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Abstract

Altered energy metabolism is a biochemical fingerprint of cancer cells that represents one of the “hallmarks of cancer”.
This metabolic phenotype is characterized by preferential dependence on glycolysis (the process of conversion of glucose
into pyruvate followed by lactate production) for energy production in an oxygen-independent manner. Although
glycolysis is less efficient than oxidative phosphorylation in the net yield of adenosine triphosphate (ATP), cancer cells
adapt to this mathematical disadvantage by increased glucose up-take, which in turn facilitates a higher rate of glycolysis.
Apart from providing cellular energy, the metabolic intermediates of glycolysis also play a pivotal role in macromolecular
biosynthesis, thus conferring selective advantage to cancer cells under diminished nutrient supply. Accumulating data also
indicate that intracellular ATP is a critical determinant of chemoresistance. Under hypoxic conditions where glycolysis
remains the predominant energy producing pathway sensitizing cancer cells would require intracellular depletion of ATP
by inhibition of glycolysis. Together, the oncogenic regulation of glycolysis and multifaceted roles of glycolytic
components underscore the biological significance of tumor glycolysis. Thus targeting glycolysis remains attractive for
therapeutic intervention. Several preclinical investigations have indeed demonstrated the effectiveness of this therapeutic
approach thereby supporting its scientific rationale. Recent reviews have provided a wealth of information on the
biochemical targets of glycolysis and their inhibitors. The objective of this review is to present the most recent research
on the cancer-specific role of glycolytic enzymes including their non-glycolytic functions in order to explore the potential
for therapeutic opportunities. Further, we discuss the translational potential of emerging drug candidates in light of
technical advances in treatment modalities such as image-guided targeted delivery of cancer therapeutics.
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Introduction
Glucose metabolism in cancer cells is primarily charac-
terized by two major biochemical events: (i) increased
glucose uptake and (ii) aerobic glycolysis, the process of
conversion of glucose into pyruvate eventually resulting in
the production of lactate (fermentation). The former has
already been exploited clinically to diagnose cancer and as-
sess tumor response through the utilization of radiolabeled
glucose analog, 18Fluoro-deoxyglucose (FDG) in positron
emission tomography (PET). PET imaging, combined with
computed tomography (CT), plays an indispensable role in
modern diagnostic oncology [1]. But it is the notion that
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tumor glycolysis could be used as a potential target for
therapy that remain the most intriguing. The existence of a
link between aerobic glycolysis (i.e. glycolysis in the pres-
ence of oxygen) and tumorigenesis has been known for
several decades ever since the German scientist Otto
Warburg proposed the “Warburg hypothesis” known as
the “Warburg effect” [2,3]. Yet, the underlying mechanistic
details pertinent to the causes and consequences of
such metabolic phenotype remained unclear. Concep-
tual advances in the past decades have improved our
understanding on the biological significance of tumor
metabolism [4]. As a result, deregulated or altered en-
ergy metabolism has been recognized as one of the
“hallmarks of cancer” [5].
It is increasingly evident that oncogenes and tumor

suppressors regulate altered energy metabolism. Onco-
genic mutations culminate in the up-regulation of glucose
transporters (e.g. GLUT 1, GLUT 3) [6,7] thus facilitating
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increased glucose consumption by cancer cells, which
in turn increases the rate of glucose metabolism. Con-
versely, the glycolytic/metabolic phenotype confers
selective advantage to cancer cells by supporting un-
interrupted growth. For example, a higher glycolytic
rate in tumor cells has been shown to promote resist-
ance to chemotherapeutics. In the cervical cancer cell
line, HeLa for example, the enzyme pyruvate dehydro-
genase kinase (PDK) isoforms PDK1 and PDK3 have
been demonstrated to provide resistance to chemother-
apeutics [8]. Similarly, in the colon carcinoma cell line,
LoVo it has been demonstrated that increased aerobic
lactate production (glycolysis) correlated with drug re-
sistance [9]. Thus, interrupting or possibly disrupting
tumor glycolysis will impact tumor growth by energy
depletion as well as sensitization to therapeutics espe-
cially, in light of the recent reports that have elucidated
cancer-specific advantages of aerobic glycolysis [10-13].
Several authors have delineated a wealth of information
on the biochemical targets of glycolysis and their potent
antagonists or inhibitors with promising anticancer
effects (refer reviews [14-18]). Our goal in this review is
to discuss the cancer-specific intricacies and advantages
of glycolysis in the light of recent research underscoring
the clinical relevance of targeting it for cancer therapy.

Glycolysis in cancer
The fact that cancer cells express the glycolytic phenotype
has long been known (refer review, [19]). However, until
recently, the dependence on such a phenotype remained
unclear. In an elegant report, Bonnet et al. [20] demon-
strated that reversing the glycolytic phenotype to oxidative
phosphorylation (OXPHOS) in cancer cells resulted in the
induction of cell death. Further, when the mitochon-
drial-K+ channel axis of cancer cells is suppressed, a mere
restoration of mitochondrial-K+ channel function is suffi-
cient to promote apoptosis. This report supports two
major hypotheses, (i) reversal of the glycolytic phenotype
to oxidative phosphorylation can promote cancer cell
death and (ii) glycolysis can facilitate tumor growth des-
pite a suppressed mitochondria-K+ channel axis.
Understandably, the metabolic switch from mitochon-

drial respiration to glycolysis during hypoxia (where
oxidative phosphorylation will be inactive) as well as
mitochondrial dysfunction [21,22] are critical for cancer
cell growth. Yet, the presence of aerobic glycolysis under
normoxic conditions in the context of functionally effi-
cient mitochondria is also very intriguing. Mitochondrial
impairment or defective oxidative phosphorylation is fre-
quently found in cancer. It is known that mutations in
mitochondrial DNA (mtDNA) affect the enzymes involved
in OXPHOS, at least three enzymes from the TCA cycle,
succinate dehydrogenase (SDH), fumarate dehydrogenase
(FDH) and isocitrate dehydrogenase (IDH) (reviewed by
Wallace [23]) whereas mitochondrial gene mutations in
the nuclear DNA (nDNA) primarily affect the bioenerget-
ics status of cancer cells (reviewed by Wallace [23]). These
enzymatic mutations have been linked to several intrinsic
pathways that together or independently can reprogram
the metabolic circuitry of cancer cells. For example, SDH
mutation results in the accumulation of succinate which
in turn inhibits prolyl hydroxylase dehydroganse (PHD)
eventually contributing for the stabilization of HIF-1α.
This mechanism is sufficient to recognize the importance
of HIF-1α’s role as an activator of aerobic glycolysis and
lactate production. Thus it is clear that mitochondrial de-
fect in cancer cells can cause a shift in energy metabolism.
On the other hand, cancer cells subjected to mtDNA

gene mutations or deletions show reduced colony forma-
tion, growth rate and diminished tumorigenicity [24].
Based on this and similar reports, if impaired mitochon-
dria were truly a “common cause of cancer growth” as
proposed by Warburg, then it is difficult to explain the
rapid proliferation, formation of metastases and che-
moresistance typical of cancer cells. It could then be that
such cancer cells harbor the functionally normal mito-
chondria from surrounding normal cells [25]. If this
were the case, it could not support the theory that a
mitochondrial defect is at the origin of “aerobic glycolysis
or lactate production” as normal mitochondria (located in
adjacent normal healthy cells) could compensate for the
OXPHOS function. Nevertheless, a wealth of data indicate
that a link between mitochondrial function and cancer
progression exists, especially with the energy metabolism
of cancer cells, although a distinctive step-wise mecha-
nistic principle underlying the origin of cancer remains
extremely controversial.
Recent investigations have shed light on the under-

standing of the benefits and selective advantages of aerobic
glycolysis. Although glycolysis yields a lower amount of
ATP compared to mitochondrial OXPHOS, several key
benefits inherent in aerobic glycolysis drive cancer cells to
favor glycolysis over mitochondrial oxidation [26]. First,
the rate of glycolysis and turnover of glucose into lactic
acid is accelerated thereby resulting in faster and greater
ATP production. Pfeiffer et al. [27] have postulated
that the high-rate but low yield ATP producing pathway
(glycolysis) confer selective advantage under competition
for shared energy sources, adding an evolutionary signifi-
cance to glycolysis [28]. The rate of ATP production may
be 100 times faster with glycolysis than with OXPHOS
[29]. The low yield of ATP with glycolysis is however suffi-
cient to meet intracellular demand. Rapidly dividing cells
such as microorganisms (with a doubling time ranging
from a few minutes to several hours) require ATP for pro-
liferation whereas cancer cells with a comparatively longer
doubling time (days rather than minutes) may require
ATP primarily only for cell maintenance (rather than for
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proliferation). For all these reasons, the ATP formed
through glycolysis is sufficient for cancer growth. It is
therefore likely that the increased rate of ATP production
resulting from glycolysis confers a selective growth advan-
tage to cancer cells [30,31]. Second, in addition to ATP,
cancer cells require further metabolic intermediates and
precursors that are critical for the biosynthesis of macro-
molecules, the ultimate building blocks indispensable to
increase the tumor mass during growth and proliferation
[32]. The accumulation of glycolytic intermediates is
known to promote the pentose phosphate pathway PPP
resulting in the generation of NADPH and ribose-5-
phosphate. Both, NADPH and ribose-5-phosphate are
essential for the biosynthesis of lipids and nucleic acids.
Lastly, the production of NADPH enables the cancer cells
to maintain adequate levels of reduced forms of glutathi-
one (GSH), a key non-enzymatic antioxidant. GSH plays a
pivotal role in protecting cancer cells against antineoplas-
tic agents by maintaining the redox status as well as by
counteracting some of the effects from chemotherapeutic
agents (reviewed [33,34]). In this context, under experi-
mental conditions, Zhou et al. [28], have demonstrated
that chemoresistant cell lines have elevated aerobic gly-
colysis indicating a biochemical link between resistance
and glycolysis. Apart from the resistance to chemothe-
rapeutics, aerobic glycolysis has also been implicated in
resistance to radiotherapy. Indeed, Pitroda et al. [35] have
demonstrated that regulation of glycolytic or energy meta-
bolic pathway affects the sensitivity of tumor cells.
The PPP plays a pivotal role in macromolecular bio-

synthesis. Recent evidence indicates that it also contrib-
utes to therapeutic resistance as an antioxidant system
to chemo- and radiation therapies [36]. Among several
enzymes involved in the PPP, the transketolase (TKTL1)
has gained increased attention owing to its involvement
in cell survival under stress or starvation [37-39]. Other
data also indicate that TKTL1 affects the chemosensitivity
of cancer cells to drugs such as imatinib [40], cetuximab
[41]. Thus it is evident that aerobic glycolysis in conjunc-
tion with the pentose shunt pathway provide multiple
benefits to cancer cells such as promoting tumor progres-
sion and providing resistance to therapy. Hence, this key
signature of cancer cells, tumor metabolism, particularly
the tumor glycolysis, provides an ideal target for thera-
peutic intervention.

Non-glycolytic functions of glycolytic enzymes and the
metabolic intermediates
Many enzymes of the glycolytic pathway also play
significant roles in several non-glycolytic processes
that enable the cancer cells to meet other cellular
demands. As shown in Figure 1, enzymes such as
hexokinase II (HKII), glyceraldehyde-3-phosphate dehydro-
genase (GAPDH), pyruvate kinase (PK)-M2 isoform and
lactate dehydrogenase (LDH) are known to be involved in
a number of subcellular functions including transcrip-
tional regulation and phosphorylation of histones [42].
For example, the mitochondrial membrane-bound

HKII antagonizes the proapoptotic machinery there by
provides survival advantage to cancer cells [43,44]. In
addition, HKII is also involved in transcriptional regula-
tion, a functional property characteristic of nuclear pro-
teins [42]. Similarly, GAPDH plays a crucial role in the
maintenance of cellular redox balance as it catalyses the
first step to produce NADH (extensively reviewed by
Seidler [45]). It is also known that GAPDH plays a piv-
otal role in protecting the cells from free radical or
ROS-mediated injury. As for the nuclear functions of
GAPDH available reports indicate that GAPDH might
be involved in both pro-apoptotic and oncogenic pro-
cesses (Seidler, [46]). Its oncogenic role involves the in-
direct participation in nucleic acid binding properties of
hepatitis viruses – a function that correlates with liver
carcinogenesis [47]. What remains to be elucidated is
the identification of the intracellular mechanism that di-
rects the proapoptotic or oncogenic role of GAPDH.
Next, PK-M2 is involved in the regulation of macromol-
ecular biosynthesis (e.g. nucleic acid) [48] and multiple
reports have established its role in tumor progression
[49-51]. In addition to its involvement in biosynthesis,
nuclear translocation of its phosphorylated form has
been shown to promote the Warburg effect [52]. Several
reports have indicated that PK-M2 strongly participates
in diverse non-glycolytic functions [53]. PK-M2 acts as
a kinase and phosphorylates histone H3 to favor
tumorigenesis [54], as a nuclear protein it transactivates
β-catenin [55], and as a phosphotyrosine binding pro-
tein it interacts with other proteins as well [56]. Evi-
dence from gene silencing experiments demonstrate
that the enzyme, LDH cooperates with Oct-4, a tran-
scriptional factor, during gastric tumorigenesis. Silencing
LDH abrogated tumorigenicity by Oct-4 down regulation
(19). Thus many glycolytic enzymes participate or influ-
ence several non-metabolic functions.
As with glycolytic enzymes, some of the metabolic in-

termediates of glycolysis have also been associated with
non-glycolytic pathways. For example, Fructose-1, 6
bisphosphate plays an anti-apoptotic role in cancer cells
by maintaining the cytochrome C in a reduced, non-
active state [57]. Similarly, pyruvate contributes to che-
moresistance by over-expressing the p-glycoprotein [58].
The export and import of lactate (the product of pyru-
vate oxidation) is achieved through the transporters
known as monocarboxylate transporters (MCTs). The
non-glycolytic role of MCTs include the regulation of
the CD147, a matrix metalloproteinase inducer, which
increases the invasion and metastatic potential of cancer
cells [59,60]. Collectively, these findings strongly suggest



Figure 1 Non-glycolytic functions of glycolytic enzymes and metabolic intermediates. In the innermost circle, thick arrows represent
enzymes and thin arrows indicate intermediate metabolites. The short arrows pointing towards the outer circle represent the non-glycolytic
functions of corresponding enzymes/metabolites.
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that many of the enzymes and metabolic intermediates
of tumor glycolysis also play a key role beyond glycolysis,
thereby facilitating the growth and survival of cancer
cells.
Increasing evidences demonstrate that glycolytic en-

zymes translocate to different subcellular compartments
where they can interact with subcellular structures to an
appreciable degree resulting in significant differences in
their primary and secondary functions (Figure 2). The
enzyme HKII which catalyses the first rate-limiting step
of glucose metabolism is located proximally to the mito-
chondria in order to facilitate the immediate utilization
of ATP. Similarly, other glycolytic enzymes such as
GAPDH and aldolase are anchored by actin filament-like
structures located in close proximity to the segments of
glycolysis taking place in the cytoplasm [61].
Whereas the necessity and significance of the associ-

ation between glycolytic enzymes and cytoskeletal struc-
tures remains obscure, the nuclear functions of glycolytic
enzymes are sufficiently documented. Indeed, one of the
isoforms of phosphofructo kinase (PFK), the PFKFB3
impacts cancer cell proliferation by its nuclear translo-
cation [62]. Similarly, the direct binding of GAPDH to
telomeric DNA protects telomeres against chemotherapy-
induced rapid degradation [63]. GAPDH also enhances
the transcriptional activity of androgen receptors in pros-
tate cancer cells [64]. Finally, the nuclear translocation
of LDH modulates the functions of DNA polymerases
alpha, delta and epsilon [65]. It is convincingly evident that
glycolytic enzymes participate in several non-glycolytic
processes at various subcellular locations including the
mitochondrial-membrane, as well as nuclear and cyto-
plasmic compartments.

Relevance for targeting glycolysis
A higher lactate level significantly correlates with tumor
recurrence and the metastatic potential of tumors result-
ing in poor patient outcomes [66]. As lactate level indi-
cates the prevalence of glycolytic phenotype targeting
such tumors through antiglycolytic agents likely to be
very effective. Lactate was originally thought to be an
acidic molecule that must be exported from cancer cells
to prevent deleterious intracellular acidification. Re-
cently, different roles of lactate export/import have been
implicated with some directly contributing to cancer
survival and growth and others to the metabolism of
normoxic cancer cells that do not produce or excrete
lactic acid. In this way, a sort of “metabolic symbiosis”
exists within the tumor [67]; the lactate produced and
extruded by hyperglycolytic or hypoxic cancer cells is



Figure 2 Schematic showing the distribution of glycolytic enzymes in various subcellular compartments. HKII is a cytoplasmic enzyme
however its localization to mitochondrial membrane has been established. As for binding with tubulin or actin filaments existing data are strong
enough to include only GAPDH and for other glycolytic enzymes it remains to be known. The nuclear translocation has been well documented
for the enzymes GAPDH, LDH, PFKFB3 and PK-M2.
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able to re-enter normoxic cancer cells and be utilized to
generate energy through mitochondrial oxidation [68].
In the heterogeneous tumor microenvironment charac-
teristic of many solid tumors where both normoxic and
hypoxic conditions co-exist, (depending upon angiogen-
esis and their proximity to blood vessels), the described
“give and take lactate” mechanism [69] would mutually
benefit both the lactate-exporting cells and the sur-
rounding lactate-importing cells. In addition, the pres-
ence of lactate within the tumor microenvironment,
which causes extreme acidic conditions, enables the de-
activation or even inactivation of several chemothera-
peutic agents. This process of lactate export and import
is achievable by the over-expression of MCTs (primarily
the MCT1 and MCT4). Note that the MCTs are over
expressed in most tumors [70]. The release of lactate oc-
curs through MCT4, whereas its uptake occurs through
MCT1 [71]. In mouse and human tumors, MCT1 was
found to be the major transporter ensuring lactate up-
take by oxidative tumor cells and MCT4 as a hypoxia-
induced transporter involved in the removal of lactate
from glycolytic cells. Interestingly, MCT1 was found in
the tumor cells of vascularized area whereas MCT4 was
consistently concentrated in hypoxic regions correlating
well with their known respective functions.
Recently, using untransformed primary breast cells

(HMEC) as controls, Hussien and Brooks [72] demon-
strated that a significant correlation exists between the
expression profile of MCT isoforms (MCT-1 and 4) and
the abundance of LDH isoforms (LDH A and B) in
breast cancer cell lines (MDA-MB231 and MCF-7). In
the MCF-7 cell line MCT1 (export of lactate) is abun-
dant and LDHA, which converts pyruvate to lactate, is
upregulated. On the other hand in the MDA-MB-231
cells, MCT4 is over expressed (uptake of lactate to be
converted back to pyruvate for utilization in TCA cycle),
LDHB is abundant. Thus cancer cells organize their
glycolytic phenotype in a programmed fashion in order to
achieve maximum efficiency. Thus it is conceivable that
inhibition of glycolysis could be effective in killing both
glycolytic and “symbiotic” non-glycolytic tumor cells.
Multiple lines of evidences have established that a

higher expression levels of GLUTs and of certain en-
zymes such as HKII, GAPDH, LDH and PFK-B is linked
to malignant growth [73-75]. As discussed elsewhere,
it is increasingly evident that the cancer specific up-
regulation of glycolysis is regulated through oncogenes
(e.g. c-myc, Akt). The oncogenic activation directly up-
regulates glycolytic enzymes [76] and/or through the
hypoxia induced HIF-1alpha activation, which is a char-
acteristic of tumor microenvironment [77]. The later has
been experimentally verified using 3D-in vitro models,
where spheroid-formation resulted in the promotion of
a central hypoxic area eventually leading to an increase
in the glycolytic flux [78]. Akt, the serine/threonine kin-
ase, is an oncogene that promotes cancer growth [79].
Akt activates aerobic glycolysis, importantly, renders
cancer cells dependent on glycolysis for survival [80].
Coordinated networks involving signaling pathways

enable cancer cells to detect and integrate the immediate
environmental conditions to balance their anabolic and
catabolic processes. The mammalian Target of Rapamycin
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(mTOR) represents such a pathway where the intracellular
energy sensing molecule AMPK can impact the mTOR
complex I (mTORC1) mechanism of activation to either
delay or halt the energy consuming synthetic processes
[81]. Such an adaptation involves mTORC1-mediated
regulation of the expression of glycolytic enzymes through
the activation of genes such as c-myc and HIF1-alpha
[81-83]. In summary, as aerobic glycolysis plays a major
role in molecular events associated with oncogenesis tar-
geting it could be not only a relevant but also a viable anti-
cancer strategy.

Molecular targets and inhibitors of glycolysis
Figure 3 depicts major biochemical reactions of glycoly-
sis along with the enzymes involved and the energy uti-
lized or produced during the process with an emphasis
on current molecular targets. The most important role
of glycolysis is to consume glucose and convert it into
energy in the form of ATP. The consumption of glucose
is an active process, which relies on specific transporters
known as GLUTs. These GLUTs are over-expressed in
almost all cancer types and hence contribute to the
increased glucose utilization that is characteristic of the
glycolytic phenotype, a key signature of cancer. The
Figure 3 Diagram showing the two phases of glycolysis and the mole
strategies. Energy molecules such as ATP and NADH are highlighted in ye
energy release. The enzymes involved in respective reactions are abbreviat
exploited for drug development in preclinical investigations.
entire process of glycolysis can be divided between a
“preparatory phase” where energy is consumed and a
“pay-off phase” where net energy is generated in the
form of ATP and NADH.
There are several approaches to disrupting glycolysis.

Since cancer cells depend on increased utilization of
glucose as compared to normal healthy cells, glucose
deprivation could be an effective anticancer approach
and possibly used as a cancer-preventive strategy. Indeed,
carbohydrate-restricted diets to treat cancer patients have
been reported to have therapeutic benefits [84].
An obvious direct approach would be to block the

GLUTs, which would prevent glucose entry into the can-
cer cell and lead to total disruption of the glycolytic path-
way. Several such compounds (e.g. Phloretin, WZB117,
Fasentin) demonstrated anticancer effects in preclinical
models [6,85]. However, selective blockade of GLUTs in
tumor cells remains a critical challenge as GLUTs are
ubiquitously expressed in all mammalian cells.
Another approach is to target the enzyme HKII that is

responsible for the first step of glycolysis that converts
glucose to glucose-6-phosphate. This enzyme plays a
pivotal role in tumor glycolysis. First, it is a rate limiting
step that provides direct feedback inhibition thereby
cular targets currently exploited for potential therapeutic drug
llow, black arrows indicate consumption while red arrows indicate the
ed and encircled, where as the block symbol shows the targets
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preventing the consumption of cellular ATP in turn pre-
serving precious energy within the cancer cell. Second, it
has a low Km (high affinity) for glucose. This character-
istic facilitates the initiation of glycolysis specifically in
times of low serum glucose levels, and along with its
subcellular localization, (bound to mitochondrial mem-
brane) plays a pivotal role in the energy metabolism of
cancer cells [86,87]. Lonidamine is an inhibitor of HKII
and has completed phase III trial. However its clinical
success has so far been impaired by significant pancre-
atic and hepatic toxicities [88]. Similarly, another glu-
cose analog 2-deoxyglucose (2-DG) also showed
promising anticancer effects in preclinical models [89].
However, later studies revealed that the principal mech-
anism underlying 2-DG’s anticancer effects vary [90,91].
Moreover, contrary to its widely believed anticancer
effects, 2-DG was shown to activate pro-survival path-
ways in cancer cells [92]. In addition, hypoxic cells dem-
onstrated chemoresistance against 2-DG [93]. Thus the
success of 2-DG as a single agent for antiglycolytic ther-
apy has been challenged. However, in combination
treatments, 2-DG showed encouraging outcomes pro-
viding a new window of opportunity in combination
therapy [94,95].
PFK catalyzes another rate-limiting step of glycolysis

and is regulated by allosteric effectors and covalent
modifications such as phosphorylation. It is activated
by AMP and fructose 2,6-bisphosphate (F-2, 6-BP). An
abundance of ATP inhibits the activity of PFK, presum-
ably representing a regulatory mechanism. However,
F-2, 6-BP has the capability to override the inhibitory
effect of ATP, and to perpetuate uninterrupted glyco-
lytic flux. Predictably, F-2, 6-BP is elevated in cancer
cells [96]. It is regulated by the activity of a family of
bi-functional enzymes including PFKFBs which is also
up-regulated in cancer cells. As a result, specific inhibi-
tors of PFKFB3 are being developed in several laboratories.
Preliminary studies revealed promising anticancer effects
[97] but further investigations are necessary to assess
whether this approach could potentially be successful in
the clinic.
An alternative promising therapeutic approach to date

in terms of inhibiting tumor glycolysis has been target-
ing the enzyme GAPDH. In many ways the GAPDH
reaction is unique because GAPDH catalyzes the very
first step in which energy in the form of NADH is pro-
duced, the so-called “pay-off phase” (Figure 3). As such,
GAPDH is truly the initiator of the “pay-off phase”. The
first molecule produced during the “pay-off phase”,
NADH, is critically involved in the regulation of intra-
cellular ROS levels, and macromolecular biosynthetic
processes. Thus, by producing NADH, GAPDH plays a
pivotal role in the cellular redox balance. From a thera-
peutic point of view given the central role of GAPDH, it
is conceivable that, apart from blocking glycolysis and
ATP production, GAPDH inhibition would result in
multipronged effects within the cancer cell. Inhibition
of GAPDH triggers a cascade of events that eventually
leads to cancer cell death. First, glucotrioses such as
glyceraldehyde-3-phosphate and dihydroxy acetone
phosphate accumulate within the cell since they cannot
be metabolized. The partial degradation of these gluco-
trioses results in the formation of a cytotoxic metabol-
ite, methylglyoxal. Normally, the methylglyoxal enters
the glyoxalase system to be detoxified. However, in the
presence of oxidative stress and GSH depletion secondary
to the accumulation of ROS, the glyoxalase 1 (Glo1) ac-
tivity diminishes leading to the accumulation of me-
thylglyoxal which is directly cytotoxic. Under normal
conditions, the methylglyoxal is detoxified by the Glo1 and
Glo2 enzymes. But since the activity of both enzymes de-
pends on the level of intracellular GSH, any oxidative stress
and resulting increase in ROS level directly and swiftly
affect the level of GSH, thus impacting the detoxification
ability of methylglyoxal by Glo1 and Glo2 [98]. Inhibition
of GAPDH therefore not only directly depletes ATP but
also triggers a multipronged attack within the cell. Thus,
inhibiting GAPDH not only affects tumor glycolysis (by
blocking the most important energy producing step) but
also provides an opportunity to exploit other cytotoxic
mechanisms related to it.
Since GAPDH represents an attractive target for thera-

peutic intervention several inhibitors have already been
tested for their efficacy in cell cultures as well as animal
models [47]. One of the most promising of these inhibi-
tors, the pyruvate analog 3-bromopyruvate (3-BrPA) has
demonstrated profound potency in its ability to inhibit
tumor glycolysis as well as cause massive depletion of
intracellular ATP [99,100]. In addition, 3-BrPA shows
utmost specificity and selectivity for GAPDH both in vitro
in multiple cell lines and in vivo in numerous animal
models of cancer [101,102]. By binding to GAPDH inside
the cancer cells, 3-BrPA depletes ATP profoundly depriv-
ing the cancer cells of any energy [103,104]. As a result of
its potent anticancer effects, 3-BrPA has recently entered
the early phase of clinical trials (phase I).
PK catalyzes the conversion of phosphoenolpyruvate

(PEP) to pyruvate, and generates ATP in the process.
Among various isoforms, the M2 isoform has gained
much attention due to its elevated expression in tumor
cells. PK-M2 exists in either active or inactive forms.
The activity of this isoform depends on its conform-
ation (tetramer, dimer or monomeric form). PK-M2 is
critical for aerobic glycolysis and tumor energy metab-
olism [49,105]. As with PFK, PK is also regulated by
allosteric effectors and by phosphorylation, PK being
specifically activated by fructose-1, 6-bisphosphate
[106]. Several preclinical studies have shown that PK-
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M2 could represent a potential therapeutic target [107,108].
Consequently, strategies to develop small molecule inhibi-
tors specific for PK-M2 are in progress. If proven successful
in clinical trials, PK-M2 inhibitors could play a significant
role in the treatment of cancer [109].
LDH catalyzes the final step in the glycolytic pathway

that converts pyruvate into lactate. The intracellular ac-
cumulation of lactate is extremely detrimental as the
abundance of lactate drastically lowers intracellular pH.
The export of lactate into the extracellular space is
therefore necessary. It takes place through an active
process involving specific transporters known as MCTs.
Among the described isoforms, MCT1 and MCT4 have
been the subject of intense investigation due to their role
in the import and export of lactate. FX11, an inhibitor of
LDH depletes intracellular ATP levels, which in turn sig-
nificantly increase oxidative stress resulting in tumor cell
death [110]. Similarly, oxamate, another inhibitor of
LDH sensitizes resistant cancer cells to chemotherapeu-
tic agents [111]. Thus inhibition of LDH has demon-
strated promising effects in preclinical investigations and
its further progress depends on the outcome of clinical
trials.
MCTs are the final port of entry for the lactate shuttle.

Depending upon the isoform of MCT (1 or 4) the lactate
could be either exported or imported [70]. A known
MCT inhibitor, α-cyano-4-hydroxy-cinnamic acid, has
been shown to affect tumor growth [112]. The principal
mechanism underlying the MCT blockade-associated
antitumorigenic effects involves intracellular trapping of
lactate, which at a prolonged state will result in intracel-
lular acidification causing cancer cell death. However,
further studies are warranted to demonstrate the target
specificity and therapeutic efficacy of such experimental
agents in order to progress towards translation into the
clinic.

Conclusions and future directions
As discussed earlier, the reliance of cancer cells on
the glycolytic pathway for their energy needs has
been known for decades and has even been success-
fully exploited diagnostically (FDG-PET imaging) for
many years. Yet, targeting this pathway for therapy
has not been translated to the clinic. One of the
major impediments is to overcome undesirable effects
such as systemic toxicity. Plausibly, this is due to the
ubiquitous nature of the enzymes of glucose metabol-
ism including glycolysis. But in all fairness, systemic
toxicity is a major impediment to clinical progress of
any anticancer agent, not just those targeting tumor
glycolysis. The emergence of the concept of selective
targeting with targeted delivery has provided an add-
itional option to circumvent the problem of systemic
toxicity. In the last few years, there has been growing
interest in revisiting this approach. This strategy em-
ploys the use of image-guidance to deliver the drug
where it is required, i.e. in the vicinity of the tumor.
Recent advances in imaging technology allow for such
precise targeting of tumors, be it directly intra-
tumorally or intraarterially where the blood supply to
the tumor can be exploited [113]. Such therapeutic
approaches provide a unique dual advantage in evad-
ing systemic toxicity while improving the potency of
the drug [114-116]. However, these approaches are
only effective in treating localized disease (to the liver
for example) but not for widely metastatic cancers.
Certainly, the scientific rationale for targeting tumor

glycolysis is clearly sound and logical. It is based on the
fact that tumor glycolysis is a true signature of cancer
cells. A number of drug candidates have been tested
mostly pre-clinically with mixed success. But some have
been extremely promising and are about to enter the
clinical arena. One of the keys to clinical success will
reside in our ability to develop glycolytic inhibitors with
a very high specificity for the molecular target. Recently,
Birsoy et al. [117] demonstrated that selective targeting
of cancer cells could be achieved if anticancer agents or
toxic molecules utilize a mechanism specific for cancer,
(such as 3-BrPA that enters cells through MCTs which
in turn are upregulated in cancer).
Antiglycolytic agents may provide an additional line of

attack in combination therapy. Combining chemothera-
peutic drugs and glycolytic inhibitors have already been
demonstrated to be promising strategy to overcome drug
resistance in cancer. Since tumor glycolysis also plays a
significant role in chemoresistance of cancer cells glyco-
lytic inhibitors therefore have the potential to sensitize
tumor cells and to improve the outcome of conventional
chemotherapy. Such combination therapies have yielded
better results in preclinical models. For example, the use
of chemotherapeutic agents (adriamycin or paclitaxel) or
radiation therapy resulted in improved efficacy, when
applied after sensitizing tumor cells with 2-DG, a HKII
inhibitor [94,95]. Similarly, several combination studies
with the glycolytic inhibitor, 3-BrPA (that primarily tar-
gets GAPDH) have demonstrated superior efficacy
[118-120]. Thus the combinatorial therapeutic approach
remains a viable alternative for treating even resistant
phenotypes.
The inhibition of glycolysis can also transform tumor

cells into forms that are susceptible or sensitive to im-
munotherapy, thus opening a new window of opportun-
ity for immunotherapy [121]. In summary, targeting
tumor glycolysis is scientifically sound opening the door
for a few emerging therapeutic options. Some are about
to be tested comprehensively in the clinic. Only then will
we know whether the potential exists for the birth of a
true viable new class of anti-cancer agents.
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