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Purpose: To remove blood vessel shadows from optical coherence tomography (OCT)
images of the optic nerve head (ONH).

Methods: Volume scans consisting of 97 horizontal B-scans were acquired through
the center of the ONH using a commercial OCT device for both eyes of 13 subjects.
A custom generative adversarial network (named DeshadowGAN) was designed and
trained with 2328 B-scans in order to remove blood vessel shadows in unseen B-scans.
Image quality was assessed qualitatively (for artifacts) and quantitatively using the
intralayer contrast—a measure of shadow visibility ranging from 0 (shadow-free) to
1 (strong shadow). This was computed in the retinal nerve fiber layer (RNFL), the inner
plexiform layer (IPL), the photoreceptor (PR) layer, and the retinal pigment epithelium
(RPE) layer. Theperformance ofDeshadowGANwas also comparedwith that of compen-
sation, the standard for shadow removal.

Results:DeshadowGANdecreased the intralayer contrast in all tissue layers. On average,
the intralayer contrast decreased by 33.7 ± 6.81%, 28.8 ± 10.4%, 35.9 ± 13.0%, and
43.0 ± 19.5% for the RNFL, IPL, PR layer, and RPE layer, respectively, indicating success-
ful shadow removal across all depths. Output images were also free from artifacts
commonly observed with compensation.

Conclusions: DeshadowGAN significantly corrected blood vessel shadows in OCT
imagesof theONH.Our algorithmmaybeconsideredas apreprocessing step to improve
the performance of a wide range of algorithms including those currently being used for
OCT segmentation, denoising, and classification.

Translational Relevance: DeshadowGAN could be integrated to existing OCT devices
to improve the diagnosis and prognosis of ocular pathologies.

Introduction

Glaucoma is the leading cause of irreversible blind-
ness and occurs due to the death of retinal ganglion

cells within the optic nerve head (ONH).1 In its most
common form, there are no symptoms, making regular
diagnostic tests crucial for early detection and treat-
ment.2 Recent research suggests that glaucoma eyes
have a unique biomechanical and structural profile that
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may allow us to differentiate them from non-glaucoma
eyes.3

To better understand how glaucoma affects the
structure and biomechanics of the eye, optical coher-
ence tomography (OCT) has been shown to be a
promising tool.4 It uses low-coherence light to capture
micrometer resolution and three-dimensional images,
allowing in vivo visualization of a patient’s retinal
layers5; however, because light does not travel through
blood, information from locations beneath blood
vessels is significantly decreased.6 This causes artifacts
known as retinal shadows. These artifacts may intro-
duce errors in retinal nerve fiber layer (RNFL) thick-
ness measurements, which has clinical implications for
the management of glaucoma where changes in RNFL
thickness must be monitored accurately over time.7
These shadows may also occlude deep structures such
as the lamina cribrosa (LC), the main site of axonal
loss in glaucoma.8 Other studies have identified retinal
shadows as being a challenge for their study of retinal
layers.Mujat et al.9 found that retinal shadows generate
“holes” within the posterior boundary of the RNFL,
and they strived to probe behind these blood vessels by
identifying the index of OCTA-scans so as to compen-
sate for the shadows. Consequently, it may be crucial
to develop algorithms to replenish the information lost
within these shadows.

Other studies had since found compensatory
methods to combat information loss within shadows.
Fabritius et al.10 described a compensatory method
to reduce the effects of vessel artifacts on interpreta-
tion of the retinal pigment epithelium (RPE) layer.
Mari et al.11 also improved the quality of OCT images
through compensation methods by correcting the
effects of light attenuation and by better estimating
the optical properties (e.g., reflectivity) of the tissues.
These predictions are, however, only estimations or
are based on simple optical models that may result in
secondary artifacts being produced such as inverted
shadows.

Artificial intelligence techniques have been applied
extensively to shadow removal algorithms for normal
images with varying levels of success.12,13 In 2014,
Goodfellow et al.14 introduced faux image generation
using generative adversarial networks (GANs). This
technique paved the way for GANs to be applied
for other purposes, such as shadow removal,12
shadow detection,15,16 and unwanted artifact
removal.17 In this study, we aimed to test whether
a custom GAN (DeshadowGAN) could automatically
detect and remove shadows according to a predicted
“shadow score” in order to improve the quality of
OCT images of the ONH.

Materials and Methods

Patient Recruitment

A total of 13 healthy subjects (average age, 28 years)
were recruited at the Singapore National Eye Centre.
All subjects gave written informed consent. This study
adhered to the tenets of the Declaration of Helsinki
and was approved by the institutional review board of
the hospital. The inclusion criteria for healthy subjects
were an intraocular pressure (IOP) less than 21 mmHg
and healthy optic nerves with a vertical cup-to-disc
ratio ≤ 0.5.

Optical Coherence Tomography Imaging

Recruited subjects were seated and imaged in dark
room conditions by a single operator. A standard
spectral domain OCT system (Spectralis; Heidelberg
Engineering, Heidelberg, Germany) was used to image
both eyes of each subject. We obtained 97 horizon-
tal B-scans (32-μm distance between B-scans; 384 A-
scans per B-scan) from a rectangular area 15° × 10°
centered on the ONH. We obtained 75 times signal-
averaged images frommultiframe volumes. In total, our
training set consisted of 2328 multiframe baseline B-
scans from 24 three-dimensional (3D) volumes. Our
test set consisted of 291 multiframe baseline B-scans
from three 3D volumes.

DeshadowGAN: Overall Description

Our algorithm was comprised of two networks
competing with one another. The first network was
referred to as the shadow detection network, and
it predicted which pixels would be considered as
shadowed pixels. The second network was referred to
as the shadow removal network, and it aimed to remove
shadows from OCT images such that the first network
(shadow detection network) could no longer identify
shadowed pixels. Briefly, we first trained the shadow
detection network five times on baseline images with
their corresponding manually segmented shadowmask
as the ground truth. Binary segmentation masks (size
496 × 384) were manually created for all 2 328 B-scans
using ImageJ software (National Institutes of Health,
Bethesda, MD)18 by one observer (HC); shadowed
pixels were labeled as 1 and shadow-free pixels as 0.
Next, we trained the shadow removal network once by
passing the baseline as input and using the predicted
binary masks as part of the loss function. Finally,
we trained the shadow detection network another
five times with the output from the shadow removal
network and another five times with the manually
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Figure 1. Overall algorithm training diagram.

segmented binarymasks as ground truth (Fig. 1).More
details about the two networks can be found below.

Shadow Detection Network
A neural network inspired by the U-Net archi-

tecture19 (Fig. 2) was trained with a simple binary
cross entropy loss20 using the handcrafted segmen-
tation masks as ground truth. This network had a
sigmoid layer as its final activation, making it a per-
pixel binary classifier. It was then trained with original
images concatenated with the output from a shadow
removal network, using the manually segmented masks
as ground truth.

The shadow detection network first performed two
convolutions with kernel size 3 and stride 1, followed
by a ReLU activation21 after each convolution. Then,
images were downsampled using a 2 × 2 maxpool
operation, halving the size of the height and width of
the feature maps. This occurred four times, with the
number of feature maps at each smaller size increasing
from 1 to 64, 128, 256, and 512, respectively.

The shadow detection network was comprised of
two towers. A downsampling tower at each stage
sequentially halved the dimensions of the baseline
image (size 512 × 512) via maxpooling to capture
the contextual information (i.e., spatial arrangement of
tissues), and an upsampling tower sequentially restored
it back to its original resolution to capture the local
information (i.e., tissue texture).22 A transposed convo-
lution was performed four times in the upsampling
tower for the predicted segmentation masks to be
size 512 × 512, before passing to a sigmoid activa-
tion function for compression of each pixel to a value
between 0 and 1.

Shadow Removal Network
The shadow removal network was inspired from

the deep video portraits reported by Kim et al.23 A
schematic of the architecture is shown in Figure 3.
Baseline images were inputted into the network and
passed through a downsampling segment and an
upsampling segment (colored in yellow and blue,
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Figure 2. Shadow detection network architecture. Numbers on top of each rectangle represent the number of featuremaps, and numbers
below each rectangle represent the feature map size. The network consists of 13.4M parameters, occupying 648 MiB of RAM on a single
Nvidia GTX 1080 Ti.

respectively) (Fig. 3b). The downsampling segment
allowed the network to understand contextual informa-
tion, and the upsampling segment increased the resolu-
tion of the output. Features from both segments were
combined to produce a more precise output in the
successive convolution layer.24

The shadow removal network consisted of eight
downsamplingmodules and eight upsamplingmodules
(Fig. 3b). The first encoding layer and the last decod-
ing layer did not employ batch normalization. We
included a dropout of 0.5 only in the first three upsam-
pling layers. The network had 55.7M parameters and
occupied 820 MiB of RAM on a Nvidia GTX 1080
Ti (Santa Clara, CA). Each module in the downsam-
pling module consisted of a convolution layer (stride
2, kernel size 4 × 4) followed by a batch normaliza-
tion and a leaky ReLU activation function. Every
downsampling module reduced the feature map size
by half, enabling the network to derive contextual
information and encode its input into an increasing
number of filters. The maximum number of filters
plateaued at 512 for four times and then moved on to
the decoding segment.

Each decoding segment consisted of three other
submodules: Up and two Refine submodules. The Up
submodule consisted of a transpose convolution (stride
2, size 4 × 4) followed by a batch normalization and
a ReLU activation function. Every Up submodule
allowed the network to improve its decoding efficiency

from encoded information from the input. The Refine
submodule consisted of a convolution (stride 1, size
3 × 3) followed by a batch normalization and a 0.5
dropout. We repeated this process until a 512 × 512
feature map was obtained and we reduced the number
of feature maps produced in the last layer to one to
mimic input images. Finally, we applied a pixel-wise
sigmoid activation to compress all activations from the
decoding segment to values between 0 and 1.

Image Augmentation

An image augmentation network was created using
Pytorch25 to perform on-demand image augmentation
during training. Our data augmentation consisted of
random transformations, including horizontal flipping,
image rotations (angle between –40° and 40°), XY
translations (–20% to 20% of the image size), image
scaling (scaling factor between 0.8 and 1.2), and image
shear (shear angle between –20° and 20°). All images
were then resized to 512 × 512 pixels.

Weighted-Mixture Loss Function for the
Shadow Removal Network

An adversarial shadow removal network was simul-
taneously trained using a custom loss function (to be
minimized during training) that reduced the appear-
ance of shadows in output images. This custom loss
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Figure 3. All arrows represent a forward pass of the output from one layer to the input of the next layer. Each box represents a module (a
set of layers). The size of our input image is 512 × 512. (a) Definitions of the layers in downsampling and upsampling modules within the
shadow removal network. Dotted boundaries indicate that the module is present only within some layers. In and out values at the top and
bottom of each rectangle represent the number of feature maps being input and output from that module, respectively. (b) The size row
indicates the size of the output of each module (rectangles above and below it).

function was used to restore structural information
under blood vessel shadows while maintaining struc-
tural information in all other areas. It consisted of a
tuned weighted combination of four losses: content,
style, total variation, and shadow losses, as briefly
explained below.

Content Loss
We used the content loss to ensure that all non-

shadowed regions of a given image remained the same
after shadow correction. To do so, we compared high-
level image feature representations (using a pretrained
convolutional neural network known as ResNet-152)
from a given baseline image, B, with those from

its deshadowed output, D. Note that the content
loss function has been used in Style Transfer26 and
has been shown to maintain fine image details and
edges.

To calculate the content loss, we first segmented
all shadows from the baseline image with our shadow
detection network. All shadows were then masked
(pixel intensity values equal to zero) in order to gener-
ate two images: Bmasked (baseline image with masked
shadows) andDmasked (deshadowed image with masked
shadows) as shown in Figure 4.

Bmasked andDmasked were then passed to the ResNet-
152 network,27 itself trained using the ImageNet
dataset. The content loss was then calculated for each
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Figure 4. Masking of baseline and deshadowed images during content loss and style loss calculations. Predicted shadow mask for the
baseline image is used to mask both the baseline and deshadowed image.

image pair as an Euclidean norm as follows:

Lcontent (Bmasked ,Dmasked )

=
∑

i=9,33,141,150

1
CiHiWi

||Pi (Bmasked ) − Pi(Dmasked )||2

(1)

where Pi(x) is a feature map that contains the
activations of the ith convolutional layer of the
ResNet-152 network for a given image x; Ci, Hi, and
Wi represent the channel number, height, and width
of the feature map Pi(x), respectively. The convolu-
tional layers mentioned in Equation 1 (i.e., 9, 33,
141, and 150) were selected because they are the final
convolutional layers in the ResNet-152 network before
downsampling.

Style Loss
On top of the content loss, we also used the style

loss28 to ensure that the image style (texture) remained
the same in the non-shadowed regions after shadow
correction.We computed the Grammatrix of an image
to find a representation of its style. The style loss was
then computed for each image pair (Bmasked, Dmasked)
and was defined as the Euclidean norm between the
Gram matrices of Bmasked and Dmasked:

Lstyle (Bmasked ,Dmasked )

=
∑

i=9,33,141,150

||Gi (Bmasked ) − Gi(Dmasked )||2 (2)

where Gi is a Ci × Ci matrix defined as

Gi (x) = Pi(x)Ci,Wi,Hi
× Pi(x)Hi,Wi,Ci

(3)

Total Variation Loss
We used the total variation loss to prevent checker-

board artifacts from appearing in deshadowed images.
It was defined as the sum of the differences between
neighboring pixels in a given deshadowed image, D:

LTV (D)= 1
n

∑

i, j

∣∣Di+1, j − Di, j
∣∣ + ∣∣Di, j+1−Di, j

∣∣ (4)

where n is the total number of pixels in the deshadowed
image, and i and j are the row and column numbers,
respectively.

Shadow Loss
The shadow loss was defined to ensure that

shadows were properly removed so that they become
undetectable to the shadow detection network. When a
given image D had been deshadowed, it was passed to
the shadow detection network to produce a predicted
shadow mask, MD (with pixel intensities equal to 1).
All pixel intensities in the shadow mask were summed,
and this sum was defined as the shadow loss function.

Total Loss
The total loss for the shadow removal network was

defined as

Ltotal = w1 ∗ content loss + w2 ∗ style loss

+w3 ∗ shadow loss + w4 ∗ total variation loss

(5)

wherew1,w2,w3, andw4 are weights given the following
values: 100, 0.1, 100, and 1e-5, respectively. Note that
all weights were tuned manually through an iterative
approach. First, we found thatwith a value of w1 = 100,
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we generated images with no content loss (i.e., no struc-
tural changes), but notwithout the presence of checker-
board artifacts. These artifacts could be removed when
choosing w2 = 0.1 and w4 = 1e−5.29 Finally, we
increased the value of w3 until the shadow loss became
the largest component in the total loss function (so that
the focus remained on removing shadows) and until
shadow removal was deemed qualitatively acceptable
for smaller width shadows. This was optimum when w3
= 100.

Training Parameters

All training and testing were performed on a Nvidia
GTX 1080 Ti with CUDA 10.1 and cuDNN v7.6.0
acceleration. Using these hardware specifications, each
image took an average of 10.3 ms to be deshadowed.
The total training time was 7 days using the Adam
optimizer30 at a learning rate of 1 × 10–5 and a batch
size of 2. A learning rate decay was implemented to
halve learning rates every 10 epochs. We stopped the
training when no observable improvements in output
images could be observed.

Shadow Removal Metrics

Intralayer Contrast
We used the intralayer contrast to assess the perfor-

mance of our algorithm in removing shadows. The
intralayer contrast was defined as

Intralayer Contrast =
∣∣∣∣
I1 − I2
I1 + I2

∣∣∣∣ (6)

where I1 is the mean pixel intensity from five manually
selected regions of interest (size 5 × 5 pixels) that are
shadow free in a given retinal layer, and I2 is that from
five neighboring shadowed regions of the same tissue
layer. The intralayer contrast varied between 0 and 1,
where values close to 0 indicate the absence of blood
vessel shadows and values close to 1 indicate a strong
presence of blood vessel shadows.

We computed the intralayer contrast for multiple
tissue layers of the ONH region—namely, the RNFL,
photoreceptor (PR) layer, inner plexiform layer (IPL),
and retinal pigment epithelium (RPE) layer—before
and after application of our deshadowing algorithm.
The intralayer contrast was computed on an indepen-
dent test set consisting of 291 images. Results were
reported in the form of mean ± standard deviation
(SD).

Comparison with Adaptive Compensation

To evaluate the effectiveness of our deshadowing
algorithm, we compared images deshadowed using
DeshadowGAN with images enhanced with adaptive
compensation,6,31 the gold-standard for correcting
OCT shadows. For adaptive compensation, we used
contrast, decompression, compression, and threshold
exponents of 1, 4, 4, and 6, respectively. Intralayer
contrasts were also computed for all compensated
images (same regions as those used for the baseline
images).

Validation Using a Test Scenario with Known
Ground Truth

We investigated whether our deshadowing
algorithm was capable of restoring information below
blood vessel shadows without introducing unwanted
artifacts. To do so, we required ground truth images
without blood vessel shadows, but such images are not
easy to obtain in vivo. An alternative is to add artificial
shadows to a given baseline image and assess whether
our algorithm can remove them without introducing
artifacts. Accordingly, we created exponential decay
maps on images to simulate the effect of light attenua-
tion and trained DeshadowGAN with such images. A
shadow can be simply simulated as

ShadowPixeli j = BaselinePixeli j × e−αi (7)

where i is the row number and α indicates the rate
of decay. We used the same training and testing
image sets, except that two artificial shadows (random
width between 1 and 100 pixels; random α between
100 and 300) were randomly added to each baseline
image. DeshadowGAN was retrained with the exact
same aforementioned procedure, including the manual
segmentation of the artificial shadows. Note also that,
during training, the DeshadowGAN algorithm did not
have access to the ground truth baseline images without
shadows. After deshadowing, the presence of artifacts
was assessed qualitatively.

Quantification of Test Outcome Using the
Peak Signal-to-Noise Ratio

To further quantify the performance of Deshad-
owGAN, we compared the peak signal-to-noise ratio
(PSNR) values when artificial shadows were (1) more
pronounced (i.e., higher exponential decay of the OCT
signal), and (2) wider. To investigate the effects of
shadow width on the PSNR, the exponential decay
was fixed at 0.005. Artificial shadows were created
with widths of 240, 600, 960, and 1440 μm in four
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separate experiments on a test set composed of 291
images. These width values represent those of true
retinal shadows. The PSNR was then calculated on
deshadowed images as

PSNR = 20 × log10MAXI − 10 × log10MSE (8)

where MSE refers to the mean squared error between
D (deshadowed image) and T (ground truth image
without artificial shadows), given by

MSE (D,T ) =
∑

||D − T ||2 (9)

To investigate the effects of exponential decay on
the PSNR, we created artificial shadows with varying
exponential decay (i.e., 0.00333, 0.00400, 0.00500, and
0.00667) on the same test set composed of 291 images.
Here, a higher exponential decay indicates a stronger
shadow. These exponential decay values were derived
from true shadows present in ONH images. We also
used a distribution of shadow widths (69.0 ± 25.0
pixels). When the shadows had been created then
corrected with DeshadowGAN, the PSNR was calcu-
lated on deshadowed images.

Results

DeshadowGAN Decreased the Intralayer
Contrast

After application of our algorithm, blood vessel
shadows from unseen images were successfully identi-
fied and corrected from each retinal layer as observed
quantitatively and qualitatively. On average, we
observed improvements in intralayer contrast of
33.7 ± 6.81%, 28.8 ± 10.4%, 35.9 ± 13.0%, and 43.0
± 19.5% for the RNFL, IPL, PR layer, and RPE layer
respectively. This can be qualitatively observed in a
B-scan of the peripapillary tissues shown in Figure 5.

Comparison with Adaptive Compensation

DeshadowGAN was able to correct shadows
without affecting the contrast of anterior layers,
without adding noise and without creating artifacts
(Fig. 6). In addition, DeshadowGAN had better
shadow removal capabilities than compensation as
layer depth increased. This can be observed from
the box plot in Figure 7, where the 25th and 75th
percentiles of the intralayer contrast for Deshadow-
GAN gradually increased against those of compensa-
tion from the RNFL to the RPE layer.

Figure 5. Images of retinal layers before and after deshadowing of (a) areas away from the optic disc and (b) areas around the optic disc.
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Figure 6. Compensation artifacts comparison with DeshadowGAN. (Top right) Artificially brightened artifacts and overamplification of
noise in the compensated image. (Bottom right) Inverted shadows in compensated images.

Shadow removal was also qualitatively corroborated
by observation of the flattened lateral pixel intensi-
ties (across shadows) for the PR layer, RPE layer, and
RNFL before and after shadow removal (Fig. 8, right
column). DeshadowGAN recovered the shadows to a
larger extent as compared to compensation. Further-
more, we observed that compensation did not have an
increase in shadow information but rather a decrease
in non-shadow intensities in shallow layers, as non-
shadow pixel intensities were found to be up to 50%
lower after compensation.

Proof of Principle: DeshadowGAN Did Not
Create Artifacts

Qualitative analysis of our results showed that no
artificial anatomical information was created within
deshadowed images. This can be qualitatively observed
in Figure 9, where both genuine retinal shadows were
retained, albeit not as clearly defined as compared to
the ground truth (baseline images in this case).

Effect of Artificial ShadowWidth and
Exponential Decay on the PSNR

Overall, we observed that DeshadowGAN was
more sensitive to shadowwidth as compared to shadow
contrast (higher decay = higher contrast). This can be
qualitatively observed in the boxplots in Figure 10.

Discussion

In this study, we proposed a novel deep learning
algorithm (DeshadowGAN) with a weighted-mixture
loss function to remove retinal blood vessel shadows in
OCT images of the ONH. When trained with baseline
OCT images and manually created binary shadow
masks, DeshadowGAN improved tissue visibility
under shadows at all depth, regardless of shadow
width. DeshadowGANmay be considered as a prepro-
cessing step to improve the performance of a wide
range of algorithms, including those currently being
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Figure 7. Intralayer contrast comparison among baseline, deshadowed, and compensated images. When compared with compensation,
DeshadowGAN tends to perform better in deeper layers.

used for OCT image segmentation, denoising, and
classification.

Having successfully trained, validated, and tested
our algorithm with a total of 2619 baseline OCT
images, we found that DeshadowGAN can be applied
to new images not previously seen by the network
in order to correct shadows. Furthermore, for new
images, DeshadowGAN does not require any segmen-
tation, delineation, or identification of shadows by
the user. Our results confirmed consistently higher
intralayer contrasts, flatter layer-wise pixel intensity
profiles across shadows, and the absence of many
artifacts commonly found in compensated images.
Thus, we may be able to provide a robust deep learning
framework to consistently remove retinal blood vessel
shadows of varying sizes and intensities.

In addition, DeshadowGAN was able to success-
fully eliminate the deleterious effects of light atten-
uation affecting the visibility of retinal layers and
deeper tissues such as the LC. DeshadowGAN helped
substantially recover the visibility of the anterior
lamina cribrosa boundary, where sensitive pathophys-
iologic deformation could signal the onset of early
glaucoma.32–34 Deep collagenous tissues such as the
LC and adjacent peripapillary sclera are the main load-
bearing tissues of the eye in the ONH region,35 and
it has been reported that biomechanical and morpho-
logical changes in these tissues may serve as risk
factors for glaucoma.36–38 The robustness of the OCT-
based measurements performed on these tissues could
be substantially improved after application of our
proposed algorithm.

Corrected images with DeshadowGAN did not
exhibit the strong artifacts that are often observed
with adaptive compensation, such as inverted shadows,

hyperreflective spots, noise overamplification at high
depth (see examples in Fig. 6), and hyporeflective
retinal layers. For this latter case, we found that
compensation can indeed reduce tissue brightness in
the anterior retinal layers (while enhancing deeper
connective tissue layers) by up to 50%. Brightness
is typically not affected with DeshadowGAN. We
also believe that compensation artifacts could cause
issues for automated segmentation algorithms that
rely on the presence of homogeneous pixel intensity
values within the same layer.39–41 Because Deshad-
owGAN generates significantly fewer artifacts, it has
the potential to be used as an artificial intelligence
preprocessing step for many automated OCT applica-
tions in ophthalmology, such as, but not limited to,
segmentation, denoising, signal averaging, and disease
classification.42–46

In addition, we observed that the performance of
DeshadowGAN was slightly affected when dealing
with wider shadows with stronger contrast. This was
assessed with artificial cases and using the PSNR as
a measure of performance. We may consider taking
these parameters into account within DeshadowGAN
in future work in order to improve performance.

As a first proof of principle, we also found that
DeshadowGANdid not create anatomically inaccurate
information under shadows and maintained all other
image regions true to their original quality. This showed
that our algorithm does not introduce or obscure any
information within shadowed regions during deshad-
owing; however, this was only confirmed with artifi-
cial data by simply adding fake shadows (simulated as
an exponential decay). It will also be extremely impor-
tant to validate this in pathological cases to ensure that
DeshadowGAN does not obscure true pathology from
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Figure 8. Layer-wise lateral pixel intensities across the PR layer, RPE layer, and RNFL. The direction of progression is along the arrow at the
bottom of each image.

the shadowed region. If one wanted to confirm such
results with ex- or in-vivo data, one would need to
image the exact same tissue region with and without
the presence of blood flow. Such experiments would

be extremely complex to perform, especially in humans
in vivo, even if blood is flushed with saline temporar-
ily (as is done with intravascular OCT). However, we
understand that such validations may be necessary for
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Figure9. Artificial shadow removal experiment results. From left, thebaselinewith an artificial shadow, a deshadowed image fromDeshad-
owGAN, and a baseline image without an artificial shadow.

full clinical acceptance of this methodology. From our
point of view, it would also be imperative to further
confirm that DeshadowGAN would not interfere with
another AI algorithm aimed at improving diagnosis

or prognosis. On the other hand, it is also very possi-
ble that DeshadowGAN may increase the diagnosis
or prognosis performance of other algorithms, and we
hope to test such hypotheses in detail in the future.

Figure 10. (Left) PSNR values as exponential decay values increased from 0.00333 to 0.00667. (Right) PSNR values as shadow width
increased from 240 μm to 1440 μm.
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Several limitations of this work warrant further
discussion. Although DeshadowGAN has performed
relatively well on baseline OCT images from healthy
eyes, we cannot confirm that its performance will
remain the same for eyes with pathological condi-
tions such as glaucoma. This is because deep learning
approaches respond unpredictably when the input is
very different from its training images,47,48 and patho-
logical training sets may be required. Furthermore,
DeshadowGAN was trained on high-quality multi-
frameOCT images froma single Spectralis OCTdevice.
It is unknown if the algorithmwould be able to perform
as effectively if applied to OCT images obtained from
other OCT devices or OCT images from the same
device but with significantly less or no signal averaging.
Similarly, each scenariomay require a separate training
set. We aim to perform further tests to assess all possi-
ble scenarios.

In conclusion, we have proposed a novel algorithm
to correct blood vessel shadows in OCT images.
Such an algorithm can be considered as a prepro-
cessing step to improve the performance of a wide
range of algorithms, including those currently being
used for OCT image segmentation, denoising, and
classification.
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