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M I C R O B I O L O G Y

In situ diversity of metabolism and carbon use efficiency 
among soil bacteria
Weichao Wu1,2,3*, Paul Dijkstra4, Bruce A. Hungate4, Lingling Shi5,6,7, Michaela A. Dippold1,7

The central carbon (C) metabolic network harvests energy to power the cell and feed biosynthesis for growth. In 
pure cultures, bacteria use some but not all of the network’s major pathways, such as glycolysis and pentose phos-
phate and Entner-Doudoroff pathways. However, how these pathways are used in microorganisms in intact soil 
communities is unknown. Here, we analyzed the incorporation of 13C from glucose isotopomers into phospholipid 
fatty acids. We showed that groups of Gram-positive and Gram-negative bacteria in an intact agricultural soil used 
different pathways to metabolize glucose. They also differed in C use efficiency (CUE), the efficiency with which a 
substrate is used for biosynthesis. Our results provide experimental evidence for diversity among microbes in the 
organization of their central carbon metabolic network and CUE under in situ conditions. These results have 
important implications for our understanding of how community composition affects soil C cycling and organic 
matter formation.

INTRODUCTION
Microbes are fundamental drivers of soil ecosystem processes. Car-
bon use efficiency (CUE) is a key parameter in modeling of soil carbon 
(C) cycling (1). The value of CUE describes how much microbial 
biomass is produced per substrate consumed and thus affects how 
much carbon can be stored as potentially long-term stabilized soil 
organic matter versus how much is released as CO2. Understanding 
the underlying mechanisms that drive CUE is essential for under-
standing how soil ecosystems function and respond to environmen-
tal change (2). CUE, as is often measured, not only reflects energy 
needs for growth and cell maintenance but also integrates the effects 
of variation in exudation of metabolites, extracellular enzymes, and 
microbial death (3, 4). Here, we use 13C metabolic flux analysis and 
modeling to estimate the efficiency of the biochemical processes of 
the central C metabolic network, responsible for most of the en-
ergy and CO2 produced in heterotrophic microbes under in situ 
conditions in an intact, complex soil community.

The central C metabolic network, consisting of Embden-Meyerhof- 
Parnas glycolysis and pentose phosphate and Entner-Doudoroff 
pathways, as well as the downstream tricarboxylic acid cycle, has 
been extensively studied in microbial isolates under laboratory con-
ditions (5–8). Recently, large-scale genome-informed modeling of 
the central C metabolic processes and CUE has been done, includ-
ing for species that cannot be cultured (9–11). However, these ge-
nomic analyses may not capture in situ microbial metabolism and 
CUE in complex microbial communities because of the strong in-
fluence of environmental conditions (e.g., temperature, pH, and nu-
trients) on microbial activity and CUE (1, 10, 12).

The position-specific 13C-CO2 production from glucose isotopomers 
has been used to model metabolism and CUE for intact soil ecosys-
tems (2, 13). These measurements reflect metabolism and efficiency 
averaged across the entire soil microbial community. This approach 
does not differentiate between individual organisms or groups of 
organisms within that community as CO2, the target metabolic 
product of that approach, is jointly produced by the entire hetero-
trophic soil community.

13C incorporation from labeled compounds into signature mole-
cules, e.g., phospholipid fatty acids (PLFAs), can differentiate among 
groups of soil organisms (14, 15), for example, in their uptake of 
glucose (16, 17). The PLFA technique has been used for microbial 
community characterization for several decades (15, 18, 19). This 
method divides the microbial community into large groups (e.g., 
Gram-positive bacteria) on the basis of characteristic profiles of 
PLFAs (18, 19). This does not mean that microorganisms outside this 
group do not produce these fatty acids nor that each Gram-negative 
bacterium produces only this PLFA, just that Gram-negative bacte-
ria as a group produce most of that PLFA in the soil community. By 
tracing different isotopomers of 13C-glucose into signature mole-
cules, it should be possible to perform soil fluxomics and model the 
activity of the central C metabolic network and CUE for groups of 
organisms within an intact soil community.

Wu et al. (20) developed a technique to analyze the 13C incorpo-
ration from position-specific 13C-labeled glucose isotopomers into 
ethanoate and propionate fragments from individual PLFAs. These 
fragments are derived from acetyl–coenzyme A (acetyl-CoA), and 
the two carbon atoms from the acetyl unit are preserved in PLFA 
synthesis. Therefore, these fragments can be used to model the cen-
tral C metabolic network for the organisms that produce these sig-
nature lipids. The main goal of this study is to identify how groups 
of organisms within a community use the central C metabolic net-
work and to estimate the efficiency of glucose use under in situ, in-
tact soil conditions. These measurements will help us understand 
the roles of individual community members in whole soil metabolic 
activities, CUE, respiration, and potentially necromass formation 
and soil organic matter formation.

We used an agricultural soil and incubated it with six 13C-glucose 
isotopomers in parallel incubations, extracted PLFAs, and analyzed 
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the ethanoate and propionate fragments using a conventional 
electron-impact gas chromatography–mass spectrometer (GC-MS) 
(for details, see Materials and Methods) following Wu et al. (20). 
The results for this one soil indicate the diversity of metabolic pro-
cesses and CUE within an intact soil community, confirming ge-
nomics observations and long-held assumptions in soil C cycling 
modeling (21).

RESULTS
Positional 13C incorporation into PLFAs
We detected 27 PLFAs in our soil samples of which bacterial PLFAs 
accounted for 96  ±  0.6% and fungal PLFAs (C18:26,9) for 1.95  ± 
0.06%, suggesting a low fungal biomass in this agricultural soil, com-
pared to, for example, >10% for a forest soil [also see the Supplemen-
tary Materials; (22)]. As a result, our analysis is focused on bacteria 
only. We analyzed ethanoate and propionate fragments of 16 bacterial 
PLFAs (including straight, monounsaturated, iso, and anteiso; Sup-
plementary Materials) making up 80% of extracted PLFAs. We have 
shown proof of concept of this measurement of fragment enrichment 
of these PLFAs and modeled metabolic organization using pure cul-
tures of Bacillus licheniformis and Pseudomonas fluorescens (20). In 
soil, all 13C glucose isotopomer additions resulted in significant 13C 
incorporation into PLFAs compared to the control with glucose with 
natural abundance isotope composition (Fig. 1). As expected, the 
13C enrichment differed between glucose isotopomers (Fig. 1 and 
Supplementary Materials). Glucose-5-13C and glucose-6-13C yielded 
higher 13C enrichment than other 13C isotopomers. Propionate 
showed a higher 13C enrichment than ethanoate [repeated measures 
analysis of variance (ANOVA), df = 15,2, F = 42.2; P < 0.001; Fig. 1] 
when incubated with glucose-5-13C but a lower enrichment when 
incubated with glucose-6-13C (repeated-measures ANOVA, df = 15,2, 
F = 17.6; P < 0.001; Fig. 1). The difference in 13C incorporation be-
tween ethanoate and propionate fragments was also observed when 
incubated with glucose-1-13C and glucose-2-13C (Fig. 1).

Regardless of the metabolic pathways, carbon atoms from posi-
tions 5 and 6 of the glucose molecule are consistently incorporated 
into PLFAs during biosynthesis, and carbon atom from position 4 is 
consistently lost as CO2 (Fig. 2). In contrast, whether carbon atoms 
from positions 1, 2, and 3 from glucose end up in PLFAs depends 
strongly on the metabolic pathway (Fig. 2). Further details of meta-
bolic organization, for example, the rate of anaplerotic reactions and 
the citric acid pathway, can be identified from the pattern of C4, C5, 
and C6. The incorporation patterns were used to model the meta-
bolic flux pathways used by the organisms that produced the differ-
ent fatty acids.

Organization of metabolism as a function of PLFAs 
and microbial identity
To estimate the flux rates through the pathways of the central C meta-
bolic network (fig. S1), we used a model consisting of 18 reactions 
and eight biomass functions (20) with precursor demand following 
Dijkstra et al. (table S1) (4, 13). The observed labeling patterns cor-
responded to significant differences in the biochemical pathways 
that were involved in producing these PLFAs (Fig. 3 and table S2). 
The nonmetric multidimensional scaling (NMDS) and cluster 
analysis of PLFA-based metabolic fluxes distinguish at least three groups 
of PLFAs on the basis of their metabolic organization (Fig.  3A). 
Branched PLFAs were part of two groups (clusters A and B), whereas 
unsaturated PLFAs were associated with cluster C. PLFAs in clus-
ters A and B showed high pentose phosphate pathway activity, while 
PLFAs in cluster C partition glucose equally over pentose phosphate 
and Entner-Doudoroff pathways (Fig.  4A). The universal PLFAs 
such as straight and saturated C15, C16, and C17 fatty acids were part 
of cluster C, suggesting that the overall microbial community share 
similar metabolic flux patterns as the other PLFAs in cluster C.

We assigned branched PLFAs (clusters A and B) as Gram-positive 
bacteria and unsaturated PLFAs (cluster C) as Gram-negative bacte-
ria (Fig. 3B) following Zelles (14), Frostegård et al. (15), and Joergensen 
(19). Cluster A consisted of branched PLFAs, supporting an origin 

Fig. 1. Atom percent excess enrichment of 13C of fragment and entire mole-
cule of PLFAs (C14 to C18) after a 10-day incubation with position-specific 
13C- labeled glucose. Fragments include ethanoate (Eth), propionate (Pro), and 
the molecular ion (M). C1 to C6 refer to glucose-1-13C, glucose-2-13C, glucose-3-
13C, glucose-4-13C, glucose-5-13C, and glucose-6-13C. P values above figure indicate 
differences in 13C among fragments and entire molecules with significant 13C dif-
ference relative to ethanoate being marked with star (*) (repeated-measure ANOVA, 
df = 15,2, P < 0.01). Box plots indicate interquartile ranges with each line (from 
down to up) representing minimum, 25%, median, 75%, and maximum value, 
while dots represent outliers.

Fig. 2. Schematic representation of carbon incorporation from glucose into 
acetyl-CoA, the precursor for fatty acid biosynthesis. Carbon atom numbering 
for metabolites (pyruvate, PYR; acetyl-CoA, AcCoA) is ordered from left to right, 
while numbers indicate the C position in the original glucose molecule. ED indi-
cates Entner-Doudoroff pathway, EMP is Embden-Meyerhof-Parnas glycolysis, and 
PP is pentose phosphate pathway. Gray background shading indicates those C po-
sitions released by pyruvate dehydrogenase as CO2.
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of Gram-positive bacteria (Fig. 3). Cluster B was mostly branched 
PLFAs but contained an unsaturated PLFA C16:15 (Fig. 3), which 
was assigned to Gram-negative bacteria (11). It indicates that the 
Gram-negative bacteria that produce C16:15 exhibit a metabolic 
pattern similar to Gram-positive bacteria. Using pure cultures, several 
studies showed similar high pentose phosphate pathway activity in Gram- 
negative Escherichia coli as in Gram-positive Bacillus subtilis (6, 23).

Tricarboxylic acid cycle activity and CUE
Gram-positive and Gram-negative bacteria exhibited significant 
differences in the rates of the tricarboxylic acid cycle reactions 
(Kruskal-Wallis test, P = 0.004 < 0.01; Fig. 4B). Gram-positive clus-
ter A bacteria had low reaction rates, while Gram-positive cluster B 
bacteria had high rates. Rates for Gram-negative bacteria were in-
termediate. Because of the strong negative correlation between the 
activity of the tricarboxylic acid cycle and CUE (Fig. 5), CUE was 
high for Gram-positive bacteria cluster A, intermediate for Gram- 
negative, and low for Gram-positive cluster B (Fig. 4C).

DISCUSSION
In this study, we used a PLFA-based metabolic flux analysis model to 
characterize the metabolic diversity within soil microbial community. 
The Entner-Doudoroff pathway has been suggested as an important 
alternative pathway for the Embden-Meyerhof-Parnas glycolysis for 
glucose catabolism (24–26). The high Entner-Doudoroff pathway ac-
tivity in Gram-negative soil bacteria was consistent with findings that 
genes for Entner-Doudoroff are most prevalent in Gram-negative 
bacteria such as Proteobacteria, an important component of the soil 
microbiome (27, 28). Moreover, PLFA iC17 and iC15, representative 
for Gram-positive bacteria (9, 24, 25), showed significant but low 
Entner-Doudoroff pathway activity (table S2). Entner-Doudoroff 
pathway activity is rare in Gram-positive bacteria but has been ob-
served, e.g., in Enterococcus faecalis and Rhodococcus opacus (26, 29). 
It should be noted that iC17 and iC15 are also produced by mesophilic 
and anaerobic Gram-negative sulfate-reducing bacteria (30, 31). How-
ever, these bacteria are unlikely to be abundant in agricultural soils.

Gram-negative Pseudomonas species almost always use the 
Entner-Doudoroff pathway (>90%) to catabolize glucose (6, 32). High 
activity of the Entner-Doudoroff pathway is also found in marine 
bacteria (33), which were compared to terrestrial model bacteria, 
such as E. coli, B. subtilis, and Corynebacterium glutamicum. They 

Fig. 3. Analysis of the metabolic flux patterns across PLFAs. NMDS (A) and clus-
ter analysis of modeled central C metabolic fluxes (B) based on 13C incorporation 
patterns into PLFA. To compare the observations with pure culture studies, the 
results for B. licheniformis and P. fluorescens from the study by Wu et al. (20) and 
S. pungens from the study by Scandellari et al. (55) are displayed (see the Supple-
mentary Materials). Cluster analysis was based on the average Euclidean distance 
of fluxes between PLFAs. The heatmap shows the activity of the different pathways 
for individual PLFAs with red for pathway activities above and blue below the mean 
value. v1 to v18 and br1 to br8 are reactions in the model of the central C metabolic 
network (fig. 1). TCA, tricarboxylic acid.

Fig. 4. Relative fluxes through the major metabolic pathways and carbon use efficiency of soil bacterial groups. Fraction of glucose directed to (A) Embden-Meyerhof- 
Parnas glycolysis and pentose phosphate and Entner-Doudoroff pathways, (B) flux rate of TCA cycle reaction (v6) relative to the flux v1 (glucose➔glucose-6-phosphate), 
and (C) CUE for cluster A, cluster B, and cluster C PLFAs. Means and SEs were calculated from the grouped PLFAs in Fig. 3.
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concluded that terrestrial bacteria exhibited predominantly a mix of 
Embden-Meyerhof-Parnas glycolysis and pentose phosphate path-
way, while in marine bacteria, the Entner-Doudoroff pathway was 
dominant. However, we submit that Gram-negative bacteria in soil 
(this study) and likely in marine ecosystems (33) both exhibit strong 
Entner-Doudoroff pathway activity, while Gram-positive bacteria do 
not. High Entner-Doudoroff pathway activity is rather unexpected 
as it produces fewer adenosine 5′-triphosphate compared to 
Embden-Meyerhof-Parnas glycolysis. However, Entner-Doudoroff 
activity may be preferred because of lower protein cost and more 
favorable thermodynamic characteristics and because it yields NADPH 
(reduced form of nicotinamide adenine dinucleotide phosphate) 
that can be used to protect the cell from oxidative damage (33–36). 
In consequence, the unexpectedly high contribution of Entner- 
Doudoroff pathway to Gram-negative’s metabolism in soil does not 
only underline the often observed strongly deviating functions of 
Gram-negative and Gram-positive microorganisms (37, 38) in soil 
but also demonstrates that stress protection may be a major driver 
for the thermodynamics of the microbial metabolism and thus soil 
C transformations.

In laboratory studies, Gram-positive Bacillus species (e.g., B. subtilis 
and B. licheniformis) exhibited higher activity of Embden-Meyerhof- 
Parnas glycolysis (~70%) relative to pentose phosphate pathway 
(~30%) without a significant contribution of the Entner-Doudoroff 
pathway (6, 20, 23). In contrast, we observed a significantly higher 
activity of the pentose phosphate pathway than Embden-Meyerhof- 
Parnas glycolysis for both groups of Gram-positive bacteria in this 
soil community (two-tailed t test, t value = 9.9, df = 13, P < 0.001). 
This difference can be explained in two ways: (i) The limited set of 
bacterial isolates is not representative for most of the uncultivated 
Gram-positive bacteria in soil, or (ii) the environmental conditions 
in soil cause changes in pathway activity patterns. The latter may be 
related to the generally resource-limited environment of soil eco-
systems (39) and soil Gram-positive bacteria being specialized for 
C-limited habitats in contrast to their growth conditions in pure cul-
tures (37). Metabolic pathway activities are known to change under nu-
trient limitation (5, 7, 40). Similarly, changes in metabolic pathway 
activities were observed for whole soil communities in response to 
temperature (13), C availability (16), and presence of toxins (41). 

However, a high activity of pentose phosphate pathway and for 
Entner-Doudoroff pathway is associated with a high NADPH pro-
duction, which may be a requirement to protect cells against oxidative 
damage in aerobic environments (42). Consequences of high pen-
tose phosphate or Entner-Doudoroff pathway activity for the resist-
ance and resilience of soil microbial communities to disturbances 
such as tillage or extreme droughts remain to be elucidated (43, 44).

Microbes with high CUE are thought to be important for soil or-
ganic matter production and persistence, while microbes with low 
CUE are more likely the driver of a high soil respiration (1, 45). How-
ever, evidence for variability in CUE within soil communities is mostly 
based on results from pure culture experiments (10, 12, 45, 46). Some-
times oligotrophs are considered more efficient than copiotrophs 
(47), sometimes microbes investing less into resource acquisition are 
thought to be more efficient (48), or growth rate and CUE are nega-
tively correlated (21). Variability in CUE has been experimentally 
demonstrated for an intact, complex microbial community under in situ 
conditions. Our results show that a diversity of glucose-processing 
biochemical pathways and variable CUE coexist under identical en-
vironmental conditions.

It is useful to compare our findings to genome-scale models 
(10, 12). Our findings match observations of a high abundance of 
Entner-Doudoroff pathway genes for Gram-negative Proteobacte-
ria (9). Moreover, we found significant but low Entner-Doudoroff 
pathway activity for Gram-positive bacteria in agreement with few 
observation of genes of this pathway in species of Firmicutes and 
Actinobacteria (9, 26, 29). Genome-based metabolic modeling has 
provided estimates of CUE that are strongly dependent on substrate 
used (10) but are difficult to scale to whole communities or groups 
of bacteria. Using soil fluxomics, we were able to provide initial ex-
perimental verification of these findings. However, more research is 
needed to bring these two approaches of fluxomics and genome- 
based modeling together. The close correlation between CUE and 
tricarboxylic acid cycle flux suggests that simplified proxies of the 
tricarboxylic acid cycle activity, potentially detected using metabo-
lome analysis, might provide good estimates for CUE in complex 
microbiomes. Considering the moderate specificity of PLFAs (15, 19), 
the analysis of further metabolites with biomarker function is re-
quired to improve the accuracy and coverage of fluxomics, to pro-
vide deeper insights of microbial identities, and to further align 
genome-based modeling and fluxomics. Because 13C-PLFA–based 
stable isotope probing has been widely used to trace microbial ac-
tivity and metabolism, our 13C-PLFA–based metabolic flux analysis 
model aims to bring more insights into dynamic microbial metabo-
lism even in low microbial activity or low microbial abundance 
environments.

Microbes play a crucial role in the production and consumption 
of soil organic matter. It has been proposed that a high CUE is ben-
eficial for maintaining or even increasing soil C content (49,  50), 
while a lowering of CUE could potentially reduce soil organic matter 
content (2). Knowing which microbial groups have a high CUE under 
in situ conditions could help identify which microbes contribute 
most to soil organic matter formation. This could lead to deeper 
insights into how changes in the environment affect soil C content 
and provide opportunities to optimize microbial communities with 
the purpose of increasing soil organic matter formation. Particularly 
in view of the “4 per 1000” (51), the development of agricultural 
management practices aimed at high CUE and thus improving soil 
C content is essential to mitigating climate change.

Fig. 5. Correlation between TCA cycle activity (v6) and CUE. Each data point 
represents an individual PLFA in this study defining not only the correlation but 
also pure strains data (20, 55) that are displayed in Fig. 3. Clusters A, B, and C are 
assigned as Gram-positive bacteria A (Gram Pos_A), Gram-positive bacteria B 
(Gram Pos_B), and Gram-negative bacteria (Gram Neg), respectively.
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MATERIALS AND METHODS
Soil incubation with position-specific 13C-labeled glucose
Samples of the upper 20 cm of an agricultural soil were collected from 
the “Campus Klein Altendorf” experimental station in Rheinbach, 
Germany (50°37′N, 6°59′E; Haplic Luvisol developed from loess) in 
May 2018. A detailed description of soil properties is given by 
Vetterlein et al. (52). Before incubation, bulk homogenized samples 
were sieved to 2 mm to remove plant debris and stored at 4°C for 
1 month. About 10 g of field-moist soil (water content of ca. 20%) 
were transferred to 550-ml airtight glass jars. Soil samples (n = 2) 
were air-dried at room temperature overnight, after which 3 ml of 
glucose isotopomer stock solution (3.3 mg glucose ml−1) was evenly 
spread over the soil surface with a pipette at a final concentration of 
5.56 mol glucose g−1 soil. The seven 13C-labeled glucose isotopomers 
were glucose-1-13C, glucose-2-13C, glucose-3-13C, glucose-4-13C, 
glucose-5-13C, glucose-6-13C, and uniformly labeled glucose-U-13C6 
(Sigma-Aldrich, >99 atomic % isotopic purity). Two control treat-
ments were part of this experiment: 3 ml of Milli-Q water and 3 ml 
of natural abundance glucose addition (5.56 mol glucose g−1 soil). 
The soil samples were incubated at 15°C for 10 days as previous (53).

PLFA extraction
About 8 g of lyophilized soil was extracted following a modified 
Bligh and Dyer method (54). PLFAs were purified on a solid-phase 
silica-gel extraction column eluted with chloroform, acetone, and 
methanol. After drying under N2, PLFA were hydrolyzed with 0.5 ml 
of 0.5 M NaOH in methanol at 100°C for 10 min. After cooling to 
room temperature, 0.5 ml of 10% BF3 in methanol was added, and 
the solution was incubated at 80°C for 15 min. Thereafter, 1 ml of 
saturated NaCl solution was added, and fatty acid methyl esters 
(FAMEs) were extracted four times with 2  ml of hexane. FAMEs 
were dried under N2 and stored at −20 °C until further analysis.

Fragment 13C analysis on GC-MS
FAMEs were detected on a GC 7890B connected to a single quadru-
pole mass spectrometer MSD 5977B (Agilent, Waldbronn, Germany). 
FAMEs were injected into the inlet at 280°C in splitless mode and 
separated on a DB-1 ms column (15 m in length, 0.25 mm in inter-
nal diameter, and 0.25 m in film thickness) in tandem with a DB-5 
ms column (same parameters as DB-1 ms but 30 m in length). The 
oven temperature program was 80°C (1 min) increased to 171°C at 
10°C/min, increased to 192°C for 4 min at 0.7°C/min, followed 
by an increase to 206°C at 2°C/min and to 300°C for 10 min at 
10°C/min. Electron ionization energy was set at 70 eV, and ion 
source and quadruple temperatures were kept at 230° and 150°C, 
respectively.

Full scan [mass charge ratio (m/z) 50 to 550 Da] and selected ion 
monitoring were used for qualitative measurements and isotope 
estimates, respectively. The selected m/z for the ethanoate and pro-
pionate fragments were molecular ions of FAME are listed in the 
Supplementary Materials. The PLFA used for metabolic flux model-
ing included iC14, C14, iC15, aC15, C15, iC16, aC16, C16:17, C16:15, C16, 
iC17, aC17, C17, C18:19, C18:17, and C18 and have been used for 
metabolic flux modeling of pure strains of B. licheniformis and 
P. fluorescens (20). The relative abundances of mass isotopomers 
were determined to calculate the 13C atom percent excess (APE, 
atomic %) of the PLFA fragments and molecular ions after correct-
ing for naturally occurring isotopes (Supplementary Materials) (20). 
More analysis details are available in the study by Wu et al. (20).

Metabolic flux modeling
The model of the central carbon metabolic network included the 
catabolic reactions of the pathways of Embden-Meyerhof-Parnas 
glycolysis, pentose phosphate pathway, Entner-Doudoroff pathway, 
tricarboxylic acid cycle, gluconeogenesis, and anaplerotic reactions 
as well as eight anabolic reactions for biomass synthesis (for more 
details, see fig. S1). 13C APE of metabolites in the network was simulated 
using atom mapping matrices and label identification vectors. Assuming 
that the ethanoate fragment represents acetyl-CoA and the propionate 
fragment represents acetyl-CoA  +  acetyl-CoA C1 (C1 position of 
second acetyl) of the PLFAs, the differences between simulated acetyl 
and propyl isotope composition and that of the experimentally iso-
tope composition of each PLFA were minimized using a nonlinear 
optimization algorithm (20). The objective function was as follows

  min f(v ) =  ∑ i=1  n=6   [ (APE _  eth i  
sim  − AP  E_eth      i  

exp  / AP  E_eth      U  exp )   
2
  

                           +  (APE _  pro i  
sim  − AP  E_pro      i  

exp  / AP  E_pro      U  exp )   
2
 ]  (1)

where v is the flux vector in metabolic stoichiometric network (see 
fig. S1), i (1 to 6) is the position in singly 13C- labeled glucose that 
contains the 13C tracer, and  APE_  eth i  

sim  ,  APE_  pro i  
sim  ,  APE_  eth i  

exp  , 
and  APE_  pro i  

exp  are the simulated and experimentally determined 
APE of ethanoate and propionate, respectively, after the specific sin-
gly 13C-labeled (i) glucose.  AP  E_eth      U  exp   and  APE_  pro U  exp   are the ex-
perimentally determined APE of ethanoate and propionate of PLFA 
in the presence of uniformly 13C-labeled glucose.

The CUE was estimated from CO2 production (v5, v7, v8, v9, and 
v17), CO2 consumption (v16), and glucose uptake (v1) as follows

  CUE = 1 − ( v  5   +  v  7   +  v  8   +  v  9   +  v  17   −  v  16   ) / ( 6   *   v  1  )  (2)

The simulation of APE of metabolites and flux optimization was 
accomplished using MATLAB (2018b, MathWorks, USA) with the 
internal function fmincon. The precursor demand ratios for bio-
mass synthesis (i.e., br2 to br8 in fig. S1) relative to br1 were following 
Dijkstra et al. (13) and are provided in table S1. Three different pre-
cursor requirement ratios were used in modeling by assuming a rel-
ative abundance of microbial compositions of G+, G−, and fungi as 
1:1:1, 4.5:4.5:1, and 1:1:8, respectively (13, 20). The output results for 
the three modeled communities did not show significant differences 
(ANOVA, df = 2, 861, F = 0.030, P = 0.971). More details about the 
model script on MATLAB and underlying assumptions are avail-
able in the study by Wu et al. (20).

Statistics
Normal distribution was tested using a Kolmogorov-Smirnov test. 
Outliers were identified according to the 1.5×  interquartile range 
rule in box-and-whisker plots. If the assumption of normal distribu-
tion was met, then a one-way ANOVA was used to test for signifi-
cance, followed by a pairwise t test to compare the differences between 
two groups when significant differences were identified. When as-
sumption of normal distribution was not met, a nonparametric 
Kruskal-Wallis test and pairwise Mann-Whitney U test were used. 
When an individual fatty acid was considered a single subject, re-
peated-measures ANOVA was used to test the 13C difference among 
ethanoate, propionate, and molecular ion. If this ANOVA showed 
significances, then paired t tests were performed to further identify 
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significances between the fragments. The statistical analysis was 
accomplished using internal statistical functions in MATLAB (2018b,  
MathWorks, USA).

Hierarchical cluster analysis was used to group PLFAs on the ba-
sis of their modeled metabolic fluxes. To further validate the hierar-
chical cluster results and avoid the biases for the specific algorithms 
in hierarchal cluster analysis, NMDS was performed. Before analy-
sis, the data were standardized using the z-score method by subtrac-
tion of the average and division by the SD, i.e., z = (x −    _ x   )/. Cluster 
analysis used the agglomerative hierarchical cluster method with 
average Euclidean distance for linkage. For NMDS analysis, stress 
values of <0.1 indicated a good ordination avoiding misleading inter-
pretation. To compare our results, two pure strains B. licheniformis 
and P. fluorescens were from the study by Wu et al. (20), while 
the results for Suillus pungens were derived from the study by 
Scandellari et al. (55) but used the model in this study (more details 
in the Supplementary Materials).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abq3958

View/request a protocol for this paper from Bio-protocol.
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