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The contribution of frequency-specific activity to
hierarchical information processing in the human
auditory cortex
L. Fontolan1,*, B. Morillon2,*, C. Liegeois-Chauvel3 & Anne-Lise Giraud1

The fact that feed-forward and top-down propagation of sensory information use distinct

frequency bands is an appealing assumption for which evidence remains scarce. Here we

obtain human depth recordings from two auditory cortical regions in both hemispheres, while

subjects listen to sentences, and show that information travels in each direction using

separate frequency channels. Bottom-up and top-down propagation dominates in g- and d–b

(o40 Hz) bands, respectively. The predominance of low frequencies for top-down

information transfer is confirmed by cross-regional frequency coupling, which indicates that

the power of g-activity in A1 is modulated by the phase of d–b activity sampled from

association auditory cortex (AAC). This cross-regional coupling effect is absent in the

opposite direction. Finally, we show that information transfer does not proceed continuously

but by time windows where bottom-up or top-down processing alternatively dominates.

These findings suggest that the brain uses both frequency- and time-division multiplexing to

optimize directional information transfer.
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A
popular view of brain functioning is that the central

neural system minimizes its reaction to environmental
stimuli by predicting probable events and inferring their

most probable causes1–3. This mechanism ensures that reactions
are appropriate, that is, maximal for unexpected events and
minimal to frequent ones, irrespective of their magnitude.
Functionally, predictive coding is a possible realization of the
anticipatory function of the brain1,4,5. It assumes that the
mismatch between descending and ascending information is
assessed at each processing level, possibly at the cortical column
scale6, so that only the error signal is further propagated. This
theory is seducing because it offers a parsimonious computational
mechanism to flexibly minimize stimulus-driven information,
depending on the stage where stimulus features are anticipated,
from sensory to high-level action representations7–9. The
predictive coding framework potentially accommodates a
number of well-known psychophysical and macroscopic
neurophysiological phenomena, such as priming, repetition
suppression and mismatch negativity3,10–12. At the biophysical
and mechanistic levels, however, there are virtually no data
showing how predictive coding could operate. Only a few
theoretical proposals attempt to describe how predictions and
prediction errors are computed and how information is being
transferred in each direction6.

One of those stipulates that ascending and descending
information could be conveyed via distinct frequency channels,
the g- and b-channels for up- and downgoing information,
respectively7,13. This would imply that the brain uses
multiplexing14,15 as a means to transmit signals of different
nature and content in parallel and opposite directions. In
particular, top-down (T-D) b-activity could provide a
modulatory gain on lower-tier g-activity16,17. In the context of
predictive coding, a frequency dissociation between bottom-up
(B-U) and T-D information transfer, with slower rates for T-D
mechanisms, could be accounted for by the fact that T-D-
propagated signals (predictions) follow from the linear
accumulation of prediction errors6.

Experimental evidence of a spectral dissociation for up- and
downgoing information remains scarce and not unequivocal.
When probing two hierarchical regions of the monkey visual
cortex during a spatial attention task, the g-up/b-down scheme
was only partly confirmed18. Moreover, even if spectral
multiplexing would keep B-U and T-D information apart, a
scheme with only two modulation bands (band g) and one carrier
(high-g) might be underspecified19.

Here we explored whether the human brain propagates B-U and
T-D signals using distinct frequency bands. We used human depth
electrode recordings made at locations corresponding to two
successive steps in speech processing20 (Fig. 1). We examined the
directionality of cross-regional interactions using non-parametric
Granger causality (GC)21,22 to establish the dominant direction of
information flow within specific frequency bands, and cross-
regional phase-amplitude coupling to address whether high-
frequency power in one region was modulated as a function of
the phase of low-frequency activity in the other one (see Fig. 1a).
By restricting cross-regional coupling results to those frequency
domains where causality is significant, we show that B-U and T-D
information transfer dominates in high- and low frequency-
domains, respectively, and proceed in a discontinuous fashion,
suggesting both frequency and time division are used to unmix
up- and downgoing information in the brain.

Results
Characterization of intra-cortical responses to speech. We
present results from three epileptic subjects who underwent a

simple experiment during which they passively listened to spoken
sentences. The protocol was part of a larger one involving more
speech material (syllables and words)23 aiming at investigating
speech-specific responses throughout the temporal cortex. We
focused on the sentences data set and analysed intracortical activity
from depth macroelectrodes located in primary (A1) and
association auditory cortex (AAC) regions (Fig. 1b) in response
to passive listening of 110 repetitions of 2.5-s long sentences. We
assumed that spoken sentences had sufficient duration and
complexity to engage B-U and T-D information transfer. One of
the three subjects (S1) was implanted bilaterally in the two
temporal lobes at identical functional locations (Fig. 1b). The two
other subjects were implanted in the left (S2) or the right (S3)
temporal lobe, for a total of two subjects per hemisphere and
location. The limited number of subjects is inherent to the method
as depth electrodes are rarely inserted in humans’ auditory cortex,
and more rarely at equivalent functional sites in the left and right
hemispheres. We analysed signals from the electrode contacts
showing the most typical evoked electrophysiological landmarks of
A1 and AAC (typical latencies and auditory-evoked response
shapes; see Methods). The corticograms obtained for all subjects at
each location confirmed distinct response patterns in A1 versus
AAC regions (Fig. 2a–d, upper panels). Cross-correlating the
wideband stimulus envelope24,25 with the cortical responses (see
Methods) emphasized the functional distinction across hierarchical
levels (Fig. 2a–d, lower panels). In A1 g-activity correlated with the
speech acoustic structure, whereas, consistent with a more
integrated function of higher-level regions, g-activity in AAC
(left dominant) was largely induced and independent from fast
acoustic modulations. Frequency-specific interactions between the
acoustic speech signal and the intracortical electroencephalography
(iEEG) were also observed in the d/y-band in all regions, and in the
low b-band (around 12–14 Hz) in all regions except in the right
AAC. Finally, in accordance with a weaker specialization for
speech of right temporal regions, stimulus/brain cross-correlations
were overall stronger in the left than in the right A1 (Fig. 2a,b,
lower panels), and g-induced responses in AAC were drastically
left dominant (Fig. 2c,d, upper panels).

Cross-regional GC. We examined directed functional connectivity
between A1 and AAC across the whole iEEG spectrum. We
compared propagation directions by computing non-parametric
GC in the frequency domain21,22 on a trial-by-trial basis for each
subject (see Methods). We further averaged the GC time-frequency
(TF) patterns across time, trials and sentences. In both the B-U
(A1 causing AAC activity) and the T-D (AAC causing A1)
analyses, we found several GC peaks distributed between 1 and
140 Hz (Supplementary Fig. 1 and Table 1 for details in the
1–20 Hz range). We observed that GC values were overall larger at
low than at high frequencies. This global decrease in GC values
might be related to the power law decay in the amplitude spectrum
of brain activity26, as GC is sensitive to asymmetries in the power
spectra. Critically, we found a dominance of T-D GC in the low
part of the spectrum (o40 Hz) and of B-U GC at high frequencies
(440 Hz). This effect was confirmed using two complementary
statistical approaches (Fig. 3a,b versus Fig. 3c), and the spectral
division of B-U and T-D was consistent across subjects (and
hemispheres). Although B-U dominance above 40 Hz is in line
with the hypothesis that the brain mostly uses the g-channel to
propagate sensory information forward, T-D GC dominance was
not limited to the b-range6,7,13, but broadly covered the whole
d–b-range. In the left hemisphere, we additionally found several
discrete GC peaks in the B-U direction within the 1–20 Hz range.
The B-U and T-D GC peaks did not align across subjects (Fig. 3,
Supplementary Fig. 1, insets and Table 1), yet in each individual
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B-U and T-D directions appeared spectrally non-overlapping
(Supplementary Fig. 1, insets): B-U GC peaks aligned to the
troughs of T-D GC peaks and vice versa. Such a frequency splitting
might indicate that specific sub-ranges within the d–b domain
(o40 Hz) specialize in directional information transfer, even
though T-D overall dominates in this frequency range. Altogether,
these results are consistent with the hypothesis that the brain uses
distinct frequency channels to propagate feed-forward and
feedback information. However, the picture arising from the GC
data appears more complex than a simple g-up/b-down scheme,
and also involves lower frequencies6,7,13.

Cross-regional phase-amplitude coupling. GC indicated the
predominant direction of information transfer, but did not pro-
vide information about the influence ascending or descending
signals may locally exert on neural activity. We therefore explored
whether low-frequency T-D rhythms influenced distant (for
example, AAC influence on A1) g-power changes, reasoning that
efficient information transfer should modulate the timing and/or
the amount of population spiking at target level27,28. In particular,
we tested whether the GC peaks observed in the low-frequency
range (1–20 Hz) were associated with distant g-power changes.
To characterize the influence one region exerted on the region
hierarchically below or above, we examined cross-regional
nonlinear coupling across frequency bands, as the excitability of
neuronal populations in sensory systems is shaped by low-
frequency oscillations through their phase29,30. To do so, we
computed circular-to-linear correlations that quantify how the
phase of low frequencies sampled in one region co-varies with the
amplitude of higher frequencies in the other region. We
confirmed that cross-regional effects were stronger than local
ones (Fig. 4), that is, within-region phase-amplitude coupling (see
Supplementary Fig. 2 and see Methods). Statistical significance of
phase-amplitude coupling was assessed using a non-parametric
cluster analysis31 (see Methods). For each significant cross-
regional phase-amplitude coupling cluster, we subsequently
confirmed that there was a corresponding GC peak at the

frequency of the modulating phase (Table 1). In Fig. 4, vertical
shaded bars indicate the overlap of phase-amplitude coupling and
GC peaks. Overall this ensures that the observed modulations of
g-power were driven by the phase of distant lower frequencies.

Consistent with the notion that T-D information propagated in
the low-frequency range has an influence on local g-activity, we
found a modulation of g-power in the left A1 as a function of the
phase of y-activity in the left AAC in both subjects (Fig. 4a and
Supplementary Fig. 2). This pattern was similar in the right
hemisphere, even though it survived statistical correction only in
S3 (Fig. 4b). To each T-D (AAC-phase/A1-power) phase-
amplitude coupling cluster corresponded a T-D GC peak at the
phase frequency (Fig. 4, shaded red bars; see Table 1), allowing to
conjecture that the T-D influence of AAC on A1 observed with GC
in the low-frequency range was associated with g-power modula-
tion at target level. We also detected a significant modulation of g-
power in AAC as a function of the phase of d (1–3 Hz) activity
measured in A1. As for T-D effects, B-U GC peaks (Table 1)
aligned with each of these clusters (Fig. 4, shaded blue dotted bars).
Finally, we observed a left dominance of this effect at d-rate, both
with GC (Fig. 3c) and phase-amplitude coupling (Supplementary
Fig. 3) measures, suggesting that B-U flow was stronger at very low
frequencies (1–2 Hz) in the left hemisphere.

Altogether, GC and phase-amplitude coupling measures
concurred to show a frequency division for B-U and T-D
information transfer, whereby local g-activity was globally
modulated as a function of distant d-phase in the B-U direction
(Fig. 4, blue clusters) and as a function of distant d–b phase in the
T-D direction (Fig. 4, red clusters). These findings suggest that
the multiplexing of B-U and T-D information transfer operates,
at least in part, by varying the modulation frequency of local
g-activity.

Time division in B-U and T-D causality. Directional multi-
plexing by spectral division enables continuous information
transfer in B-U and T-D directions simultaneously. To assess
whether information transfer was indeed continuous in both

Approach 1:  Granger casuality

A1: Beta phase A1: Gamma power

AAC: Beta phase

Approach 2:  Directional nesting

  Does the signal at a given frequency in AAC
predict the signal at the same frequency in A1

  Does the phase of low-frequency signal in ACC
modulate the power of high-frequency signal in A1

Figure 1 | Experimental approach and electrodes position. (a) Experimental approach and hypotheses. We explored the processing of speech in auditory

cortex through two distinct tests: GC, which allows for testing causal relationship between different regions within the same frequency band; and

directional phase–amplitude coupling that examines phase-power dependencies both across brain areas and across frequencies. b- and g-Frequencies were

of particular interest in view of our working hypotheses. (b) Example of electrode positioning. In S1, electrodes were positioned at equivalent locations on

each hemisphere in A1 and auditory association cortex (AAC). The electrode contacts used along the shaft were selected based on their anatomical

location and functional responses (typical shape and latencies of evoked responses66).
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directions (and related frequency ranges), we computed GC at
any instant (1 ms resolution) during the processing of auditory
sentences to obtain T-D and B-U GC TF representations.

Contrary to what we expected, we did not observe lasting periods
when GC dominates in one direction or the other. Rather, TF GC
was organized as an alternation of frequency-specific bins,
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Figure 2 | Individual regional speech-induced corticograms and speech/brain cross-correlation. Individual trial-averaged time-frequency representations

(corticograms) of neural response to sentences (upper panels) and trial-averaged within-frequency speech/brain amplitude cross-correlograms (lower

panels), computed in left (a) and right (b) A1, and left (c) and right (d) AAC. The dotted lines indicate sentence onset (upper panels) and zero-lagged

speech/brain cross-correlation (lower panels).

Table 1 | Low frequency peaks in Granger causality.

Frequency peaks Top-down Bottom-up

Peak 1 Peak 2 Peak 1 Peak 2

Hz P-value Hz P-value Hz P-value Hz P-value

S1 Left 5 0.05 9 0.01 1 0.05 7 n.s.
S2 Left 7 n.s. 13 n.s. 2 0.05 10 n.s.
S1 Right 7 0.01 16 0.05 2 0.05 5 n.s.
S3 Right 7 0.01 12 n.s. 3 n.s. 9 n.s.

n.s., non-significant.
Low-frequency (1–20 Hz) peaks (2 maximum) for each data set and causal direction (top-down or bottom-up; excerpted from Supplementary Fig. 1. Peaks are sorted in ascending frequency, shown under
the Hz columns, with the corresponding significance level (see Methods) shown under P-value columns (statistics are FDR corrected).
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suggesting that information transfer proceeds by alternating
periods of dominant B-U and dominant T-D (Fig. 5a, cold
colours for B-U and hot colours for T-D). We tested for a
periodicity in the alternation of T-D and B-U GC by computing
the Fourier spectrum of T-D minus B-U TF matrix (Fig. 5b,c;
false discovery rate (FDR) correction, see Methods).
Although B-U and T-D flow did not use the same frequency
ranges, we found a common low rate temporal arrangement. In
all subjects, a significant temporal modulation at d-rate (1–3 Hz)
was observed (Fig. 5b,c; see permutation tests in Methods). The
results hence suggest an alternation of dominant T-D and B-U
information transfer approximately every 300–500 ms in both

flow directions. It is important to note that the temporal structure
of GC changes may also reflect that GC is based on a linear model
of temporal dependencies, which cannot account for the
nonlinear dependencies we have established in terms of cross-
regional phase-amplitude coupling. It is hence unclear whether
this alternation would hold for inter-regional cross-frequency
coupling effects.

Discussion
In telecommunications, frequency-division multiplexing refers to
the use of separate carrier frequencies to transmit distinct
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Figure 3 | Spectral asymmetry between B-U and T-D using GC. Spectral differences (1–140 Hz) between T-D (AAC to A1) and B-U (A1 to AAC) causal

influences in left and right auditory cortex of subject 1 (a) and subjects 2 and 3 (b). Red and blue lines show, respectively, T-D and B-U predominance,

averaged over time, trials and sentences. Statistically significant differences between T-D and B-U are highlighted (shaded bars; FDR correction; *qo0.05,

**qo0.01). (c) F-values obtained from one-way analysis of variance (ANOVA) analysis for each subject, testing the difference between T-D (red) and B-U

(blue) causal directions. Data from S1 are shown in semi-transparent colours, and data from S2 and S3 in full colours. Only significant values are shown

(Pr0.05, Bonferroni corrected). The star further indicates an interaction (two-way ANOVA, see Methods) in the 1–6 Hz range, where B-U GC dominates in

the left hemisphere (Pr0.05, Bonferroni corrected).
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modulated signals on a single physical support32. In auditory
processing, the notion of multiplexing is increasingly referred to
in a different acceptation, that is, the description of parallel
information processing at several timescales14,15. Here we
explored the notion that the brain uses directional multiplexing,
whereby B-U and T-D information are propagated using distinct
modulation frequencies and/or different carrier frequencies. This
idea arises from neurophysiological studies showing that the low-
b-range (around 14 Hz) was mostly related to endogenous T-D
process33–36. From a theoretical viewpoint, the idea that the brain
constantly compares incoming input with internal represen-
tations1,5, calls for information processing at different
timescales6,7,13 and information unmixing.

The current results indicate a frequency dissociation in
information transfer along the auditory cortical hierarchy: d–b
frequencies dominated in the T-D direction and g-frequencies in
the B-U direction. These findings support theoretical propo-
sals6,13 and complement other results—so far only partly
conclusive—obtained in humans and monkeys18,33–37. By

combining GC and nonlinear cross-regional phase-amplitude
coupling, we further show that T-D processes operated by
modulating fast neural activity at d–b rates in the target area, that
is, the g-power in A1 being modulated as a function of the phase
of low frequencies in AAC. Furthermore, we observed several
T-D GC peaks in the d–b (4–30 Hz) frequency range, and the
frequency of these peaks varied across individuals (and
hemispheres). Overall, we detected more GC peaks than
directional phase–amplitude coupling clusters, suggesting either
that not all the detected GC peaks translated into phase-power
modulations between source and target locations, for instance due
to the presence of phase–phase coupling38, or that the circular-to-
linear correlation method was not sensitive enough to detect
them all. Importantly, however, to each single phase–amplitude
coupling cluster corresponded a GC peak. This cross-validates the
results and ensures that g-modulations by the phase sampled
from another region truly reflects distant modulations.
Combining GC and phase–amplitude coupling constitutes an
exploratory alternative to dynamic causal model (DCM)39. Chen
et al.40 used DCM to assess amplitude–amplitude cross-frequency
coupling between high- and low-visual areas during perception of
human faces. They also found qualitative evidence for functional
asymmetry coupling, where the effects of low frequencies on high
frequencies were greater in the backward direction relative to the
forward direction. However, although DCM allows for an
exploration of linear and nonlinear interactions within a single
model, our approach may be more flexible in discovering non-
hypothesized neurophysiological phenomena, such as those we
detected in the very low-frequency range (see ref. 41 for a
comparison of DCM and GC).

Our findings confirmed that T-D neural flow uses lower
frequency ranges than B-U, but also point to a more complex
picture than the previously hypothesized g-up b-down
scheme6,18,33–37. In left auditory regions, we detected GC B-U
peaks in the d-frequency range (1–3 Hz), indicating that very low
frequencies were also involved in B-U transfer (Table 1). Cross-
frequency coupling did not only confirm this effect but further
showed that the phase of d-activity sampled in left A1 was
associated with a modulation of high g-power (80–100 Hz) in left
AAC (Fig. 4). The fact that this effect dominated in the left
hemisphere (Supplementary Fig. 3) could reflect (i) that g-activity
in AAC was more pronounced in left than right AAC (Fig. 2),
(ii) that the low-frequency phase-locking of responses
(Supplementary Fig. 4) and stimulus/brain correlations (Fig. 2)
were stronger in left than right A1, (iii) or both. At any rate, the
left dominance in d/g-coupling presumably reflects some aspects
of the functional specialization of left auditory regions in speech
processing42. Importantly, the spectral division of B-U and T-D
information transfer appears partly flexible, depending on
cognitive demands and/or on the interaction of stimulus
rhythms with local oscillatory properties.

The current results do not only show a spectral division but
also suggest a time division of labour between B-U and T-D
processes. The analysis of temporal modulations of GC TF
representations (Fig. 5) revealed the presence of significant slow
fluctuations (1–3 Hz) of GC in the g-frequency range, suggesting
that B-U and T-D information sequentially dominated over
periods of B300–500 ms. What could determine the regular
alternation of B-U- and T-D-dominant periods at this slow rate
remains unclear at this point. It could result from time constants
that are specific to speech. It has been shown that predicting
forthcoming speech involves a syllable-based mechanism43,
which is roughly compatible with 300 ms predictive segments.
Alternatively, slow modulations could be entirely driven by
endogenous d- or a-rhythms, whose phase (i) determines whether
a stimulus is going to be detected at the sensory level44–46 and (ii)
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Figure 4 | Cross-regional dominance of phase–amplitude coupling.

Circular-to-linear correlations computed between low-frequency phase

(1–20 Hz) of one region (A1 or AAC) and higher-frequency power

(20–150 Hz) of the other region in left (a) and right (b) hemispheres. B-U

(A1-phase modulating AAC power) and T-D (AAC-phase modulating A1

power) phase–amplitude coupling values were contrasted, with blue and

red clusters indicating B-U and T-D dominances, respectively. In addition,

we controlled that inter-regional cross-frequency dependencies dominated

over local ones, by controlling for local phase, that is, performing the

contrast (T-D—local-AAC)—(B-U —local-A1). Only significant (Pr0.01,

cluster corrected) contrasts are reported. Shaded bars represent GC peaks

(see Table 1) overlapping with phase–amplitude coupling results at the

frequency of the modulating phase.
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indexes the dynamics of sequential information processing at
higher stages47. In this respect, it would be interesting to obtain
similar data from the visual modality with less temporally
structured stimuli, and assess to what extent the timing of GC is
stimulus driven, or emerges from properties of the brain
organization.

The main advantage of spectral multiplexing is to prevent
interferences during multiple and continuous information
transfer using the same physical support. In the cortex, BU and
TD information travel via separate vectors13 but information
unmixing, by, for example, multiplexing, is required in relays
where ascending and descending information converge and are
integrated (that is, superficial layers). The modulation of neuronal
spiking (here approximated by local high g-activity28) at distinct,
d–b versus g, rates could be an efficient means to achieve it.
Alternatively, interferences could be avoided by using a single
information channel, with time windows during which B-U or
T-D dominates. Although the observed spectral division between
B-U and T-D information flows (Fig. 3) supports the former
scenario, temporal alternation of ascending and descending
information (GC modulations; Fig. 5) supports the latter
scenario. Although frequency and time division are not
conceptually incompatible, the use of both mechanisms for
directional information transfer appears computationally

redundant. The presence of effects in the d (1–3 Hz) range for
both spectral (Figs 3 and 4) and time (Fig. 5) division is fairly
compatible with the predictive coding framework. This reflects
the fact that both B-U and T-D tend to fluctuate at d-rate (Fig. 5),
while being predominantly oriented towards the B-U direction
(Fig. 3 and Supplementary Fig. 3). Such an asymmetry in
information flow is in line with the proposal that T-D message
passing results from the accumulation of B-U evidence, as this
process could translate in the co-occurrence of a continuous B-U
accumulation of prediction errors and a discontinuous T-D
prediction flow. More generally, the present results are consistent
with predictive coding models in the sense that T-D predictions
of auditory input rest on a nonlinear mapping from higher-level
representations, as shown by the nonlinear cross-regional phase–
amplitude coupling results (Fig. 4).

T-D effects were mainly associated with modulations of g-
activity at rates ranging from 5 to 30 Hz. The b-rhythm could
have a local (cortical) origin that is compatible with a function in
T-D control. An interesting model of b-generation from in vitro
slice preparations suggests that low b-activity could result from
the local concatenation of two independent higher-frequency
rhythms (g) generated in superficial and deep layers, respec-
tively48. In vitro experimental observations48,49 indicate that there
is an alternation between either the two independent higher-
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Figure 5 | Temporal modulations of GC. (a) Difference between T-D and B-U Granger causal influence plotted as a function of time and frequency

(shown for S1). GC time–frequency representations do not show evidence of continuous causal influences across distinct frequency bands, for example,

B-U g and T-D d–b. Conversely we observe alternations in both time and frequency, suggestive of a discontinuous pattern of information transmission.

GC modulation spectrum in left (b) and right (c) auditory cortex, resulting from Fourier-transforms of GC time–frequency data. Only significant (qr0.01,

FDR corrected) modulations are reported. Black lines correspond to the diagonal (that is, modulation frequency¼modulated frequency).
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frequency rhythms or the b one, depending on the level of
excitation and on synaptic plasticity. We previously speculated
that this generation mode could constitute a possible mechanical
switch between a state where information flows freely upward
(g in deep and superficial layers) and a state where information
transfer is redirected, first confined within a cortical level and
then directed downward7. From an information-processing
perspective, the latter state could serve to match ascending and
descending information, and reduce the discrepancies between
incoming inputs and internal representations. Remarkably, the
biophysical mechanism of b-generation proposed by Roopun
et al.49, involving the concatenation of slow and fast rhythms,
implies the temporal alternation of B-U dominant phases and
T-D dominant phases, consistent with what we observed here.

An alternative account for the frequency range where T-D
effects operate could be related to the a-rhythm physiology, as T-D
phase–amplitude coupling effects were largely distributed around
10 Hz. a-Rhythm is the most conspicuous and widespread of the
brain rhythms owing presumably to its thalamo-cortical origin50,
and is an important effector of attentional processes51,52. Although
it could be involved in descending mechanisms, its general role in
attention and sensory gating is hardly compatible with one in
specific information and representations transfer. However,
a-rhythm displays bistability with occasional splitting in high-y
and low-b components53–55. It is unclear how this splitting operates,
but if it was associated with a change from a widespread generation
mode to a more local one, it could also possibly underpin the effects
we observe here. Alternatively, low b-oscillations could be generated
by the interaction between a feedforward and a feedback a-input, as
suggested by another model56.

Thanks to unique depth intracortical human recordings
collected in two hierarchical regions of speech processing,
bilaterally in one subject and unilaterally in other two subjects,
we show a spectral division of the B-U and T-D processing flow.
Although our findings confirm a g-up scheme, they do not
support a b-down one. They show that a larger band involving d–
b frequencies are involved in T-D information transfer, and
further suggest that local g-activity is modulated by the phase of
lower-frequency distant oscillatory activity. We additionally
showed that directional information transfer does not proceed
continuously, but alternates at a 1- to 3-Hz rate. These data
suggest that speech processing uses both distinct modulation
frequencies and temporal windows to transfer information in B-U
and T-D direction. The reason why B-U and T-D unmixing
appear implemented in a redundant manner, and the extent to
which the time constants we observed here are specific to speech
processing or could instead generalize, remain open questions.

Methods
Subjects. Three French female subjects participated in this study. They suffered
from drug-resistant partial epilepsy and were implanted for presurgical investiga-
tion with chronic depth electrodes in: right and left auditory cortex (S1, 45 years
old), left auditory cortex (S2, 30 years old) and right auditory cortex (S3, 35 years
old). The electrodes of interest were located in Heschl’s gyrus (primary auditory
cortex, A1) and laterally in the superior temporal gyrus in a region we refer to as
AAC, as well as in other cortical structures that were not relevant for the study (see
functional validation of electrode position below). The subjects provided informed
consent to the protocol, which was approved of by the institutional review board of
the French Institute of Health. Neuropsychological assessment indicated that they
had intact language functions. Brainstem-evoked potentials and pure tone audio-
grams carried out before iEEG indicated intact cochlear and brainstem auditory
functions. Analysis of iEEG indicated that the epileptic zones were located outside
the regions examined here.

Electrophysiological recordings. Stimuli and data acquisition. The subjects lis-
tened to 110 repetitions of two 2.5-s-long sentences in French, uttered by a French
female whose voice had a fundamental frequency of 201 Hz. Stimuli were presented
monaurally to both ears, in a pseudo-randomized order with an interstimulus
interval of 4,135 s, and only the contra-lateral response was taken into account.

The stimuli were recorded digitally
at a sampling frequency of 44.1 kHz and delivered to the subjects at 22 kHz with a
75-dB sound pressure level headset using E-prime software (Psychology Software
Tools Inc., Pittsburgh, PA, USA).

iEEG recordings were monopolar, with each contact of a given depth electrode
referenced to an extra-dural lead using acquisition software and a 128-channel
SynAmps EEG amplification system from NeuroScan Labs (Neurosoft Inc.).
During the acquisition, the EEG signal was high-pass filtered at 0.5 Hz and
amplified with an anti-aliasing filter at 200 Hz (temporal resolution of 1 ms and
amplitude resolution of 1 mV).

Anatomo-functional definition of contacts position. The stereotactic method
was based on the co-registration of the subjects’ magnetic resonance imaging
(MRI) with the stereotactic angiogram, to prevent injury to brain vessels. Multi-
lead electrodes (0.8 mm diameter, 10 or 15 contacts of 2 mm length each with
1.5 mm spacing between contacts) were orthogonally introduced in the stereotactic
space. The anatomical position of each contact was then identified on the basis of
(i) an axial scanner image acquired before the removal of electrodes and (ii) an
MRI scan performed after the removal of electrodes (see Fig. 1b for electrode
position in S1). Auditory-evoked potentials measured in response to pure tones
were used to functionally delineate A1 and AAC, and select the right electrodes.
Auditory-evoked potentials were averaged over trials, after epoching (200–635 ms)
and taking the 150–50 ms pre-stimulus time period as baseline. All contacts that
elicited no significant responses were discarded. In a second step, A1 was func-
tionally defined based on the presence of early P20/N30 components. These
responses were located in the medial and intermediate part of Heschl’s gyrus.
Third, for each functional area (A1 and AAC in left and/or right hemispheres), the
most responsive contact was selected for subsequent analyses.

Preprocessing. Data analysis was performed with EEGlab v.8 (sccn.ucsd.edu/
eeglab) for data extraction, Fieldtrip (http://www.ru.nl/donders/fieldtrip) and Fast_tf
(http://cogimage.dsi.cnrs.fr/logiciels/), for TF decomposition. For GC, we modified
and adapted the scripts used in ref. 57. Data were epoched into segments, including a
baseline period (328 ms for S1, 1000 ms for S2 and S3) before stimulus onset and an
after stimulus period (452 ms for all subjects). Epochs including signals that deviated
from the average response of all the trials were discarded, by computing the
correlation between each single trial and the average response, and then rejecting the
15% of trials with the lowest Pearson’s correlation value. We set this conservative
rejection criterion and validated the approach on the basis of visual inspection of the
signals. The data set analysed was hence free of suspicious electrical activity related to
epilepsy, for example, interictal spikes.

We used a bipolar montage for data analyses, meaning that electrical activity
from all contacts was subtracted from a common reference signal that
corresponded to the average response of the least-responsive (mesial or lateral)
contact of each electrode. This resulted in attenuating global noise (50 Hz ambient
electric field) in a similar way for all contacts.

TF analyses and power spectrum. A TF continuous wavelet transform was
applied to each epoch using a family of complex Morlet wavelets (m¼ 7), resulting
in an estimate of power and phase at each time point and each frequency, with a
0.5-Hz resolution below 20 and 1 Hz above. The TF resolution of the wavelets was
frequency dependent (at 7 Hz: s¼ 150 ms, 1 Hz; at 35 Hz: s¼ 30 ms, 5 Hz). We
restricted the analysis to frequencies between 1 and 150 Hz, spanning the whole
range of relevant brain rhythms (up to high g-activity). Figure 2 shows the typical
cortical responses (increase or decrease in signal power relative to baseline in
decimal logarithmic units (dB) at each time and frequency data point) for all
subjects and brain areas.

Speech/brain cross-correlations. Sentences characterization. For each sentence,
we estimated the wideband envelope of the speech waveform24,25. The raw speech
waveform was band-pass filtered into 32 frequency bands, encompassing
80–8,500 Hz with a logarithmical spacing, modelling the cochlear frequency
decomposition. The absolute value of the Hilbert transform of each band-passed
signal constitutes an estimate of the envelope for that frequency band, and their
sum an estimate of the wideband envelope. Finally, we computed the power in each
frequency band at each time point, with a millisecond resolution, similar to the
iEEG data, that is, between 1 and 150 Hz, with a 0.5 Hz resolution below 20 Hz and
1 Hz above, by applying a TF wavelet transform, using a family of complex Morlet
wavelets (m¼ 7).

Speech/brain cross-correlation computation. We cross-correlated over time for
each trial, sentence and region the oscillatory power estimates of the neural data at
each frequency (1–150 Hz) with the corresponding frequency of the acoustic signal,
between � 50 and 200 ms, relatively to the acoustic input (with brain response
following acoustic signal for positive cross-correlation values). This procedure
results in an estimate of stimulus/response correlation at each frequency and for
multiple time delays. At each time delay, correlation equals 1 if the two signals are
perfectly identical when taking into account this time delay, and 0 if the two signals
are totally unrelated. Data were subsequently averaged over trials and sentences.
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GC analysis. GC is classically used to assess causal influence among two time
series22. The basic assumption is that a time series X(t) linearly causes another time
series Y(t) if the future trend of the latter is better predicted by looking at the past
of X and Y than by looking at the past of Y alone. For stationary processes, the
computation of GC relied on multivariate autoregressive models to estimate the
prediction error in the two conditions22. For non-stationary time series, such as
oscillating neural signals, GC spectra can be obtained in a non-parametric manner
by computing Geweke’s frequency domain version of GC without going through
the multivariate autoregressive model fitting58,59. We therefore used a spectral
density matrix factorization technique on complex cross-spectra, obtained from the
continuous wavelet transform of recorded iEEG time series58. Both parametric and
non-parametric GC have been previously used in neuroscience to assess linear
directional influence between two communicating brain areas in local field
potential60, EEG57 and functional MRI data61.

GC was computed on a trial-by-trial basis for each subject using the method
proposed by Dhamala et al.58, and then averaged across time, trials and sentences
(Fig. 3 and Supplementary Fig. 1). Statistics were then computed by generating
1,000 permutations of iEEG data, in which left and right electrodes, as well as trials,
were randomized. This procedure permits to rule out that the observed effects arose
from noise or specific methodology, as the exact same data and algorithms were
used to compute the permuted trials. For each realization, we computed the mean
GC across trials and the corresponding s.d. The original GC spectra were then
standardized to obtain a vector of Z-values, one for each frequency.

T-D and B-U influences can be measured simultaneously18,62. The information
flow was considered T-D when GC from AAC to A1 exceeded GC from A1 to
AAC, and B-U in the other case.

We tested for significant frequency peaks separately for each T-D and B-U GC
direction (Supplementary Fig. 1 and Table 1) together with frequency ranges where
T-D and B-U GC spectra were significantly different (Fig. 3a,b). For the first
analysis, we directly compared the Z-transformed vectors obtained from GC
spectra to a zero-mean normal distribution, and corrected for multiple
comparisons with the FDR method at a one-tailed q-value of qr0.05. For the
second analysis, we first computed the difference in Z-values between T-D and B-U
Granger spectra at each frequency point, and then compared it with the zero-mean
normal distribution thresholding at a two-tailed q-value of qr0.05 (or qr0.01, see
Fig. 3), FDR corrected.

To further explore effects of flow direction, we applied a one-way analysis of
variance test on time-averaged GC spectra for all data sets at each frequency point
(Fig. 3c). Red (blue) areas correspond to frequencies where the T-D (B-U) mean is
significantly higher than the B-U (T-D) mean. Values were thresholded at Pr0.05
(Bonferroni corrected for multiple comparisons). We also performed a two-way
analysis of variance to investigate together the effects of hemisphere (left/right) and
flow direction (T-D/B-U). The four data sets were tested pairwise (contrasting S1
left and right hemispheres, and S2 with S3) and the values were thresholded at
Pr0.05 (Bonferroni corrected for multiple comparisons). A significant interaction
was detected at low frequencies (1–6 Hz).

To assess the temporal alternation of directional GC peaks, we first subtracted
T-D and B-U TF matrices at each trial (see example in Fig. 5a). We then Fourier
transformed this data at each frequency band (1 Hz resolution) and averaged across
trials and sentences to obtain the modulation spectrum for each data set. For
statistical testing, we computed 1,000 permutations of GC data by shuffling trials
and electrodes, z-scored the data using the mean and variance obtained from
permutations and used FDR correction for multiple comparisons (Fig. 5b,c).

Cross-regional phase–amplitude coupling. Cross-frequency coupling depen-
dencies were studied under the phase–amplitude coupling framework. The ratio-
nale for using phase–amplitude coupling is that cross-frequency interaction could
provide dynamic gating of information. Cross-regional phase–amplitude coupling
would in turn reveal direct nonlinear interactions between distant sites63. We used
phase and squared power values (amplitude) to approximate circular and Gaussian
distribution, respectively. We subsequently computed the circular-to-linear
correlation64, between each 1–20 Hz phase and 20–150 Hz amplitude frequencies.
Correlations were computed across trials, sentences and time dimensions
altogether, resulting in an estimate of the amount r of correlation between two
frequencies, under a phase–amplitude dependency. To compute inter-regional
dominance, we contrasted T-D and B-U phase–amplitude coupling analyses, while
controlling for their dominance over local effects. We controlled for local phase
((T-D—local AAC)—(B-U—local A1)) to ensure that the amplitude modulations
detected in one region are significantly more strongly related to the low-frequency
phase sampled in the distant region than to local low-frequency phase.

Significant phase–amplitude coupling was based on corrected P-values using
non-parametric permutation tests to generate null distributions of the maximum
cluster size31. This implicitly adjusts for searching over multiple frequencies. The null
distribution was obtained by computing 1,000 times the circular-to-linear correlation
from a random mix of data taken equitably from the four types of phase/power
relations we investigated (T-D, B-U, local A1 and local AAC). Clusters were defined
as contiguous r-values above 0.045. Clusters of the 99th percentile (corresponding to
Pr0.01) were considered significant and are reported throughout the manuscript.

To further explore effects of flow direction and hemisphere (Supplementary
Fig. 3), we contrasted the left and right phase–amplitude coupling patterns

observed in Fig. 4 (T-D minus B-U corrected for local phase). To highlight only
left-dominant results, we applied to the left–right contrast a mask corresponding to
the left hemispheric phase–amplitude coupling patterns. Statistics were computed
similarly than before, except that we took a random mix of data taken equitably
from the eight types of phase/power relations we investigated (left/right, T-D/B-U,
local A1/AAC). In this approach, clusters were defined as contiguous r-values
above 0.07 and clusters of the 99th percentile (corresponding to Pr0.01) were
considered significant.

Phase-locking value. For each region of interest, we evaluated the evoked mod-
ulation spectrum. We computed the phase-locking value65 across trials for each
time point and 1–150 Hz frequency. To obtain the modulation spectrum, we
averaged the resulting phase-locking values over time and sentences.
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