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Abstract: Neurodegenerative diseases pose a major health problem for developed countries. Stress,
which induces oxidation in the brain, has been identified as the main risk factor for these disorders.
We have developed an antioxidant-enriched drink and have examined its protective properties against
acute oxidative stress. We found that addition of red grape polyphenols and MecobalActive® to
grape juice did not provoke changes in juice organoleptic characteristics, and that the pasteurization
process did not greatly affect the levels of flavonoids and vitamin B12. Out of all combinations,
grape juice with red grape polyphenols was selected by expert judges (28.6% selected it as their
first choice). In vivo, oral administration of grape juice supplemented with red grape polyphenols
exerted an antioxidant effect in the brain of stressed mice reducing two-fold the expression of genes
involved in inflammation and oxidation mechanisms and increasing three-fold the expression of
genes related to protection against oxidative stress. In addition, we found that this drink augmented
antioxidant enzyme activity (17.8 vs. 8.2 nmol/mg), and prevented lipid peroxidation in the brain
(49.7 vs. 96.5 nmol/mg). Therefore, we propose supporting the use of this drink by the general
population as a new and global strategy for the prevention of neurodegeneration.

Keywords: acute oxidative stress; neurodegenerative diseases; red grape polyphenol extract;
MecobalActive®; restraint stress

1. Introduction

Neurodegenerative diseases (ND), including Parkinson’s disease (PD) [1] and Alzheimer’s
disease (AD) [2], are age-dependent disorders whose prevalence is rising due to the increas-
ing life span of the world’s population [3]. According to the World Health Organization,
the number of people with dementia worldwide was 46.8 million in 2015 but is expected to
rise to 131.5 million by 2050 [4]. Dementia is the main symptom of NDs, and AD represents
approximately 60–70% of all dementia cases [5,6]. ND are characterized by progressive
loss of selectively vulnerable neuron populations in specific brain areas [7]. Unfortunately,
nowadays, all these diseases lack an effective treatment and they represent the fourth cause
of global disease burden in developed countries [8].

Alzheimer’s disease is defined by the progressive loss of short- and long-term memory,
which results in an increasing cognitive deficit that leads to impaired activities of daily
living [9]. Several factors including aging, diabetes mellitus, and oxidative stress, affect
the risk of developing NDs [5,10]. On the other hand, decreased risk of AD is related
with physically and cognitively stimulating activities and adherence to the Mediterranean
diet [11]. Current literature supports that oxidative stress is one of the main risk factors
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for AD [12] and the reason for this is brain physiology. The brain, as the most oxygen-
consuming organ in the human body, is easily damaged by oxidative stress, a variety of
free radicals, and redox-active metals [13].

In recent years, there has been increasing supporting evidence for an association
between lifestyle habits, such as diet and dietary components, and a delay in AD occur-
rence [14]. Functional foods, such as mushrooms, and drinks, such as red wine, exhibit
potent medical properties with anti-oxidative and anti-inflammatory attributes [15,16].
Polyphenols encompass a large class of compounds (curcumin, stilbenes, flavonoids, etc.)
with demonstrated antioxidant properties that are present in most vegetables and fruits.
Since polyphenols are highly antioxidative in nature, their consumption may provide
protection against neurological disorders [17]. More specifically, flavonoids are a type of
polyphenols with demonstrated beneficial health effects derived from their antioxidant
and anti-inflammatory properties [18].

Some studies show that flavonoid intake can have a protective effect on human and
animal brains [19]. Recently, our group has described that oral administration of flavonoids,
extracted from red and white grapes and from the olive tree, reduces the expression of brain
genes involved in inflammation and oxidation mechanisms, whereas it increments the
expression of Nrf2, a gene related to protection against oxidative stress. In the same way,
preventive treatment with these natural flavonoids increases the activity of antioxidant
enzymes and prevents lipid peroxidation in the brain of stressed mice [20].

The consumption of fruit and vegetable juices containing high concentrations of
flavonoids, at least three times per week, may delay the onset of AD [21]. Although doubts
were previously raised about flavonoids usefulness as beneficial antioxidant compounds,
today we know that the vast majority of antioxidant substances need to be to be hydrolyzed
by the small intestine mucosa or fermented by the colon microbiota prior to absorption [22].
For example, enzymes of the gut microbiota carry out modifications of flavonoids that
result in smaller products, which may be easily absorbed in the gut [23]. Therefore, the
bioavailability of flavonoids is guaranteed when orally administered [24,25].

The purpose of the present study was to develop a customer-acceptable drink with
enriched antioxidant properties that could be used as a new and affordable strategy for the
prevention of NDs.

2. Materials and Methods
2.1. Natural Extracts and Grape Juice

Two commercial natural food supplements were used in this study. They included
red grape polyphenols (generously provided by Alvinesa Natural Ingredients, Daimiel,
Ciudad Real, Spain) and MecobalActive® (generously provided by HealthTech Bio Actives,
Barcelona, Spain).

Red grape polyphenols extracts from Alvinesa Natural Ingredients are entirely consti-
tuted by phenolic compounds (premium selected blending of monomers, dimers, oligomers,
and polymers) and have a unique formulation that ensures direct absorption in the small
intestine. These extracts are currently used as commercial supplements approved for hu-
man consumption. Red grape polyphenols extracts from Alvinesa are not only interesting
because of the flavonoids of low molecular weight (monomers) but also because the sub-
stantial content in PACs. Alvinesa’s extracts present a PACs content (Porter Method) with
a content 20–25% higher in comparison to our competitors (75% vs. 100%). Furthermore,
Alvinesa is putting a lot of efforts in offering to the market the most natural extracts coming
from grape producing extracts that are constituted 100% by polyphenols of the grape.

Grape juice was generously provided by Vintae winery (Logroño, Spain).

2.2. Preparation of MecobalActive®- and Red Grape Polyphenol-Containing Grape Juice

MecobalActive® and red grape polyphenols were added at three different concentra-
tions to the grape juice following previous results published by our group (Table 1) [20].
To get this, MecobalActive® and red grape polyphenols were diluted in distilled water
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(2.0 g/L) using a magnetic stirrer (N-Agimatic, JP SELECTA, Abrera, Barcelona, Spain)
at 1400 rpm for 1 min. The solution was added to the grape juice to obtain the different
concentrations (0.375 mL/L, 0.6 mL/L, and 0.75 mL/L) and mixed with ultra-turrax (model
T25, IKA Process, Staufen, Germany) at 6500 rpm for 1 min. Once mixed, the grape juice
was bottled in 330 mL glass bottles and sealed with metal caps.

Table 1. Concentration of active extracts in each experimental sample.

Code Natural Extract Concentration

Mec1 MecobalActive® 0.25 mg/unit
Mec2 MecobalActive® 0.40 mg/unit
Mec3 MecobalActive® 0.50 mg/unit
Gra1 Red grape 180 mg/unit
Gra2 Red grape 350 mg/unit
Gra3 Red grape 500 mg/unit

2.3. Pasteurization Process

Once the samples were bottled, they were pasteurized to ensure shelf-life stability [26].
Two temperature probes (model Tracksense Pro, ELLAB AS, Hilleroed, Denmark) were
used to monitor the pasteurization process: one to monitor the autoclave chamber temper-
ature while another was inserted through the cap in a bottle to monitor juice temperature
during the process. The pasteurization process took place in an autoclave (model APR-95,
SURDRY, Abadino, Bilbao, Spain) and the process had three steps: (i) the samples were
heated for 15 min. at 85 ◦C with an internal pressure of 1 bar; (ii) the samples were main-
tained at 85 ◦C for 20 min at 1 bar; and (iii) the samples were cooled at 25 ◦C for 40 min at
1 bar (Figure 1A).
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Pasteurization effect was calculated following the equation

P0 =
∫ t

0
LT dt

where:
P0 = Pasteurization value at 70 ◦C for S. aureus, which z parameter is 10 ◦C
LT = S. aureus lethality at 70 ◦C
dt = Time applied to each lethality
The final pasteurization effect was P0 = 915.3. Once pasteurized, bottles were kept in

cold storage at 3 ◦C before analysis, tasting, and organoleptic evaluation.
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2.4. Determination of Total Vitamin B12 Content

Total vitamin B12 content was determined by liquid chromatography/UV detection
with immunoaffinity extraction, as previously described [27]. Briefly, Vitamin B12 is
extracted in sodium acetate buffer in the presence of sodium cyanide (100 ◦C, 30 min). After
purification and concentration with an immunoaffinity column, vitamin B12 is determined
by liquid chromatography with UV detection (361 nm). Total vitamin B12 content was
expressed as micrograms of vitamin B12 per 100 g.

2.5. Determination of Total Polyphenols Content

Total phenolic content was determined spectrophotometrically by Folin–Ciocalteu’s
assay using gallic acid as standard, as previously described [28]. Briefly, 1.5 mL of gallic
acid aqueous solutions or diluted grape juice or grape juice with red grape polyphenols,
were added to 2.25 mL of methanol, and 1.5 mL Folin–Ciocalteu’s reagent, previously
diluted in water (1:10, v/v). The mixture was shaken and allowed to stand for 5 min in the
dark. Then, 1.5 mL of 7.5% (w/v) sodium carbonate solution was added to the mixture,
and the reaction was kept in the dark for 30 min. After incubation, the absorbance was
measured at 760 nm, versus the blank, in a spectrophotometer (Jenway, Staffordshire, UK).
A blank was prepared, replacing gallic acid or grape juice by distilled water. Total phenolic
content was expressed as milligrams of gallic acid equivalents (GAE) per gram.

2.6. Participants and Testing Location

This study was conducted at CTIC-CITA food technology center during 2020. To carry
out the organoleptic evaluation, a tasting panel of six judges was set up based on UNE and
ISO standards. The expert panel of CTIC-CITA has been established since 2009 and works
on the sensory evaluation of different foods. Judges perform sensory tests to establish
acceptance of future consumers and included tests for the five senses.

All judges received a basic training based on the detection, recognition, and ranking
of basic flavors, smells, and textures, through tests for the investigation of taste sensitivity
and the recognition of thresholds of detection, identification, and differentiation according
to the UNE-EN ISO 8586:2014 and the EN ISO 5492:2010 standards. Moreover, judges also
received specific training based on the methodology for establishing an olfactory and gus-
tatory profile according to the UNE-ISO 5496:2007 and the UNE-ISO 13302:2008 standards.

Testing took place in a private, comfortable room designed under UNE standards in
CTIC-CITA in Alesón (La Rioja, Spain). Samples were analyzed organoleptically and a
comparative study was carried out. The samples were evaluated to understand the critical
organoleptic parameters of each product studied. Subjects consumed no food or drink
other than water for at least one hour before the task and acclimated to the testing room
and to the researcher for approximately 15 min. Judges evaluated the samples in a blind
fashion. Samples were tasted in a sequential monadic order, one by one, in different order
for each taster, following a randomized block design, to minimize the sample effect.

2.7. Testing Procedure

The samples and the control (original grape juice) were stored at 3 ◦C and served
after homogenization. Two different series of grape juice were analyzed, following
accepted methodology [29]. Each series included a different natural bioactive extract,
MecolbalActive® or red grape extract, and three different concentrations of each extract
were tested (Table 1) in three different session days.

2.7.1. Descriptive Analysis

Yes/No questions were asked to compare the similarity of the samples with the control
taking into account the appearance, intensity of color, taste, and texture.
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2.7.2. Assessment of Acceptability

For each sample, the appropriate score was selected by the judges according to the
following range:

0—NOT ACCEPTABLE (outside organoleptic quality standards)
5—ACCEPTABLE (within organoleptic quality standards)
10—VERY ACCEPTABLE (above organoleptic quality standards)
The mean value of all judgements was calculated. Samples with scores below 5 do not

meet organoleptic quality standards according to UNE-ISO 8587:2010.

2.7.3. Testing Preference

This method assesses the preference of certain attributes, characteristics, or overall
valuation. This analysis evaluates the sample preferences on an ordered scale for each
attribute, as specified in UNE-EN ISO 5495:2007 and UNE-ISO 8587:2010 standards. In this
case, each of the samples was sorted according to its greater or lesser similarity with the
control. The results are presented as a ranking scale of three scores in preferences from “the
least” (1) to “the most” (3).

2.8. Restrain Stress and In Vivo Treatments

All procedures involving animals were carried out in accordance with the European
Communities Council Directive (2010/63/EU) and Spanish legislation (RD53/2013) on
animal experiments and with approval from the ethical committee on animal welfare of our
institution (Órgano Encargado del Bienestar Animal del Centro de Investigación Biomédica
de La Rioja, OEBA-CIBIR, procedure number AMR14).

Six-week-old C57BL/6J mice (Charles-River) were used for this assay. Mice were
housed under standard conditions at a temperature of 22 ◦C (±1 ◦C) and a 12-h light/dark
cycle with free access to food and water.

Mice were subjected to an acute model of stress by immobilization, as previously
described [20,30], by placing them inside 50 mL conical tubes with no access to food or
water for 6 h. Adequate ventilation was provided by several air holes (0.5 cm in diameter)
drilled into the conical end of the tube and at its sides. The tubes prevented forward,
backward, or rotational movements of the mice. Due to the corticosterone circadian rhythm,
restrain stress was applied at the same time of the day (9:00 AM) in all experiments.

Mice were randomly divided into different experimental groups (n = 5 per group)
and received, by oral gavage, 200 µL of grape juice with or without the natural extract
(red grape) during 5 consecutive days. 2.8 mg of the natural extract were provided in
each session. This amount was calculated as the mouse dose equivalent to a human dose
of 180 mg/day following the recommendations of the Food and Drug Administration
criteria for converting drug equivalent dosages across species (http://www.fda.gov/cber/
gdlns/dose.htm (accessed on 5 April 2021) [31]. On the 6th day, mice were subjected to
6 h of restraint stress and immediately sacrificed. The whole brain was dissected out. The
olfactory bulbs and the cerebellum were removed, and the remaining tissue was divided
into two equal halves by a sagittal section. Each half was frozen separately in liquid N2 and
stored at –80 ◦C. One side was used for RNA extraction and the other one for antioxidant
enzymes analysis (see below).

2.9. Quantitative Real-Time PCR

Total RNA was isolated from mouse brains and purified as described [32]. Briefly,
total RNA was isolated using Trizol reagent (Invitrogen, Waltham, MA, USA) with DNAse
digestion step performed (Qiagen, Hilden, Germany), according to manufacturer’s instruc-
tions. Resulting RNA (5 µg) was reverse transcribed using Superscript III First-Strand
Synthesis System for RT-PCR (Invitrogen), and the synthesized cDNA was amplified using
SYBR Green PCR Master Mix (Applied Biosystems, Foster City, CA, USA). Transcripts
were amplified by real-time PCR (7300 Real-Time PCR System, Applied Biosystems). For
each transcript, a specific calibration curve of cDNA was included to analyze expression

http://www.fda.gov/cber/gdlns/dose.htm
http://www.fda.gov/cber/gdlns/dose.htm
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of NOX-2, HMOX-1, IL-6, TNF-alpha, and Nrf-2. All measurements were normalized to
GAPDH as a housekeeping gene. Specific primers are shown in Table 2.

Table 2. Primers used in this study. Annealing temperature was 60 ◦C for all transcripts.

Gene Forward Primer (5′–3′) Reverse Primer (5′–3′) Accession Number

NOX-2 GCTGGGATCACAGGAATTGT CTTCCAAACTCTCCGCAGTC NM_007807
HMOX-1 TGCTCGAATGAACACTCTGG TAGCAGGCCTCTGACGAAGT NM_010442

IL-6 ATGGATGCTACCAAACTGGAT TGAAGGACTCTGGCTTTGTCT NM_031168
TNF-alpha CCACCACGCTCTTCTGTCTA CACTTGGTGGTTTGCTACGA NM_001278601

Nrf-2 AGCGAGCAGGCTATCTCCTA TCTTGCCTCCAAAGGATGTC NM_010902
GAPDH CATGGCCTTCCGTGTTCCTA GCGGCACGTCAGATCCA NM_008084

2.10. TBARS, SOD, and Catalase Activity

For the determination of oxidative stress parameters and antioxidant components
in the brain, frozen tissues were homogenized in RIPA buffer (Thermo Fisher Scientific,
Waltham, MA, USA) supplemented with Complete and Phospho STOP (Roche, Basel,
Switzerland) protease and phosphatase inhibitors as described [20]. Lipid peroxidation
was determined using a commercial TBARS assay kit (CA995, Canvax, Cordoba, Spain).
The final malondialdehyde products were detected by fluorescence spectroscopy with
excitation/emission at 530 nm/590 nm in a microplate reader (POLARstar Omega, BMG
Labtech, Ortenberg, Baden-Wuerttemberg, Germany). Levels of superoxide dismutase
(SOD) activity were determined using an SOD assay kit (CA061, Canvax, Córdoba, Spain),
according to the manufacturer’s protocol. Absorbance at 450 nm was measured using a
POLARstar Omega plate reader. Catalase activities were determined using a commercial
Catalase Activity assay kit (CA063, Canvax, Córdoba, Spain) following manufacturer’s
instructions. Enzyme activity was detected by fluorescence spectroscopy with excita-
tion/emission at 530 nm/590 nm in a microplate reader (POLARstar Omega).

2.11. Statistical Analysis

All data sets were analyzed for normalcy and homoscedasticity. Normal data were
analyzed by Student’s t test or by One-way ANOVA followed by Dunnet’s multiple com-
parison post hoc test. Data that did not follow a normal distribution were compared
by Kruskal–Wallis test followed by Mann–Whitney post-hoc test. Analyses were per-
formed with GraphPad Prism version 8.3.0 (GraphPad Software, San Diego, CA, USA). A
p value < 0.05 was considered statistically significant.

3. Results
3.1. Vitamin B12 and Polyphenol Levels Are Not Negatively Affected by Grape Juice
Pasteurization

The purpose of this study was to develop a customer-acceptable food staple with
enriched antioxidant properties that may be used to prevent NDs. Grape juice was cho-
sen as the alimentary matrix and different natural extracts that had previously demon-
strated antioxidant capacity in vivo [20] were added. Extracts selected for this study were
MecobalActive® and red grape polyphenols. Three different concentrations of the extracts
were established (Table 1) based on our previous published experience [20] and pasteur-
ization of the juice was performed as a strategy to preserve and standardize the drink. To
determine whether pasteurization negatively affected stability of the bioactive extracts,
physicochemical studies were carried out to determine the amount of vitamin B12 and
polyphenols present in the grape juice before and after pasteurization. The study was done
for the higher (Mec3 and Gra3) and lower (Mec1 and Gra1) extract concentrations.

In the case of vitamin B12, the original grape juice contained no detectable amount
of vitamin B12 (Table 3). Two enriched samples were prepared, containing 75 and 150 µg
of MecolActive® per 100 g of grape juice, and were named Mec1 and Mec3, respectively.
Physicochemical studies were carried out after pasteurization showing that only 67 and
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117 µg of MecolActive® remained in the Mec1 and Mec3 samples, respectively. This study
demonstrated that pasteurization results in the loss of between 10.7% and 22.0% of vitamin
B12 (Table 3). Nevertheless, this loss was not considered problematic since the remaining
levels of vitamin B12 are sufficient to elicit a beneficial effect in vivo.

Table 3. Vitamin B12 levels in original grape juice, and in Mec1 and Mec3 samples.

VitB12 (µg/100 g)

Grape Juice Mec1 Mec3

Added amount 75 150
Expected amount 75 150
Obtained value 0 67 117

Lost amount 8 33
% loss 10. 7% 22.0%

In the case of polyphenols, the original juice contains 346.4 mg/kg (Table 4). As with
vitamin B12, two samples were prepared by adding 500.0 and 1250.0 µg/Kg of red grape
polyphenols to the grape juice (named as Gra1 and Gra3, respectively). Physicochemical
studies carried out after pasteurization showed that only 601.3 and 1124.0 µg/Kg were
present in Gra1 and Gra3, respectively. These results represent a loss of 28.96% and 29.59%
on polyphenol contents in Mec1 and Mec3 respectively, due to pasteurization (Table 4). As
with vitamin B12, this loss was not considered relevant since the remaining polyphenol
levels were sufficient to induce healthy in vivo effects.

Table 4. Polyphenol levels in grape juice, and in Gra1 and Gra3 samples.

Polyphenols (mg/Kg)

Grape Juice Gra1 Gra3

Added amount 500.0 1250.0
Expected amount 846.4 1596.4
Obtained value 346.4 601.3 1124.0

Lost amount 245.1 472.4
% loss 28.96% 29.59%

3.2. MecobalActive® Addition to the Grape Juice Does Not Cause Significant Changes in Its
Aspect, Texture, and Color and Odor Intensities

After demonstrating that vitamin B12 and polyphenol levels were stable in the pas-
teurized drink, a comparison of organoleptic characteristics was performed between the
untreated control (grape juice) and the different enriched samples by conducting a senso-
rial analysis.

First, the impact of adding three different concentrations of MecobalActive® to the
grape juice was studied by a panel of selected judges. Taking into account the aspect,
83.3% of judges considered that all MecobalActive® concentrations (Mec1, Mec2, and Mec3)
had no differences compared to the control. Regarding color and odor intensity, 83.3%
considered that Mec1 and Mec2 were equal to the control, whereas for Mec3 50.0% of
judges decided that differences with the control were evident. For taste, 66.7% of judges
considered samples Mec1 and Mec3 equal to the control, but for Mec2 only 33.3% decided
that it was undistinguishable from the control. Taking into account the flavor, 50.0% of the
panel considered that samples Mec1 and Mec2 were equal to the control but, in contrast,
sample Mec3 was different from the control according to 83.3% of judges. Finally, regarding
texture, 83.3% of judges considered that Mec1 and Mec2 were equal to control but only
50.0% of the panel decided that Mec3 was equal to control.
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3.3. The Addition of Red Grape Polyphenols Does Not Cause Relevant Changes in the Intensity of
Flavor and Texture of the Grape Juice

The addition of three different concentrations of red grape polyphenols to the grape
juice was studied by the same panel of judges. Taking into account the aspect, and color
and odor intensity, 100% of judges considered that all modifications (Gra1, Gra2, and Gra3)
were different from the control. The differences in color are evident due to the strong hue
of the extracts (Figure 1B). For taste, 50% of judges considered only sample Gra1 equal to
the control. Regarding flavor, 50% of the panel considered that Gra1 and Gra2 were equal
the control but, in contrast, sample Gra3 was not equal to the control according to 66.6%
of judges. Finally, concerning texture, 100% of judges considered that Gra1 was equal to
control and half of the panel thought the same thing for Gra2 and Gra3.

3.4. MecobalActive® and Red Grape Polyphenols Addition to the Grape Juice Does Not Cause
Variation in Its Organoleptic Standards

The organoleptic quality of the samples was evaluated by the judges using the accept-
ability test. Samples enriched with MecobalActive® obtained values between 7.17 and 6.94,
with no statistically significant differences among them (Figure 2A). However, significant
differences were obtained among the three concentrations of red grape polyphenols, where
Gra1 showed the highest acceptability, at 6.52 (Figure 2A). All samples obtained values
above 5.0, indicating that they were within organoleptic acceptable standards. In addition,
the evolution of acceptability was monitored to study whether the organoleptic properties
were lost over time. No difference in the organoleptic standards was observed for any
of the samples up to 40 days after sample preparation (Figure 2B), indicating that the
organoleptic quality of the samples does not change over this time period.
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3.5. The Sample with the Lowest Concentration of Red Grape Polyphenols Shows Higher Preference
by the Judges

Since the purpose of the study is to develop a customer-acceptable drink with en-
riched antioxidant properties, and given that all samples were within optimal organoleptic
standards, a ranking test was conducted to select the best presentation. This test asks
the judges to score the samples with a ranking scale of their preferences from “the least”
(one point) to “the most” (three points) favorite drink. According to the order given by
each judge, the average score value was calculated and a general ranking was established
for each sample (Figure 3A). Gra1 was the sample with the highest score (2.64 ± 0.24)
compared to the other presentations (p < 0.05) (Figure 3A).
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Finally, judges were asked to select the single sample with greater acceptability. The
sample that showed greater acceptability among judges was Gra1 (28% of judges), followed
by Mec1 (20%), Mec3 (17.1%), Mec2 (14.2%), Gra3 (11.4%), and Gra2 (8.6%) (Figure 3B).
Taking into account all previous results, we selected Gra 1 (red grape polyphenols at lowest
concentration) as the best sample to carry out in vivo studies.

3.6. Oral Administration of Grape Juice Supplemented with Red Grape Polyphenols Exerts an
Antioxidant Effect in the Brain of Stressed Mice

Previous studies have demonstrated that red grape polyphenols possess in vivo an-
tioxidant capacity [20] but the presence of the alimentary matrix (grape juice) may interfere
with this property. Therefore, grape juice with or without added red grape polyphenols
was orally administered for five days and then mice were subjected to immobilization
stress for 6 h. Expression of inflammatory and oxidative genes was studied by qRT-PCR in
the mouse brains.

To mimic the human dose provided in Gra1 (180 mg/unit), mice received 200 µL of
grape juice containing 2.8 mg of red grape polyphenols, according to published conver-
sion standards [31]. In agreement with our previous results [20], immobilization stress
significantly increased the expression of IL-6 and TNF-alpha when compared to control
(two-fold and 2.5-fold, respectively) (Figure 4A,B). Administration of grape juice resulted in
a diminution of the expression of both genes that was statistically significant for TNF-alpha
(Figure 4A,B). Furthermore, grape juice enriched with red grape polyphenols returned IL-6
and TNF-alpha expression to values undistinguishable from those obtained in the non-
stressed animals (Figure 4A,B). We also studied the expression of NOX-2 (Figure 4C) and
HMOX-1 (Figure 4D). These genes are involved in oxidation mechanisms and they increase
in the brain of mice subjected to stress [30]. The administration of red grape polyphenols-
enriched grape juice significantly decreased the immobilization-increased expression of
both NOX-2 and HMOX-1 to levels very similar to those found in the animals without
stress (Figure 4C,D). Finally, we analyzed Nrf-2 expression (Figure 4E). Numerous authors
have described Nrf-2 expression as a protective mechanism for oxidative stress [33–35].
In ours case, immobilization stress significantly reduced Nrf-2 expression (Figure 4E) but
administration of grape juice with or without the natural extract significantly increased
Nrf-2 expression to high levels (Figure 4E).
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IL-6 (A), TNF-alpha (B), NOX-2 (C), HMOX1 (D), and Nrf2 (E) was quantified in mouse brains by qRT-PCR. Gene expression
was normalized with GAPDH. All data were normalized to levels found in non-stressed mice and are expressed as fold
change. Values are presented as mean ± SEM from at least five independent animals. One-way ANOVA and Dunnet’s
multiple comparison post hoc test were used for statistical analysis. * p < 0.05; ** p < 0.01 vs. normal mice; # p < 0.05;
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3.7. Preventive Treatment with Grape Juice Enriched with Red Grape Polyphenols Increases
Antioxidant Enzymes Activity in the Brain

To verify the possible protective role of red grape polyphenol-enriched grape juice
in oxidative stress, we studied the activity of two antioxidant enzymes, catalase and
superoxide dismutase (SOD), in the mouse brains.

In a previous report, we described that stress causes a decrease in catalase activity in
the mouse brain [30]. Indeed, we observed a significant reduction in catalase activity in
stressed mice compared to non-stressed animals (Figure 5A). Furthermore, the administra-
tion of grape juice with or without red grape polyphenols led to a statistically significant
increase in the levels of catalase activity (Figure 5A). SOD is one of the most important
antioxidant enzymes in the cells catalyzing the dismutation of the superoxide anion into
hydrogen peroxide and molecular oxygen [36]. As with catalase activity, stress caused
a significant decrease in SOD activity in the mouse brains (Figure 5B). Interestingly, the
administration of grape juice with or without red grape polyphenols significantly increased
the activity of SOD enzyme (Figure 5B). The expression was higher in the case of grape
juice with red grape polyphenols, indicating their potent antioxidant effect (Figure 5B).
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3.8. Preventive Treatment with Red Grape Polyphenol-Enriched Grape Juice Prevents Lipid
Peroxidation in the Brain

Lipid peroxidation is another important parameter to take into account when studying
oxidative stress [37]. We measured malondialdehyde (MDA) levels present in the mouse
brain. In a previous report, we observed that acute stress doubled MDA levels when
compared with the non-stressed control group [30]. First, we confirmed this elevation
in MDA due to immobilization stress (Figure 5C). Treatment with grape juice alone did
not provide a significant protection, but grape juice enriched with red grape polyphenols
resulted in a significant reduction in MDA levels (p < 0.01). The MDA levels of animals
treated with the enriched juice were undistinguishable from those found in the animals
without stress (Figure 5C).

4. Discussion

Here, we have developed a customer-acceptable drink with enriched antioxidant
properties and we have examined its protective properties against oxidative stress in vivo.
We found that the addition of red grape polyphenols and MecobalActive® to grape juice
did not provoke changes in juice organoleptic characteristics and that the pasteurization
process did not destroy the levels of flavonoids and vitamin B12 present in the grape juice.
A panel of judges selected grape juice with red grape polyphenols and it was used to
carry out in vivo studies. In vivo, we demonstrated that oral administration of grape juice
supplemented with red grape polyphenols exerted an antioxidant effect in the brain of
stressed mice reducing the expression of genes involved in inflammation and oxidation
mechanisms and increasing the expression of genes related to protection against oxidative
stress. In addition, we found that preventive treatment with grape juice enriched with red
grape polyphenols augmented antioxidant enzymes and prevented stress-induced lipid
peroxidation in the brain.

NDs are age-dependent disorders whose prevalence is rising due to the increasing
life span of the world’s population. In recent years, there has been increasing supporting
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evidence for an association between lifestyle habits, such as diet and dietary components,
and a delay in AD occurrence [14] and, specifically, some studies show that flavonoid
intake can have a protective effect on human and animal brains [19,20] and that the
bioavailability of flavonoids is guaranteed when orally administered [24,25]. The vast
majority of antioxidant substances need to be fermented by the microbiota of either the
small intestine or the colon to achieve optimal absorption [24,25].

Some studies have shown that moderate wine consumption, specifically red wine,
could have a neuroprotective effect due to the fact that grapes are one of the richest sources
of polyphenols [14]. In this study, we were interested in using a non-alcoholic drink. It
has also been described that the consumption of fruit and vegetable juices containing high
concentrations of flavonoids, at least three times per week, may delay the onset of AD [21].
Given all this, grape juice was chosen as the drink to use in the study. Moreover, red grape
polyphenols and MecobalActive® were selected as the extracts to use in the study because
they showed great results in an in vivo restraint stress model which was recently published
by our group [20].

Heat treatments, such as pasteurization and sterilization, are the most used methods
to process and preserve food, mainly due to their ability to inactivate a wide range of
microorganisms and spoilage enzymes [38]. However, heat processing may induce several
chemical and physical changes, reducing the content and, also, the bioavailability of
some bioactive compounds such as polyphenols [39,40]. Physicochemical studies carried
out in grape juice with MecobalActive® or red grape polyphenols after pasteurization
showed that a loss of about 20–30% of vitamin B12 and polyphenol contents took place
due to the heat process. This fact was not a surprise because many papers describing
heat damage to polyphenols availability have been published. Losses of between 16 and
28% of polyphenol levels after pasteurization have been previously reported in grape and
watermelon juice and strawberry puree [41–44]. The really important fact is that this loss is
not considered relevant, since the remaining polyphenols are sufficient to induce healthy
in vivo effects [45].

In the sensorial study, panelist noted no significant changes in the aspect, texture, and
color and odor intensities on grape juice supplemented with MecobalActive®, whereas the
addition of red grape polyphenols did not cause relevant changes in the intensity of flavor
and texture of the grape juice. In 2014, Barba et al. [46] proposed that changes in sample
color are noticeable by an inexperienced observer if they are higher than 1.5-fold. Here, an
expert panel of judges determined that there were no significant changes in grape juice
color after adding MecobalActive® although there was an evident change after the addition
of red grape polyphenols since they provide an intense purple coloration. In addition, the
panelists only expressed a significant dislike for the sample with the higher concentration of
red grape polyphenols, although the sample met the acceptability requirements dictated by
UNE-ISO 8587:2010. Finally, the sample best considered by the judges in both acceptability
and ranking was grape juice with the lowest concentration of red grape polyphenols and,
for this reason, this sample was chosen to carry out in vivo studies in animals. However, it
should not be forgotten that grape juice supplemented with MecobalActive® also achieved
optimal acceptability values by the judges and could be a future candidate to test in vivo.

The use of stress models is supported by substantial evidence implicating stress as
a precipitating factor for several neuropsychiatric disorders [47]. We and others have
used acute restraint stress with 6 h of immobilization for our stress-inducing experiments
achieving satisfactory results [30,48]. Acute restraint stress stimulates several cellular events
resulting in enhanced ROS production [49]. Furthermore, the extracellular release of ROS
finally enhances production of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α [50,51].
In addition, Nox-2 is well known for generating superoxide molecules under oxidative
stress-mediated circumstances and HMOX1 is induced by oxidative stress [52]. On the
other hand, Nrf2 induces the expression of antioxidant genes which eventually provoke an
anti-inflammatory expression profile that is crucial for the initiation of healing [53]. Our
previous studies demonstrate that red grape polyphenols possess an important antioxidant
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capacity in vivo [20] but the presence of the alimentary matrix (grape juice) may interfere
with this property. Here we described that the administration of grape juice with red grape
polyphenols prevents the expression of genes involved in inflammation and oxidation
mechanisms, while increasing the expression of Nrf2 confirming that the presence of the
grape juice did not interfere with the antioxidant capacity of red grape polyphenols, but
on the contrary, they may act synergistically. We described that grape juice alone reduced
TNF-α and NOX-2 expression, and increased 2.5-fold Nrf2 levels. It is noteworthy that the
grape juice by itself was able to partially correct some of the genetic parameters (TNF-α,
NOX2, HMOX1, and Nrf2). This is in agreement with previous studies on the antioxidant
properties of grape products [54]. This antioxidant capacity has also been reported for other
juices. For instance, juices rich in vitamin C such as acerola, wild rose, and pompia juice
have in vivo antioxidant capacities [55,56]. In addition, pomegranate juice can be used as
an anti-oxidative and anti-inflammatory agent, as demonstrated in mouse models [57].

It is understood that ND are induced by chronic stress, but single experiences of acute
stress may have long-term consequences on brain physiopathology [58]. This is due to
the brain’s neuroplasticity. Recent studies have shown that acute or subacute stress can
induce not only rapid, but also sustained changes in synaptic function, neuroarchitecture,
and behavior [59]. In any case, it would be interesting to confirm our data on a model of
chronic stress.

Similarly, numerous studies have reported that restraint stress enhances lipid peroxi-
dation and decreases antioxidant enzyme activities in rodents [49,60]. SOD and catalase
are the best-known antioxidant enzymes [30]. We found that grape juice supplemented
with red grape polyphenols increased the activity of catalase and SOD when compared to
stressed mice. On the other hand, MDA is one of the final products of polyunsaturated fatty
acid peroxidation in the cells and is commonly used as a marker of oxidative stress [61].
In agreement with this, we found that MDA levels significantly increased in the brain of
stressed animals but were very efficiently normalized by oral administration of the grape
juice with red grape polyphenols. All these results allow us to confirm that the presence of
the grape juice did not interfere whit the antioxidant capacity of red grape polyphenols.

5. Conclusions

Taken together our results suggest that the addition of red grape polyphenols to grape
juice is well tolerated by potential customers and that the new drink effectively reduces
stress levels in the brain. In consequence, we propose that private companies and the
public administration may collaborate in promoting the consumption of this drink, or
similarly characterized products, by the general public as a new and global strategy for the
prevention of NDs.
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