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Background: Concussion subtypes are typically organized into commonly affected

symptom areas or a combination of affected systems, an approach that may be flawed

by bias in conceptualization or the inherent limitations of interdisciplinary expertise.

Objective: The purpose of this study was to determine whether a bottom-up,

unsupervised, machine learning approach, could more accurately support

concussion subtyping.

Methods: Initial patient intake data as well as objective outcome measures

including, the Patient-Reported Outcomes Measurement Information System (PROMIS),

Dizziness Handicap Inventory (DHI), Pain Catastrophizing Scale (PCS), and Immediate

Post-Concussion Assessment and Cognitive Testing Tool (ImPACT) were retrospectively

extracted from the Advance Concussion Clinic’s database. A correlation matrix and

principal component analysis (PCA) were used to reduce the dimensionality of the

dataset. Sklearn’s agglomerative clustering algorithm was then applied, and the optimal

number of clusters within the patient database were generated. Between-group

comparisons among the formed clusters were performed using a Mann-Whitney U test.

Results: Two hundred seventy-five patients within the clinics database were analyzed.

Five distinct clusters emerged from the data when maximizing the Silhouette score

(0.36) and minimizing the Davies-Bouldin score (0.83). Concussion subtypes derived

demonstrated clinically distinct profiles, with statistically significant differences (p < 0.05)

between all five clusters.

Conclusion: This machine learning approach enabled the identification and

characterization of five distinct concussion subtypes, which were best understood

according to levels of complexity, ranging from Extremely Complex to Minimally

Complex. Understanding concussion in terms of Complexity with the utilization of

artificial intelligence, could provide a more accurate concussion classification or subtype

approach; one that better reflects the true heterogeneity and complex system disruptions

associated with mild traumatic brain injury.

Keywords: concussion, artificial intelligence, cluster analysis, interdisciplinary, rehabilitation, mild traumatic brain

injury, complexity
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INTRODUCTION

Mild traumatic brain injury (mTBI) is a growing public
healthcare concern, and presents a substantial burden to patients,
families and health care systems (Langer et al., 2020). The
incidence rate of this silent epidemic has significantly increased
over the past decade, and accounts for the majority of all
reported traumatic brain injury cases (Rao et al., 2017). While
the majority of patients recover within 3 months, up to 30%
of patients experience persistent concussion symptoms, affecting
their ability to return to school, work, and activities of daily living
(Dennis et al., 2019; Permenter et al., 2021). Given the significant
increase in concussion and economic burden to health care
systems, there is a need for effective and efficient evaluation of
these injuries by healthcare professionals to implement accurate
and timely management strategies.

Concussion reflects in a variety of affected systems and
areas of co-occurring disruption that requires interdisciplinary
management, an approach that is universally recommended
in consensus statements and best-practice clinical guidelines
(Collins et al., 2016; McCrory et al., 2017; Schneider et al.,
2019). It is the heterogeneous nature of concussion, from
its etiology and pathophysiology, to its individual clinical
presentation and variable recovery trajectories, that has made its
management especially challenging for the clinician or primary
care physician. Moreover, in regions or health care systems
where interdisciplinary care falls outside insured or core medical
services, translating concussion best-practices in the application
of the interdisciplinary treatment model represents a further
barrier toward effective concussion management andmeaningful
progress in addressing the concussion epidemic.

Growing evidence of the complexity of concussion has
given rise to the development of clinical subtypes, with steady
empirical support (Collins et al., 2014; Ellis et al., 2016,
2018; Kontos and Collins, 2018; Lumba-Brown et al., 2020),
and is considered a valuable tool toward informing clinical
decision making, treatment planning and the conceptualization
of targeted rehabilitation pathways. Similar to Collins et al. (2014)
early delineation of six distinct sport-related concussion subtypes
based on patient-reported symptoms following one-week post-
injury, subsequent subtypes, or post-concussion disorders, have
been organized according to symptoms, impairments or a
combination of affected systems.

However, these subtypes may be vulnerable to bias in their

conceptualization (Langdon et al., 2020), or inherently limited by

the application of discipline specific expertise. Certainly, there is

a disproportionate body of research on sport related concussion

with notable gaps in our understanding of mTBI associated
with motor vehicle accidents and other causes. Moreover, the
complexity of concussion and its multi-factorial nature does not
align with the approaches that assimilate the dimensionality of
concussion into its basic units of impairment. A reductionism
approach–that isolates a single factor, or combination of factors,
and assumes them to be the cause of injury or impairment
(Hulme and Finch, 2015)–may be useful in understanding

causal, linear relationships (Bittencourt et al., 2016), however
the non-linear, multifaceted entity that is concussion may
require more sophisticated methods to capture the complex
determinants that influence outcomes. As Langer et al. (2020)
suggested, such a model requires “testing in an overview
of empirical evidence focusing on data driven clustering of
symptoms” into concussion subtypes. Kontos and Collins (2018),
identified the need for mapping symptom clusters across various
domains that quantified symptom clusters of concussion into
objective deficits in functional outcome domain measures.

Analyses that integrate Artificial Intelligence (AI) and
embrace a systems approach to concussion, with inherent
non-linearity and complex, dynamic interactions, may
improve our ability to identify patterns of system disruption
in such multidimensional injuries as concussion. Recent
AI work has used machine learning to predict symptom
resolution following sport-related concussion (Bergeron et al.,
2019). While another study used a clustering approach on
vestibular and balance diagnostic data, and demonstrated
two clinically distinct groups, patients with prominent
vestibular disorders and others with no clear vestibular
or balance impairment (Visscher et al., 2019). Specifically
in consideration of the heterogeneity of concussion and
noting the ways in which this complicates research efforts,
Kenzie et al. (2018) utilized causal loop diagramming to
visualize relationships between concussion injury factors,
including pathophysiology, deficits, symptom persistence and
recovery trajectories.

Advances in machine learning can provide a distinct
practical advantage to healthcare providers (Davenport and
Kalakota, 2019). The advent of using machine learning in
addressing complex healthcare questions is already underway,
demonstrating promise in automating and assisting in clinical
diagnoses and treatment response (Garcia-Vidal et al., 2019;
Nakata, 2019; Stevens et al., 2019). Compared to traditional
statistics, machine learning can identify non-linear relationships
and high-order interactions between multiple variables,
where traditional statistics fall short (Bergeron et al., 2019).
Thus, machine learning could more appropriately address
multifaceted and complicated human health conditions, such
as concussion.

Hierarchical agglomerative clustering, is a unsupervised,
bottom-up, machine learning approach that can identify
subgroups from complex data and provide an opportunity to
classify clinical patterns as well as create novel representations
of clinical profiles (Hassan et al., 2020). There are substantial
implications for research on concussion subtypes, but also
the utilization of machine learning to help in interpreting
overall assessment results and summarizing multiple
parameters to identify which features or combination of
features discriminate between clinical profiles. This approach
aligns with the heterogeneity, complexity, and diversity
of concussion.

The purpose of this study was to determine whether a
bottom-up, unsupervised, machine learning approach, could
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provide insight into different concussion clinical profiles by using
objective outcome measures, including the Patient-Reported
Outcomes Measurement Information System (PROMIS),
Dizziness Handicap Inventory (DHI), Pain Catastrophizing
Scale (PCS), and Immediate Post-Concussion Assessment
and Cognitive Testing Tool (ImPACT). Utilization of self-
administered, objective outcome measures, without the costly
barriers of interdisciplinary concussion assessment were
prioritized for this study.

MATERIALS AND METHODS

Participants
In this retrospective study design, a cluster analysis was used
on 275 patients in the initial intake database of the Advance
Concussion Clinic, in Vancouver, British Columbia, Canada.
Patients who were 18 years of age and older as well as
completed the PROMIS (Version 2.1), DHI, PCS and ImPACT
between January 2018 to December 2019 were included in the
analysis. Patients were excluded from the analysis if, >5% of
the patient’s data were missing from the database, the patient
did not allow the use of their data for research purposes, the
patient did not complete the objective outcome measures at their
initial assessment.

Database
The Advance Concussion Clinic initial intake database consists
of patient reported outcome measures obtained from PROMIS,
DHI, PCS, and ImPACT. PROMIS is set of person-centered
measures that evaluates and monitors domains of pain
interference, fatigue, depression, anxiety, sleep disturbance,
cognitive concerns and abilities, physical function and social
function on a one to five numeric rating scale, as well as
an average pain intensity score, on a zero to 10 numeric
rating scale (Cella et al., 2010). The DHI is a 25-item form
that evaluates a patients self-perceived handicapping effects
imposed by vestibular dysfunction (Jacobson and Newman,
1990). The PCS is a 13-item scale that assesses three aspects
of catastrophizing: helplessness, rumination and magnification
(Sullivan et al., 1995). ImPACT is a computerized neurocognitive
testing measure, which consists of six cognitive test modules.
These six modules are utilized to generate four composite
scores: verbal memory, visual memory, visual-motor processing
speed, and reaction time. A number of studies have reported
on the test’s validity and utility in identifying subtle cognitive
changes associated with concussion (Schatz et al., 2006; Van
Kampen et al., 2006; Broglio et al., 2007; Alsalaheen et al.,
2016). The Acute Concussion Evaluation (Gioia et al., 2008) and
Concussion Grading Scale (CGS) were also extracted from the
initial assessment. The CGS is a 21-item self-report measure

FIGURE 1 | The Silhouette score as a function of the number of clusters.
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that records symptom severity using a 7-point Linkert scale.
Studies demonstrate that the CGS scale is able to discriminate
between concussed and non-concussed patients (Schatz et al.,
2006; Broglio et al., 2007).

Data Analysis
Data extracted from the Acute Concussion Evaluation were
generated using descriptive statistics in SPSS statistical software
(IBM Corp, 2017) and are reported as mean and standard
deviation. For the cluster analysis, participant data were imported
into Python (Python, Wilmington, DE: Python Software
Foundation) and analyses were carried out using the scikit-learn
toolkit (Abraham et al., 2014). Patient data were stored into a
single matrix, where each row represented one patient and each
column one variable. As a first step to reduce multicollinearity,
a correlation matrix was used and redundant features were

discarded. Moderate correlation areas (r > 0.55) were reduced

to the element with the highest inter-patient variability (Schober

et al., 2018). A principal component analysis (PCA) was then

applied to reduce the dimensionality of the dataset (Jolliffe

and Cadima, 2016). A PCA extracts information needed to

explain the highest amount of variance within the dataset and

in turn produces a set of new orthogonal variables called

principal components (Feeny et al., 2020). Following, sklearn’s

agglomerative clustering algorithm was used on the determined

principal components.
Agglomerative clustering is a hierarchical bottom up

clustering approach which groups objects into clusters based
on n their similarity. It is particularly suited for datasets where
clusters maybe unevenly shaped, of unequal size and unequally
distributed across parameter space (Hirano et al., 2004). In
this hierarchical cluster analysis, the model is initialized by
assuming that each datapoint is an individual cluster (Feeny
et al., 2020; Hassan et al., 2020). Similarity and linkage are the two
parameters of greatest importance for agglomerative clustering.
Similarity was calculated using the euclidean distance between
two data-points in PCA space while linkage was measured as the
variance of each cluster (ward linkage).

Ward linkage was chosen to minimize the variance of each
cluster ensuring that assessment scores of patients in each cluster
were maximally uniform (Hirano et al., 2004). For the remaining
parameters we used the default sklearn. At each iteration of
the algorithm, the clusters with the shortest distance merge.
The distance between clusters containing multiple data values is
calculated using theminimum distance between a point in cluster
x and a point in cluster y. The algorithm will continue merging
clusters until stopped or there is only one large cluster. Since
agglomerative clustering begins by assigning each datapoint a
cluster, very few assumptions are made about the data. This is one
of the strengths of agglomerative clustering, compared to other
clustering methods, such as k-means (Hassan et al., 2020).

To determine the optimal number of clusters, the Silhouette
and Davies-Bouldin scores were used (Feeny et al., 2020; Hassan
et al., 2020). The Silhouette score is used to determine the
separation distance between the resulting clusters (i.e., measures
how similar an object is to its own cluster, compared to other T
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clusters). In contrast, the Davies-Bouldin score is a measure
of similarity between each cluster. In this analysis, we aimed
to minimize the Davies-Bouldin score to ensure each cluster is
maximally different from the other clusters and maximize the
Silhouette score to maintain maximal uniformity between values
within a given cluster. Figure 1 shows the Silhouette score as
a function of the number of clusters. To improve the stability
of the cluster outcomes, the agglomerative clustering model
started with 100 patients to capture the initial cluster properties.
Following, an additional 100 patients were added to ensure that
both the properties and profiles of each cluster did not change.
Finally, all remaining participants were added to ensure cluster
stability in that profiles and properties remained unchanged.

A Mann Whitney U test was used to determine significant
differences between each assessment in each cluster against

the same assessment in another cluster (i.e., pain interference
in cluster one against pain interference in cluster two). A
Bonferroni Correction was used on multiple comparisons
(Ranstam, 2016). For all analyses, a statistical significance
was assessed using p < 0.05 and confidence interval of 95%
(Table 1).

RESULTS

Participant Characteristics
The mean age of participants was 37.84 (SD = 12.50 years
of age). Females represented 51% (n = 139) of the study
population, males 48% (n = 133), and 1% (n = 3) did not
disclose this information. The majority of concussions occurred
following amotor vehicle accident (n= 148, 54%), and remaining

FIGURE 2 | Results of correlation matrix between patient baseline characteristics and objective outcome measures including, PROMIS, CGS DHI, PCS, and ImPACT.
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mechanisms of injury were sport (n = 70, 25%), falls (n =

22, 8%), and other (n = 35, 13%). Loss of consciousness
(LOC) was reported in 73 participants (27%), with 202 (73%)
denying or not reporting LOC. The mean total for the CGS
was 52.8 ± 29.8. Time since injury and litigation weren’t
specifically calculated.

Outcome of Clustering Procedure
The correlation matrix extracted redundant features (r > 0.55),
that were subsequently removed from the analysis (Figure 2).
PROMIS parameters retained by the correlationmatrix were Pain
Interference, Fatigue, Depression, Anxiety, Sleep Disturbance,
Physical Function and Mobility, Ability to Participate in Social
Roles, and Cognitive Function as well as Pain Intensity on a
numeric score. From DHI, the total score as well as the DHI
Functional subgroup were retained. Lastly, ImPACT scores for
reaction time, visual motor processing speed, and verbal memory
were also used.

Principal component analysis further reduced the
dimensionality of the dataset from 14 features to two
features. Using sklearn’s agglomerative clustering algorithm
on the two principal components, the maximum silhouette
score was 0.36 and minimum Davies Bouldin score was
0.83. Therefore, it was determined that the optimal number
of clusters was five (Figure 3). Since all patients in the
study presented with a concussion, the range of values
for any given assessment was not very large. In addition,
all patients suffered from pain and movement related
symptoms so it was expected the Davies Bouldin score
would lie closer to 1, indicating similarities between clusters.
shows the clinically distinct five clusters. Mann Whitney
U tests determined statistically significant in-between
differences across all assessments in each of the clusters
(p < 0.05).

DISCUSSION

Concussion is only seeming to grow in complexity as research
and evidence advance our understanding of its heterogenous
nature. From its etiology and pathophysiology, to its individual
clinical presentation and variable recovery trajectories, clinical
management has been especially challenging for the clinician or
primary care physician. Research has varied widely in how it
has dealt with this increasing complexity, with some seeming to
lean into the complexity by highlighting systems approaches and
recursive modeling (Schneider et al., 2019), while others argue
that its heterogeneity is associated with mutually reinforcing
biopsychosocial symptoms rather than a single entity (Iverson,
2019).

Clinically, management of the concussion patient has
continued to grow in complexity as well, with increasing
challenge for the primary care doctor or individual clinician,
particularly in context of westernized medical frameworks
and reimbursement systems. Multiple risk factors have been
identified for prolonged recovery from concussion such as
previous concussion history, developmental delay, headache
history and psychiatric history, all of which require consideration

together with a multitude of other variables that can influence
outcomes. Clinical assessment of the concussion patient
requires consideration of the above as well as potential
interactions between them, all of which form the unique
patterns of presentation in the individual concussion patient.
AI is an ideal, and perhaps even necessary, partner, that
can best support our ability to manage the complexity
of concussion, toward gaining a better understanding of
patterns that may improve our ability to diagnose and
treat mTBI.

This study evaluated the use of an unsupervised,
bottom-up, machine learning approach to analyze the
clinical profiles of patients attending a private concussion
clinic. Utilization of objective outcome measures provided
a unique opportunity to engage machine learning with
various concussion and non-concussion specific evidence-
based metrics. Findings revealed five statistically significant
and distinct clusters, each with unique patterns of
system disruption.

Across each of these five clusters, 14 features were retained,
which combined outcomes from PROMIS, DHI, and ImPACT.
These 14 features were: Pain Interference, Pain Intensity,
Physical Function and Mobility, Anxiety, Depression, Sleep
Disturbance, Ability to Participate in Social Roles, Cognitive
Function, Fatigue, DHI Total, DHI Functional, Visual
Motor Speed, Reaction Time, and Verbal Memory. Reliable
and validated self-administered outcome measures were
specifically utilized to ensure the accessibility and affordability of
this approach.

The authors considered each of five clusters, or concussion
subtypes to be best understood in terms of Complexity, with the
following classification system suggested for each concussion
subtype: Minimally Complex (Cluster 2), Mildly Complex
(Cluster 3), Moderately Complex (Cluster 1), Highly Complex
(Cluster 0), Extremely Complex (Cluster 4) (Figure 4). Level
of complexity was ranked according to number and relative
severity of arenas affected. “Complexity” was considered
to better align with the nature and particular features of
concussive injury, informing specific and treatable features
that support clinical decision making. The language of
“complexity” was furthermore preferred to “severity” to
promote perceived control, in both practitioner and patient,
while avoiding the catastrophizing that might arise with a
severity approach.

Historically, concussion classification approaches have
grouped subtypes according to particular symptoms or a
combination of affected systems. From the concussion profiles
suggested by Collins et al. (2014) to the most recent subtypes as
proposed by Lumba-Brown et al. (2020) and Kontos et al. (2020),
the approach to subtyping has been grounded in heuristics
derived from clinical experience and patient presentation
or reporting.

The utilization of AI offered an opportunity to engage
machine learning pattern recognition to explore what
clinical concussion data can inform regarding concussion
profiles. Indeed, this analysis revealed five unique and
distinct subtypes with various patterns of system disruption,
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FIGURE 3 | Scatterplot of the formed five clusters.

FIGURE 4 | Concussion subtypes (clusters) according to complexity.

across multiple symptoms areas. This machine learning
approach may be most appropriate for capturing the
complexity and heterogeneity of the dynamic injury that is
concussion, and in doing so, maximizing the potential of these
subtypes to support and improve clinical decision making
in concussions.

Reliable and validated self-administered outcome measures
were specifically utilized to ensure the accessibility and

affordability of this approach, offering a data-driven method
toward enhancing clinical judgement and decision making
without requiring commonly utilized clinicaly administered
measures. The utilization of self-administered objective measures
is of notable value in countries and regions that are more
dispersed with less access to the recommended interdisciplinary
concussion team otherwise needed to assess or screen the range
of clinical areas affected in concussion.
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Moreover, the Coronavirus pandemic emphasized the need
for virtual tools to support and inform concussion care when
in-person options are not available. The self-administered
nature of the tools utilized in this analysis, as well the
interdisciplinary value of the information provided, may well
reduce costs or make affordable a reliable screening for those
in a fee-for-service environment, as well as for the health
systems that don’t include interdisciplinary care among their
insured services.

Limitations and Future Directions
This clustering approach was selected to maximize the
value of clinically meaningful data points that were derived
from a large concussion population data set comprised of
evidence-based outcome measures. This novel representation
of concussion subtypes may help to guide interdisciplinary
management, though further study is needed to assess its
value in estimating recovery timelines and response to specific
treatments. Future work should focus on a evaluating a
wider variety of clustering algorithms to determine if they
reveal further insights into the data; however, the uniformity
in the clusters generated by the agglomerative clustering
algorithm provide a first insight into the interconnectedness
of systems affected by concussion. Further study is needed
to understand the clinical application of these profiles and to
explore the utility and feasibility of these subtypes within a
clinical setting.

As the subtypes derived were based only on patients
specifically presenting with symptoms associated
with concussion, certainty regarding its diagnostic
value cannot be ascertained. Extension of this cluster
analysis to include healthy controls would support the
validation of the current clinical profiles and aid in a
diagnostic context.

Notably, many concussion subtypes have been developed
based upon sport related concussions (SRC), while this
research offers evidence of concussion subtyping more broadly
applicable to concussions associated with other causes that
are non-sports related. While the current sample represents
a majority associated with motor vehicle accidents, results
may be more generalizable than research that has focused on
SRC alone. Further research would be needed to confirm the
generalizability of results between these, and perhaps other,
distinct groups.

Conclusion
Classification of concussion according to subtypes may become
a useful, if not essential, tool to support clinical diagnosis and
treatment planning and is useful to concussion practitioners
in directing and coordinating care, and in evaluating progress
toward recovery. It stands to reason that as our knowledge and
understanding of the complexity surrounding concussion grows,
a more comprehensive approach is warranted.

This study demonstrated the novel opportunity of using
AI to gain insight into the complex clinical profiles of
concussion. By systematically analyzing evidence-based metrics,
five clusters emerged that were not only clinically distinct,
but could be used to develop a novel view of concussion
complexity that better approximates the true heterogeneity of
the injury. In turn, this could help inform as well as support
clinical decision making, and interdisciplinary involvement
more readily. Given the interdisciplinary nature of concussion
assessment, and the importance of the interdisciplinary teams’
findings in treatment planning and providing Clearance—
both to learn and to sport—AI’s work in automating, if
not its diagnosis, it’s management, would be useful to most
primary care physicians and other clinicians involved in
its management.

Furthermore, healthcare providers without specific training
in concussion, and in those parts of the world where this
expertise may be largely unavailable would also benefit. With
the right collaboration and balance, the integration of AI
with concussion subtyping can optimize otherwise elusive or
incomplete concussion recoveries.
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