
nasopharyngeal swab using RT-PCR in the same run.

Here we have shown evidence for the existence of the D-B primers in stem–loop and homodimer configuration. This is important
because this knowledge is crucial when considering parameters like annealing temperatures. The D-B primers are more specific than the
conventional primers because they offer hot start at the pre-cycling phase of the PCR. In addition to our previously described hot-start
primers [3], the D-B hot-start primers are designed with added improvement of the 3′ overhang that facilitates reverse transcription in
addition to the PCR reaction. The D-B primers are 30 nt in size, longer than the traditional 20-nt primers, and as such produce a longer am-
plicon that enhances the signal both with real-time RT-qPCR and with end point agarose gels. While this feature also applies to the other
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Demonstration of D-B primer mix #8 efficacy using unfavorable PCR conditions
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Figure 6. Efficacy and advantage of double-bubble primers compared with other comparable control primers using end point PCR. In order to
demonstrate the advantage of the double-bubble (D-B) primers over other primers, we used comparable primers that control for primer size and
configuration. Reactions were assembled under the following unfavorable PCR conditions: 1. Assembled and incubated 1 h at room temperature. 2. Taq
polymerase from two sources (NEB and FroggaBio) without hot-start properties. 3. No hot-start procedure (e.g., inserting the PCR tube into the
apparatus at high temperature). 4. High Taq polymerase concentration (1.25 U/10 μl reaction; five-times the recommended concentration). 5. High
primer concentration (0.9 μM; 4.5- to nine-times the recommended concentration). 6. High Mg++ concentration (6 mM) (threefold than the
recommended concentration). The primers that were compared with the D-B primer mix #8, all are from region 1 (Table S1 and Figure S2), each control
different aspect of the D-B primers: Primer mix #5 are conventional 20 nt normal linear primers and are complimentary to the target template. Primer
mix #6 contains 30-nt normal linear primers that are the same length as the D-B primers and all 30 nucleotides are complementary to the target
template. Primer mix #7 contains 30-nt linear primers that are the same length as the D-B primer #8, the 20 nucleotides at the 3′ end are
complementary to the target template and the 10 nucleotides at the 5′ end are random template-non-specific but do not assume D-B configurations.
Primer mix #8 contains 30-nt D-B primers; the 20 nucleotides at the 3′ end are complementary to the target template and the 10 nucleotides at the
5′ end are random sequence non-specific but the 5′ end is designed to form a stem–loop and double-homo-primer configuration. Reverse-transcribed
cDNA from synthetic SARS-CoV-2 RNA N was used as template with added 0.2 mM dNTPs. Lanes 2, 6, 10, 14: 20-nt sequence-specific primer mix #5
(amplicon 119 bp); lanes 3, 7, 11, 15: 30-nt sequence-specific primer mix #6 (amplicon 139 bp); lanes 4, 8, 12, 16: 30-nt primers mix #7 comprising 20-nt
sequence-specific primers at the 3′ end plus 10-nt non-sequence-specific primers at the 5′ end (amplicon 139 bp); lanes 5, 9, 13, 17: D-B 30-nt primers
comprising 20-nt sequence-specific primers at the 3′ end plus 10-nt non-sequence-specific primers at the 5′-end (amplicon 139 bp). Lanes 2–9: NEB
Taq polymerase. Lanes 10–17: FroggaBio Taq polymerase. Asterisks designate expected migration of specific amplicon. Note the superior
performance of the D-B primers compared with the other control primers in terms of specificity and robustness of the amplification. PCR conditions:
95◦C,10 min; 40 cycles of 95◦C,15 s→72◦C,1 min; 72◦C, 5 min; 4◦C hold.

linear random-coiled 30-nt primers studied here (e.g., primer mixes #6 and #7; Supplementary Table 1), the D-B primers produce more
robust and specific amplicons (Figure 6). Because of the longer primer size, the D-B primers can be used at higher annealing/extension
temperatures (e.g., 70◦C used here), which shortens the cycling phase and thus the overall reaction time. The hot-start characteristic of
the D-B primers removes the need to use more expensive hot-start Taq polymerases, thereby lessening the expense of a PCR reaction. In
addition, the less expensive non-hot-start Taq polymerases are efficient under fast PCR conditions which further makes them useful in
accelerating the diagnostic results. Further, we showed that by using point-mutated primers, SARS-CoV-2 could be tested and genotyped
simultaneously.

Future perspective
We would like readers, including private enterprises, to capitalize on the D-B primer concept and develop improved PCR-based kits for
basic research of gene expression and rapid and affordable kits for medical diagnostic applications.

Conclusion
• Double-bubble primers exist in two configurations: stem–loop and primer dimers.
• Double-bubble primers contain three main features for efficient RT-PCR: 3′ overhang for reverse transcription, stem structure for PCR

hot start and target-specific sequence for PCR amplification.
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Figure 7. One-tube RT-qPCR demonstrating the fast, specific, cost-effective and robust attributes of the COVID-19 diagnostic assay with
double-bubble primers. The reaction mixture contained hot-start double-bubble (D-B) primer mix #4, VIC-TqM probe #12, cost-effective non-hot-start
Taq polymerase (FroggaBio), reverse transcriptase (iScript), synthetic SARS-CoV-2 RNA gene N as template, added dNTPs and ROX dye for internal
calibration. The reaction was assembled at room temperature and subjected to real time RT-qPCR using the following fast conditions:
42◦C, 15 min; 95◦C,1 min; 30 cycles of 95◦C, 1 s → 70◦C, 20 s. The amplification plot and (insert) 5% agarose gel depict the amplification of SARS-CoV-2
RNA extracted from the nasopharyngeal swabs of patient S1 (lane 2) and negative patient N1 (lane 3), no-template controls (lanes 4 and 5) and
SARS-CoV-2 gene N synthetic RNA as positive control (lane 6). Note the amplification in the real-time plot and the 115-bp band in the 5% agarose gel
with SARS-CoV-2 virus or synthetic RNA (lanes 2 and 6), with no amplifications in the negative control N1 (lane 3) or NTC (lanes 4 and 5). Lane 1:
ultra-low-range ladder. Ct values: positive patient S1: 23.95; synthetic RNA: 23.84; negative patient N1 and NTC: undetermined.
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Figure 8. Utilizing double-bubble primers in RT-qPCR to detect N501Y mutation using end point RT-PCR. (A) 5% agarose gel showing detection of
SARS-CoV-2 N501Y-mutated RNA extracted from nasopharyngeal swabs of patient VOC3 or wild-type viral RNA extracted from nasopharyngeal swabs
from patient S1. Templates for PCR reactions: lanes 1 and 8: ultra-low-range ladder; lanes 2–4: VOC3 RNA; lanes 5–7: S1 RNA, lanes 9 and 10:
non-template control. Primer mixes: lanes 2 and 5: region 1 gene N primer mix #8 positive controls; lanes 3, 6, 9: region 3 gene S wild-type primer mix
#11a + #11c; lanes 4, 7, 10: region 3 gene S N501Y mutation (MUT) primer mix #11b + #11c. (B) Densitometry of the agarose bands depicted in lane A.
We designed a double-bubble primer with the point mutation a→t at the 3′ end to detect the viral point mutation. In addition, we introduced a c→t
mismatch mutation at position -5 of the 3′ overhang to lower the annealing intensity of the sense primers to the opposite genotype. Wild-type sense
primer #11a has base ‘a’ at the 3′ end (Supplementary Table 1). Sense primer #11b has a point mutation ‘t’ at the 3′ end to detect the a→t replacement
of the N501Y mutation. These results suggest that these two primer mixes can be used for both detecting and genotyping an unknown nasopharyngeal
swab using RT-PCR in the same run. Furthermore, by adding to the genotyping primers a primer mix from a non-mutated region of the virus (e.g., primer
mix #8), it will be possible to determine by duplex PCR the genotype and the level of the virus simultaneously. The RNA from the nasopharyngeal swabs
of the wild type S1 and the VOC3 viruses were initially sequenced by the St. Michael’s Hospital diagnostic lab, and confirmed by us by sequencing the
purified RT-PCR amplicons at the Centre for Applied Genomics DNA Sequencing Facility (Hospital for Sick Children, Toronto, Canada).
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• Double-bubble primers offer fast, specific and robust improvement in PCR amplification and are compatible with cost-effective Taq
polymerases.

• We show evidence that double-bubble primers are useful in detection of gene expression in general, and detection and genotyping of
SARS-CoV-2 in particular.

Supplementary data
To view the supplementary data that accompany this paper please visit the journal website at: www.future-science.com/doi/suppl/10.
2144/btn-2021-0063
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