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Stem cell-based tissue engineering is poised to revolutionize the treatment 1 2 3
of musculoskeletal injuries. However, in order to overcome scientific,
practical, and regulatory obstacles and optimize therapeutic strategies, it is version 1 o o o

essential to better understand the mechanisms underlying the
pro-regenerative effects of stem cells. There has been an attempted
paradigm shift within the last decade to think of transplanted stem cells as
“medicinal” therapies that orchestrate healing on the basis of their
secretome and immunomodulatory profiles rather than acting as bona fide F1000 Faculty Reviews are written by members of
stem cells that proliferate, differentiate, and directly produce matrix to form the prestigious F1000 Faculty. They are

de novo tissues. Yet the majority of current bone and skeletal muscle tissue
engineering strategies are still premised on a direct contribution of stem
cells as building blocks to tissue regeneration. Our review of the recent
literature finds that researchers continue to focus on the quantification of de IS comprehensive and accessible. The reviewers
novo bone/skeletal muscle tissue following treatment and few studies aim who approved the final version are listed with their
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is reflected in the diversity of new advances ranging from in situ
three-dimensional bioprinting to a focus on exosomes and extracellular
vesicles. However, recent findings elucidating the role of the immune
system in tissue regeneration combined with novel imaging platform
technologies will have a profound impact on our future understanding of
how stem cells promote healing following biomaterial-mediated delivery to
defect sites.
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Introduction

Bone and skeletal muscle both have high self-healing capacities
that become overwhelmed when loss of large tissue volumes
results in critical-sized bone defects or volumetric muscle loss
(VML). Current pre-clinical tissue engineering strategies for
musculoskeletal defects employ bone marrow—derived mesenchymal
stem cells (MSCs), adipose-derived stromal/stem cells (ASCs),
other tissue-derived stem cell populations, and induced
pluripotent stem cells (iPSCs). However, although there are
over 200 clinical trials involving ASCs and MSCs in the US
(www.clinicaltrials.gov), very few of these trials involve tissue
engineering strategies to regenerate musculoskeletal tissues. There
are considerable scientific, practical, and regulatory hurdles that
so far have restricted the translational use of stem cells for
these applications. Underlying all of these hurdles is a dearth of
understanding of the mechanism by which transplanted cells
promote regeneration. This has imposed significant limitations on
our ability to optimize key parameters such as stem cell purity,
dosing, priming, delivery, or the design of scaffold biomaterials.
In fact, the majority of clinical trials are not using ASCs/MSC for
direct differentiation and contribution to tissue repair but rely on
paracrine mechanisms. Yet few recent studies have focused on
improving our understanding of the fate of transplanted cells. In
spite of this, a convergence of stem cell-based tissue engineering
with recent advances in imaging technologies and immunoengi-
neering may open a window of opportunity for further exploration
and the discovery of new insights.

Transplanted stem cells orchestrate musculoskeletal
tissue repair

Bone tissue engineering

The current gold standard of treatment of the critical-sized bone
defect is the cancellous autograft, often harvested from the iliac
crest'. Autografts repair bone via osseointegration and osteo-
conduction, but the use of these grafts is limited by donor site
morbidity, risk of infection, risk of surgical complications, and
limited available bone volume?; thus, tissue engineering provides
a promising alternative. Most musculoskeletal tissue engineering
studies operate on the premise that stem cells seeded into
biomaterial scaffolds and implanted into volumetric defects
survive the ensuing ischemic microenvironment, differentiate
into osteoblasts or myocytes, and integrate with the native matrix
to directly impact tissue regeneration’. Hence, technologies such
as in situ bioprinting are continually being advanced to precisely
control the spatial location of cells and assess the impact of
different “geometries”™. Other recent studies to achieve bone
healing examined the effect of stimulating endochondral ossifica-
tion with ASCs differentiated into hypertrophic chondrocytes and
implanted into a rat femoral defect. They hypothesize that implanted
hypertrophic chondrocytes help to both regulate endogenous cell
behavior and directly contribute to bone formation; however,
they did not determine whether improved bone formation was
predominantly due to the survival and integration of the implanted
cells or to their superior secretory and immunomodulatory
properties’. A study by Larson ef al. demonstrated that con-
tact with viable bone shifted the phenotype of chondrogenically
pre-cultured MSCs to hypertrophic and osteogenic phenotypes in

F1000Research 2020, 9(F1000 Faculty Rev):118 Last updated: 18 FEB 2020

three-dimensional (3D) cultures of MSCs and in a nude rat model®.
Implanted chondrogenically pre-cultured MSCs, but not non-
differentiated MSCs, seeded on polycaprolactone (PCL) scaffolds
exhibited mineralization, formation of trabecula-like structures,
and chondrogenic and osteogenic gene expression profiles
at 8 weeks. Interestingly, scaffolds seeded with chondrogenically
pre-cultured MSCs were the only group with human DNA present
at 8 weeks and with 45% human RNA content. The findings
from these studies suggest that the direct contribution of
transplanted cells to bone regeneration might depend heavily on
the pre-implantation priming™.

Skeletal muscle tissue engineering

A variety of stem cell types have been explored as a potential
source of myogenic cell replacement therapy. ASCs, which
provide a high rate of stem cell proliferation and can potentially
be sourced directly from the patient, bypassing immune rejection,
have been evaluated extensively in the treatment of musculoskel-
etal damage’"°. However, recent studies have called into question
whether ASC-derived cells are contributing to de novo myofiber
regeneration directly: Gorecka et al. injected autologous ASCs
into the tibialis anterior (TA) of mice following a crush injury
and found that while the cell transplantation resulted in increased
fiber cross-sectional area and improved muscle contractility,
ASC-derived cells did not differentiate into myofibers or fuse
with endogenous muscle fibers'”. Similarly, Gilbert-Honick er al.
seeded ASCs onto electrospun fibrin hydrogels and transplanted
this construct into a mouse model of VML injury'’. Although
there was an increase in fiber cross-sectional area, only limited
expression of myogenic markers in the donor cells was observed.
Alternative mechanisms for the therapeutic benefit of ASC
transplantation have been posited. Secretion of paracrine factors
by transplanted stem cells may improve regeneration by
activating endogenous muscle stem cells, by reducing inflamma-
tion at the site of the injury, or by promoting angiogenesis'*~"". In
particular, a number of recent studies have documented anti-fibrotic
effects of transplanted stem cells. Di Summa et al. found that
differentiated ASCs incorporated into fibrin nerve conduits and
transplanted into a rat nerve gap model reduced fibrotic tissue
formation, enhancing axonal regeneration and remyelination'®.
Milosavljevic et al. injected MSCs or MSC-conditioned medium
intravenously into mice and demonstrated that CCl4-induced
liver fibrosis was attenuated'”’. They found that MSCs acted on
fibrosis by means of decreasing levels of inflammatory T helper
17 (Thl17) cells while increasing anti-inflammatory CD4*
interleukin 10—positive (IL-10*) T cells. These anti-fibrotic
effects of ASCs and MSCs may play a role in their regenerative
capabilities upon transplantation into injury models.

A number of recent studies have explored the use of human iPSCs
as a source of myogenic cell transplantations. Multiple groups
have demonstrated that iPSC-derived myogenic cells contribute
directly to the formation of new myofibers in damaged
tissue’’ . Rao et al. generated the first 3D contractile skeletal
muscle constructs from human iPSCs*. After transplantation,
the cells formed densely packed, aligned myofibers and retained
functional responses. Wu et al. injected iPSC-derived myogenic
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progenitors into cardiotoxin-injured mouse TA and observed
engraftment and contribution of the iPSC-derived cells to new
myofiber formation”. However, long-term survival of iPSC-
derived cells in the transplanted environment is a limitation,
multiple groups have reported high levels of cell death upon
transplantation’’”*, and further work is necessary to characterize
the therapeutic mechanism of transplanted iPSC-derived cells.
An emergent alternative to the treatment of VML is the use of
autologous minced muscle grafts, or 1 mm?® pieces of muscle,
which have also been demonstrated to attenuate T lymphocyte and
macrophage responses to severe muscle injury. These results
may indicate a promising therapeutic role for cell aggregates and
immunomodulatory therapies in the treatment of VML™.

Modulating the survival and secretory profile of
transplanted stem cells

Tissue engineering studies continue to prioritize the “direct
contribution” paradigm. They focus largely on the quantification
of de novo bone/skeletal muscle tissue and the positive effects of
stem cell delivery. However, most studies do not track implanted
cells in vivo or quantify their viability over a long time course.
Multiple studies that have tracked transplanted cells have
demonstrated that few cells survive more than 4 to 8 weeks
following transplantation, suggesting that their pro-regenerative
outcomes might be more correctly attributed to indirect mecha-
nisms such as cytokine secretion, immunomodulation, and signaling
to endogenous cells’*”’. For example, a recent study in which
ASCs were injected systemically or locally into a wound bed
showed that systemically delivered ASCs became trapped in the
lung and could not be detected 72 hours after systemic injection
but that locally injected cells remained strongly detectable up to
7 days at the wound site, yet both groups exhibited enhanced
wound healing”. Recently, some groups have investigated stem
cell aggregation and its impact on metabolic and secretory profiles
while other studies of exosomes and extracellular vesicles (EVs)
have been performed in an effort to provide greater insights into
the potency of transplanted stem cells.

Stem cell aggregates

Implanting stem cells as aggregates rather than monodispersed
cells has been shown to enhance their viability, migration, and
differentiation and modifies their secretion of cytokines,
immunomodulatory factors, and EVs to improve therapeutic
outcomes™’. Yet the lack of standardization renders it impos-
sible to accurately correlate the impact of aggregate sizes,
methods of aggregation, and mode of implantation on the
therapeutic outcomes. Recent investigations into bone tissue
engineering have used periosteum-derived stem cells embedded
in collagen type 1 hydrogel’’, MSCs embedded in a platelet-rich
plasma construct™, or arginine-glycine-aspartic acid (RGD) func-
tionalized alginate™’. The studies employed 250 cells per aggre-
gate, randomly sized spontaneous aggregates, and 500 cells per
aggregate, respectively. Aggregation increased osteogenic and
chondrogenic markers and paracrine secretions. When compared
with monodispersed cell-laden counterparts, aggregate-laden
scaffolds showed increased bone formation®” but no beneficial
impact on cell survival or construct vascularization when
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implanted subcutaneously’’. However, when stem cell aggregates
were used in conjunction with bone morphogenetic protein
2 (BMP2) stimulation, there was increased blood vessel
formation, BMP2 production, presence of hypertrophic chondro-
cytes, and remodeling’', although there was no increase in bone
volume or torsional strength of the resulting bone*. For skeletal
muscle tissue engineering, recent studies have tested human
umbilical cord-derived MSCs* as aggregate sheets encasing
porcine heart decellularized extracellular matrix and green
fluorescent protein (GFP)-labeled murine MSCs* (500 cells per
aggregate) injected in phosphate-buffered saline, respectively.
In both cases, the investigators observed increased recovery and
peak isometric torque observed from aggregates compared with
single cells®.

Extracellular vesicles/exosomes

EVs such as exosomes or microvesicles carry important cargo for
cell communication and are influential in cell signaling. Exosomes
and microvesicles are distinguished by their sizes and origins
(that is, endocytic pathway versus plasma membranes). They both
contain lipids, nucleic acids, and protein cargo. Studies have shown
that EVs can enhance cell differentiation and viability, which in
turn may affect therapeutic outcomes, although the molecular
underpinnings of this are not yet understood. It has recently been
suggested that EVs are heavily involved in bone homeostasis®
and skeletal muscle myogenesis®/, but further investigations are
necessary in order to elucidate the mechanisms in which these
occur. For bone tissue engineering, recent studies of MSC-derived
EVs or exosomes embedded in a hydrogel for treating critical-sized
calvarial defect have demonstrated therapeutic benefit with
significant increases in bone volume fraction, bone mineral
density, and new bone area®’. Furthermore, combining EVs
with MSCs resulted in increased bone volume and bone volume
fraction compared with either component delivered separately”'.
To regenerate skeletal muscle, recent studies have explored the use
of ASC-derived EVs'’#* and MSC-derived exosomes" injected at
various time points at the site of injury or intravenously. These
studies also measured various outcomes from an increase in
cross-sectional area of newly formed fibers'” to increased
regulation/expression of myogenic genes*, capillary density,
myofiber diameter, number of centrally located nuclei, and
decreases in fibrotic area'”.

Recent advances in understanding
immunomodulatory roles of stem cells

The immunomodulatory effects of MSCs have been studied for
over two decades. MSCs regulate immune cell activity via direct
cellular contact as well as cytokine and growth factor secretion.
Recently, MSCs were shown to negatively regulate the activation
and proliferation of T cells during injury and to enhance the
immunosuppressive capacity of regulatory T cells in culture®.
Conversely, innate immune cells exert an effect on stem cells in
musculoskeletal tissues, as demonstrated by the induction of
calvarial osteoblast mineralization by macrophages in 2D culture,
the induction of osteogenesis in MSCs grown in media from
IL-4—stimulated macrophages*, and the link between macrophage
activation and pro-osteogenic gene expression in MSCs in
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3D culture”. A further understanding of the crosstalk between
implanted stem cells and immune cells will help us to maximize
the regenerative capacity of stem cells in musculoskeletal therapy.

Advances in imaging technologies may provide
insights into stem cell fate

Recent imaging advances, including novel optical clearing
techniques™*® combined with light sheet microscopy’® and
quantitative confocal microscopy’’, have enabled the spatial
mapping of endogenous stem cells in their native 3D environment
within musculoskeletal tissues and the monitoring of stem cell
location and viability after implantation. These advances in
imaging have been applied to the visualization of the bone
marrow cavity in whole mouse femurs®”, the quantification of
the abundance of cell populations previously underestimated by
standard flow cytometry, and the definition of subpopulations
on the basis of location and morphology*. Other advances in
magnetic resonance imaging*, bioluminescence*’, photoacoustic
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imaging’', ultrasound, and magnetic particle imaging™ may also
be applied to the in vivo visualization of implanted stem cells.

Concluding statements

Future advances toward the clinical application of stem cells for
musculoskeletal treatments will require that tissue engineering
studies move beyond empirical readouts and employ more
rigorous tools to identify the molecular mechanisms underlying
regenerative outcomes. Specifically, there needs to be a greater
emphasis on the development and use of novel imaging
techniques (to spatially map transplanted and endogenous stem
cells and immune cells in tissue-engineered grafts post-implanta-
tion to visualize cell fates and interactions) as well as on coupling
these data with single-cell analytics. The combined application
of these advanced molecular tools will enable further insight into
the actual role that stem cells are playing and will facilitate better
targeting and optimization of their use in promoting tissue
regeneration.
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