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Genomic selection (GS) is increasingly applied in breeding programs of major
aquaculture species, enabling improved prediction accuracy and genetic gain compared
to pedigree-based approaches. Koi Herpesvirus disease (KHVD) is notifiable by the
World Organization for Animal Health and the European Union, causing major economic
losses to carp production. GS has potential to breed carp with improved resistance
to KHVD, thereby contributing to disease control. In the current study, Restriction-site
Associated DNA sequencing (RAD-seq) was applied on a population of 1,425 common
carp juveniles which had been challenged with Koi herpes virus, followed by sampling of
survivors and mortalities. GS was tested on a wide range of scenarios by varying both
SNP densities and the genetic relationships between training and validation sets. The
accuracy of correctly identifying KHVD resistant animals using GS was between 8 and
18% higher than pedigree best linear unbiased predictor (pBLUP) depending on the
tested scenario. Furthermore, minor decreases in prediction accuracy were observed
with decreased SNP density. However, the genetic relationship between the training and
validation sets was a key factor in the efficacy of genomic prediction of KHVD resistance
in carp, with substantially lower prediction accuracy when the relationships between the
training and validation sets did not contain close relatives.

Keywords: KHVD, carp, RAD-seq, genomic selection, aquaculture breeding

INTRODUCTION

Genomic selection (GS) has become a cornerstone of genetic improvement in both plant
and livestock breeding, enabling improved prediction accuracy, control of inbreeding, and (in
some cases) reduction in generation interval compared to traditional pedigree-based approaches
(Meuwissen et al., 2016; Hickey et al., 2017). The landmark paper of Meuwissen et al. (2001)
highlighted the concept of breeding value prediction based on the joint merit of all markers
distributed throughout the genome, and the advent of high-throughput DNA sequencing and
development of SNP arrays in the subsequent decade made this concept a practical reality. While
the application of genomics in aquaculture breeding has traditionally lagged behind the plant
and terrestrial livestock sector, it is gaining momentum with reference genome assemblies and
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SNP arrays now available for most of the key aquaculture
species (Robledo et al., 2017; Yue and Wang, 2017). Both
simulation and empirical studies suggest that considerable
improvement in breeding value prediction accuracy is plausible,
even with relatively modest SNP marker densities (Sonesson and
Meuwissen, 2009; Lillehammer et al., 2013; Ødegård et al., 2014;
Tsai et al., 2015; Correa et al., 2017; Vallejo et al., 2017, 2018;
Robledo et al., 2018).

Infectious diseases present a major and persistent threat to
sustainable aquaculture production, and breeding for improved
host resistance is an increasingly important component of
mitigation (Houston et al., 2017). Common carp (Cyprinus
carpio) is one of the world’s most important freshwater
aquaculture species, particularly in Asia and Europe. However,
koi herpesvirus disease (KHVD), also known as Cyprinid
herpesvirus-3 (CyHV-3) disease is a major threat to carp farming
and is listed as a notifiable disease by the European Union
(Taylor et al., 2010) and the World Organization for Animal
Health (OIE, 2018). Encouragingly, resistance to KHVD has
been shown to be a highly heritable trait with estimates ranging
between 0.50 and 0.79 (Ødegård et al., 2010; Palaiokostas et al.,
2018a). The potential of selective breeding for improved KHVD
resistance in carp (utilizing information from challenge trials)
has been illustrated by several studies which demonstrated large
variation in survival both between-family (Dixon et al., 2009;
Tadmor-Levi et al., 2017) and between strain (Shapira et al.,
2005; Piačková et al., 2013). Further, a significant QTL associated
with resistance to KHVD has been identified (Palaiokostas et al.,
2018a). Nevertheless, the potential of GS for improving KHVD
resistance in carp has not yet been studied.

While SNP arrays are available for several aquaculture
species, and are commonly used in some of the most advanced
commercial breeding programs (e.g., Atlantic salmon), they tend
to be relatively expensive and can suffer from ascertainment bias
(Robledo et al., 2017). Genotyping by sequencing technology,
such as RAD-seq (Baird et al., 2008) and subsequent variants,
have also been effective in studying complex traits such as
disease resistance in aquaculture species, and testing GS (Vallejo
et al., 2016; Barría et al., 2018; Palaiokostas et al., 2018b; Aslam
et al., 2018). Disease resistance is particularly amenable to
GS, because typically it is not possible to record on selection
candidates themselves (Yáñez et al., 2014), and is typically
measured on their close relatives (e.g., full siblings) in aquaculture
breeding programs (Gjedrem and Rye, 2016). While effective,
the limitations of current GS methods in aquaculture include
(i) that the genotyping is typically expensive, partially due
to the high-density marker genotyping, and (ii) the accuracy
of prediction drops rapidly when the genetic relationship
between the training and validation populations decreases (e.g.,
Tsai et al., 2016).

Family-based breeding programs are at a formative stage in
common carp, including a program focused on the Amur mirror
carp breed in Europe (Prchal et al., 2018a,b), where improvement
of disease resistance is a major breeding goal. The main aim of
the current study was to investigate the potential of GS to predict
host resistance to KHVD in common carp using genome-wide
SNP markers generated by RAD sequencing. An additional aim

was to investigate the importance of SNP marker density in
genomic prediction accuracy, with a view to future low-density
SNP panels for cost-effective GS. Finally, the impact of genetic
relationship between the training and validation sets was assessed
by comparing prediction accuracy in groups of closely and
distantly related fish.

MATERIALS AND METHODS

Population Origin and Disease Challenge
The origin of the samples and the details of the disease challenge
experiment have been fully described previously (Palaiokostas
et al., 2018a). In brief, the study was performed on a population
of Amur mirror carp that was created at the University of South
Bohemia in České Budějovice, Czech Republic in May 2014 using
an artificial insemination method (Vandeputte et al., 2004). The
population was the result of four factorial crosses of five dams
x ten sires (20 dams and 40 sires in total). A cohabitation KHV
challenge was performed on randomly sampled progeny of these
crosses. Mortality of individual fish was recorded for a period of
35 days post infection (dpi), by which stage the mortality level
had returned to baseline. In total, phenotypic records regarding
survival/mortality were documented for 1,425 animals. Presence
of KHV in a sample of dead fish (n = 100) was confirmed by PCR
according to guidelines by the Centre for Environment, Fisheries
and Aquaculture Science, United Kingdom (Cefas) (Pokorova
et al., 2010). The entire experiment was conducted in accordance
with the law on the protection of animals against cruelty (Act
no. 246/1992 Coll. of the Czech Republic) upon its approval by
Institutional Animal Care and Use Committee (IACUC).

RAD Sequencing and Parentage
Assignment
The RAD library preparation protocol followed the methodology
originally described in Baird et al. (2008), presented in detail
in Palaiokostas et al. (2018c). In brief, RAD libraries were
sequenced by BMR Genomics (Padova, Italy) in fourteen lanes
of an Illumina NextSeq 500, using 75 base paired-end reads (v2
chemistry). Reads missing the restriction site, with ambiguous
barcodes and PCR duplicates were identified and discarded
using the Stacks v2.0 software (Catchen et al., 2011). Remained
sequenced reads were aligned to the common carp reference
genome assembly version GCA_000951615.2 (Xu et al., 2014)
using bowtie2 (Langmead and Salzberg, 2012). Uniquely aligned
reads were retained for downstream analysis. The aligned reads
were sorted into RAD loci and SNPs were identified from both
P1 and P2 reads using the Stacks software v2.0 (Catchen et al.,
2011). Opposed to our previous study (Palaiokostas et al., 2018b)
variant calling in Stacks v2.0 and above utilizes information
from both P1 and P2 ends, while prior versions were using only
P1 ends. SNPs were detected using gstacks (–var-alpha 0.001 –
gt-alpha 0.001 –min-mapq 40). Only single SNPs from each
individual RAD locus where considered for downstream analysis
to minimize the possibility of genotypic errors. SNPs with minor
allele frequency (MAF) below 0.05, greater than 25% missing
data were discarded. The R package hsphase (Ferdosi et al., 2014)
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was used for parentage assignment allowing for a maximum
genotyping error of 2%. The aligned reads in the format of bam
files were deposited in the National Centre for Biotechnology
Information (NCBI) repository under project ID PRJNA414021.

Genomic Prediction Models
Overall binary survival (0 = dead, 1 = alive) was used as the
phenotype to assess the potential of GS for improved resistance
to KHVD in common carp. Several commonly used GS models
were tested on the data using the R package BGLR for binary traits
(Pérez and de los Campos, 2014): specifically rrBLUP, BayesA,
BayesB (Meuwissen et al., 2001) and BayesC (Habier et al.,
2011). In addition, pedigree-based BLUP (Henderson, 1975) was
evaluated using the same software. The general form of the fitted
models was:

l = Xb+ Zα+ e, (1)

where l is the vector of latent variables, b is the vector
of the fixed effects (intercept, standard length), X is the
incidence matrix relating phenotypes with the fixed effects, Z
the incidence matrix relating the underlying liability with the
genotypes, α the vector of SNP effects using the corresponding
prior distribution for each of the aforementioned Bayesian
models and e the vector of residuals. The parameters of each
model were estimated by Markov chain Monte Carlo (MCMC)
using Gibbs sampling (110,000 iterations; burn-in: 10,000; thin:
10). Convergence of the resulting posterior distributions was
assessed both visually (inspecting the resulting MCMC plots)
and analytically using the R package coda v0.19-1 software
(Plummer et al., 2006).

Prediction Metrics for KHVD Resistance
The prediction performance of the utilized models was tested
using the following metrics:

• Accuracy
• Receiver operator characteristic (ROC) curves

The prediction accuracy was approximated as:

r = (GEBV, y)/h, (2)

where y is the vector of recorded phenotypes, (G) EBV is the
(genomic) estimated breeding values and h is the square root of
the heritability (h2 = 0.50 using the genomic relationship matrix
as described in Palaiokostas et al., 2018a).

Receiver operator characteristic curves were used to assess
the efficacy of classifying the animals as resistant or susceptible,
using either the pedigree- or the genomic-based models. The
area under the curve (AUC) metric (Hanley and McNeil, 1982;
Wray et al., 2010) was used to interpret the performance of the
genomic prediction models, with values of 1 representing the
perfect classifier.

Genomic Prediction With Varying SNP
Densities
Genomic prediction models were applied using datasets of
varying SNP density using either MAF or linkage disequilibrium

(LD) values as thresholds for filtering. In particular, to obtain the
reduced density SNP panels for genomic prediction, a strategy
of retaining SNPs surpassing a sequentially increased MAF
threshold was applied, as described in Robledo et al. (2018). These
MAF thresholds were 0.1 (3,993 SNPs), 0.25 (1,619 SNPs) and
0.35 (802 SNPs).

In addition, reduced density SNP datasets were obtained by
applying filtering based on LD values. LD amongst SNP pairs
was calculated using SNPrune (Calus and Vandenplas, 2018).
Thereafter, only SNP pairs below a sequentially increased LD
value were retained. The LD thresholds were 0.15 (1,006 SNPs),
0.25 (2,895 SNPs), 0.35 (5,118 SNPs).

Five-fold cross-validation was performed for all the density
varying SNP datasets in order to test the efficiency of correctly
classifying animals in the validation set as resistant or susceptible.
The dataset was randomly split into sequential training (n = 1008)
and validation sets (n = 251). The number of resistant and
susceptible animals in each validation set was proportional
to the overall survival of the challenged population. In the
validation sets, the phenotypes of the animals were masked,
and their (genomic) estimated breeding values – (G)EBV –
were estimated based on the prediction model derived from the
training set. This cross-validation procedure was repeated five
times to minimize potential bias.

Testing the Impact of Genetic
Relationship on Genomic Prediction
Four different scenarios were tested for evaluating the impact
of genetic relationships between training and validation sets.
In scenario 1 (S1), the formation of training and validation
sets required the existence of full-siblings in both sets for each
family. For scenario 2 (S2) the formation of validation and
training sets allowed the existence of only half siblings between
the two sets (and no full siblings). Both in S1 and S2 the
cross validation procedure was repeated five times in order to
reduce potential bias, while the size of the validation set was
290 animals on each replicate. In scenario (S3) the genomic
prediction models were tested by sequentially assigning each
of the four factorial crosses (mean = 315 animals; sd = 81
animals) as a validation set, using the remaining three as
a training set. This approach resulted in relatively unrelated
training and validation sets, since it avoided the inclusion
of full/half sibs in both the training and the validation sets.
The genomic prediction models were tested on the dataset
comprised of the full SNP data. Since pedigree information was
not available for prior generations, pBLUP could not be used
for obtaining meaningful predictions across the factorial cross
groups. Finally, a scenario 4 (S4) was performed as control where
no restrictions were applied in the formation of training and
validation sets (i.e., they were taken at random). Cross validation
in S4 was performed five times with the size of the validation
sets being set to 290 animals. The S4 scenario was in fact similar
with the approaches tested in the previous section regarding
varying SNP densities with the only difference being the size
of the validation set. The full SNP dataset was used for all the
tested scenarios.
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RESULTS

Disease Challenge
The mean weight of the genotyped carp juveniles was 16.3 g
(SD 4.6) and the mean standard length (SL) was 77 mm
(SD 7.1). Mortalities began at 12 dpi reaching a maximum
daily rate between 21 and 24 dpi (98 – 130 mortalities per
day) decreasing thereafter (Supplementary File S2). Observed
mortalities displaying typical KHVD symptoms (weakness,
lethargy, loss of equilibrium, erratic swimming, sunken eyes,
excessive mucous production, discoloration, and hemorrhagic
lesions on the skin and gills).

RAD Sequencing and Parentage
Assignment
2.8 billion paired-end reads were uniquely aligned to the
common carp genome assembly (GenBank assembly accession
GCA_000951615.2) representing approximately 82% of reads
passing initial quality filters (missing restriction site, ambiguous
barcodes and PCR duplicates). Approximately 5% of those
reads had a mapping quality below 40 and were discarded. In
total 397,047 putative RAD loci were identified with a mean
coverage of 21X (SD = 7.6, min = 1.3X, max = 58.5X). 15,615
SNPs found in more than 75% of the genotyped animals and
with a MAF above 0.05 were retained for downstream analysis
(Supplementary File S1).

The carp progeny were assigned to unique parental pairs
allowing for a maximum genotypic error rate of 2%. In total
1,259 offspring were uniquely assigned (Supplementary File S3),
comprising 195 full-sib families (40 sires, 20 dams) ranging from
1 to 21 animals per family with a mean size of 6 (SD 4). The
individual dam contribution to the population ranged from 9 to
99 animals with a mean of 61 (SD 23), while the sire contribution
ranged from 7 to 53 animals with a mean of 30 (SD 12). In
addition, the mean weight and length per full-sib family were
approximately 16 (SD 2.8) g and 76 (SD 4.5) mm respectively.
Finally, mean survival per full sib family was 34% (Figure 1).

Impact of SNP Density on Genomic
Prediction
Datasets of varying genotyping density were comprised of 15,615
SNPs (D1; full dataset; Supplementary File S4) and in the
case of MAF as the filtering criterion of 3,993 (D2; MAF
0.1), 1,619 (D3; MAF 0.25) and 802 (D4; MAF 0.35) SNPs.
The accuracy of genomic prediction of breeding values was
assessed and compared to prediction using a pedigree-based
approach. Prediction accuracy with pBLUP was 0.49, compared
to 0.53 – 0.54 for the genomic prediction models applied using
D1 (Table 1). Prediction accuracies for D2 ranged between 0.52
and 0.53, while in the case of D3 and D4 prediction accuracy for
all genomic models was 0.49 and 0.46 respectively (Figure 2A).
Following estimation of ROC curves, the genomic models for D1
had a maximum AUC estimate of 0.74 as opposed to 0.71 using
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TABLE 1 | Mean survival accuracy for D11 (5-fold cross validation; 5 replicates).

Reps pBLUP rrBLUP BayesA BayesB BayesC

1st 0.47 0.51 0.52 0.52 0.52

2nd 0.49 0.54 0.55 0.55 0.54

3rd 0.48 0.52 0.53 0.54 0.53

4th 0.50 0.54 0.54 0.55 0.55

5th 0.49 0.52 0.53 0.54 0.52

Mean 0.49 0.53 0.53 0.54 0.53

115,615 SNPs.

pBLUP. AUC for D2 was 0.73 for all genomic models. In the case
of D3 and D4 the AUC for all genomic models was 0.71 and
0.70 respectively.

Regarding the reduced density SNP datasets obtained using
LD pruning, the number of SNPs in the sets with the LD
thresholds of 0.15, 0.25, and 0.35 were 1,006 (LD1), 2,895 (LD2)
and 5,118 (LD3) respectively. The genomic prediction accuracy
obtained for LD1 was very slightly higher than pBLUP using the
BayesB and BayesC models (<1% increase), while the AUC was
the same. In the case of rrBLUP and BayesA for the same SNP
dataset the estimates were 2 and 1% lower compared to pBLUP
for accuracy and AUC respectively. Using datasets of higher SNP
density resulted in the increase of both the accuracy and the
AUC metrics as observed previously for the reduced density
datasets filtered by MAF. In particular, accuracy for LD2 and LD3
ranged between 0.52 and 0.54 and AUC between 0.72 and 0.74
(Figure 2B), which were very similar to the accuracy and AUC
values obtained for the full SNP dataset (15,615 SNPs).

Impact of Genetic Relationship on
Genomic Prediction
For the scenario S1, where all animals in the validation set had
full sibs in the training set the genomic prediction accuracy
was approximately 0.56, which was marginally higher (∼ 4%
increase) than the random allocation of animals into training and
validation sets described above. In S2 where the design of the
validation set allowed the inclusion of only corresponding half
sibs in the training and validation set, the genomic prediction
accuracy fell to ∼ 0.53. In S3 where the training and validation
sets were set up to correspond to separate factorial crosses, the
mean accuracy for the genomic models was markedly lower, and
ranged between 0.16 and 0.20. Finally, in the scenario where
training and validation sets were set up without posing any
restrictions estimated, such that close relatives are likely to be
included in both sets, accuracy ranged between 0.52 and 0.54 for
the genomic prediction models and 0.49 for pBLUP (Table 2).

The obtained AUC values from the ROC curves were 0.74
(BayesB; Figure 3) and 0.72 for S1 and S2 for the genomic
prediction models, while the corresponding AUC values from
pBLUP were 0.72 and 0.69 respectively. For S3 the estimated AUC
values for the genomic models were again substantially lower and
ranged between 0.57 and 0.58. In S4, where no restrictions were
applied regarding the inclusion of full/half sibs on both training
and validation sets, the AUC values were between 0.72 and 0.74,
comparable to S1 and S2 (Table 2).

DISCUSSION

In the current study, genotyping by sequencing was applied
to study genomic prediction of resistance to KHVD in carp,
including testing the impact of SNP marker density and genetic
relationship between training and validation sets. While genomic
data in the form of genetic markers can be a valuable addition
to selective breeding for disease resistance, the methods of
applying the data depend on the underlying genetic architecture
of the trait. In the case of major QTL such as resistance to
Infectious Pancreatic Necrosis in salmon (Houston et al., 2008;
Moen et al., 2009), it may be most effective to use QTL-targeted
marker-assisted selection, and in the case of polygenic traits GS
is likely to be preferable. In our previous study we identified a
QTL associated with KHVD resistance in common carp located
on chromosome 33 (Palaiokostas et al., 2018a). However, this
QTL accounted for approximately 7% of the genetic variation in
the trait, highlighting that multiple additional loci are involved.
Further, using genomic prediction models that incorporate
variable selection – i.e., allow for the existence of QTL of large
effect – did not result in significant improvement in prediction
accuracy compared to ridge regression BLUP, which supports the
involvement of many genomic regions in the trait (Meuwissen
et al., 2001; Kizilkaya et al., 2010; Habier et al., 2013).

Since genotyping cost is generally related to SNP marker
density, determining the lowest SNP density that retains
maximum genomic prediction accuracy is a logical goal. In
the current study, reducing SNP density from 15,615 to
2,895 resulted in minor decreases in prediction accuracy, with
1,000–1,600 SNPs giving approximately the same accuracy as
pBLUP. Furthermore, the LD-pruned dataset of approximately
5,000 SNPs resulted in the same prediction accuracy performance
as the full dataset (15,615 SNPs). A more drastic impact of genetic
relationship between training and validation sets on prediction
accuracy was observed. The highest prediction efficiency was
observed in scenario S1 where animals in the validation set had
full siblings in the training set. Prediction efficiency decreased 6–
8% in the scenario allowing for only the inclusion of half-siblings
(and no full siblings) in the training and validation sets but was
still comparable to the results when the sets were established
at random. Interestingly, the impact of the lower genetic
relationships on pBLUP accuracy was greater, and it dropped by
approximately 16% between S1 and S2. This may indicate that
genomic prediction models have the potential to utilize distant
relationships compared to pBLUP, especially in the current set up
where there was only a two generation pedigree. Furthermore,
when the training set comprised three of the factorial cross
groups and the validation set comprised the fourth, thus resulting
in no shared full/half sibs between the two sets, the accuracy
dropped massively to 0.16–0.17 (15,615 SNPs). The decrease
in prediction accuracy with more distant relationships is to be
expected, thus close relationships between training and validation
sets is a necessary prerequisite for successfully implementing
GS (Meuwissen et al., 2013), and it highlights the importance
of obtaining genotype and phenotype records on close relatives
of selection candidates in future carp breeding programs using
genomic (and pedigree) selection.
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FIGURE 2 | Relative accuracy of genomic prediction models compared to pedigree BLUP for varying SNP densities. (A) SNP filtering based on minor allele
frequency and (B) SNP filtering based on linkage disequilibrium.

TABLE 2 | Prediction metrics for varying genetic relationships in the validation set.

Scenario pBLUP rrBLUP BayesA BayesB BayesC

Acc1 AUC2 Acc1 AUC2 Acc1 AUC2 Acc1 AUC2 Acc1 AUC2

S1 0.52 0.72 0.56 0.74 0.57 0.74 0.57 0.74 0.56 0.74

S2 0.45 0.69 0.53 0.72 0.52 0.72 0.52 0.72 0.52 0.72

S3 N/A N/A 0.17 0.57 0.16 0.57 0.18 0.58 0.20 0.57

S4 0.49 0.71 0.52 0.72 0.53 0.74 0.54 0.74 0.52 0.72

1Accuracy; 2Area under curve. Genetic relationships for the 4 tested scenarios were for S1: Full sibs on the training set for all animals of the validation set (n = 290), for
S2: Half sibs on the training set for all animals in the validation set (n = 290), for S3: cross validation performed for each of the breeding cross. No full/half sibs on the
training set for any of the animals in the validation set (n = 315) and for S4: No restrictions applied (n = 290) for genetic relationship between training and validation set.

Testing genomic prediction on binary traits such as survival,
presents a challenge to define a suitable test metric for selecting
the best performing model, especially when survival deviates
significantly from 50%. Solely relying on correlation derived
accuracy for model assessment in this case could result in
suboptimal selection decisions. Suitable metrics for evaluating
prediction efficiency in binary traits and thus selecting the best
performing models for estimating breeding values include the
AUC from ROC curves.

The AUC values provide a commonly used metric for
assessing the prediction efficacy of binary classifiers, taking into

consideration both the rate of false positives and false negatives
with values of one suggesting 100% successful classification. This
approach has been routinely used to test the efficacy of prediction
models in disease resistance studies both in humans (Wray
et al., 2010), livestock (Tsairidou et al., 2014) and aquaculture
(Palaiokostas et al., 2018b) amongst others. In the current
study, genomic prediction using the marker density scenarios
of ∼ 3,000 SNPs and above resulted in a slight improvement
(∼ 4%) of AUC compared to pBLUP. Performing predictions
using approximately 1,000 SNPs resulted in the same AUC value
(0.71) as pBLUP, while when using approximately 800 SNP the
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FIGURE 3 | The ROC curve and corresponding AUC metrics for BayesB-based predictions of KHV survival. The plot was obtained from aggregation of a 5-fold
cross validation scheme when full sibs existed in the training set for every animal of the validation set.

estimated AUC value was 0.70 which is slightly inferior. A gradual
decrease was observed regarding the estimated AUC values for
the scenarios of varying genetic relationship as was also the
case for the prediction accuracy metric. As expected highest
values were obtained in the scenario of highest relationships
between training and validation sets (S1). Most striking effect
of the impact of genetic relationships between the above sets,
however, was observed in the scenario where the training
and validation sets were set up to be most distantly related,
where the estimated AUC values ranged between 0.56 and 0.57,
which are substantially lower than all other tested scenarios,
but still useful.

In summary the results from the current study demonstrate
that GS was more efficient than pBLUP in predicting for
KHVD resistant carp. The consistency of improvement in
prediction accuracy versus pedigree-based accuracy across
multiple scenarios highlights flexibility and robustness to
different approaches, and it may allow circumvention of
limitations posed by incomplete pedigree records. Of major
importance is the fact that relatively low density marker panels
could be of value for genomic prediction without loss of
accuracy. However, close relationships between training and
validation sets are key, with substantial loss of prediction
accuracy in the scenario where the sets were relatively unrelated.
Pedigree-based prediction was also efficient in scenarios with
recorded relationships between training and validation sets,

possibly partly because KHVD resistance is a high-heritable
trait (h2 = 0.5 – 0.79), but genetic markers were required to
assign the pedigree in the factorial crosses. Future studies testing
the efficiency of single-step BLUP approaches (Aguilar et al.,
2011; Legarra et al., 2014) could potentially prove beneficial by
allowing genomic predictions based on larger datasets (only a
portion of the dataset would be genotyped, thus reducing costs).
Overall our results help inform the use of genetic markers in
carp breeding to enable improvement of disease resistance, with
downstream benefits of helping prevent KHVD outbreaks in
carp aquaculture.
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Piačková, V., Flajšhans, M., Pokorová, D., Reschová, S., Gela, D., Čížek, A., et al.
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